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Abstract:    Numerous bush and forest fire simulators have been developed in the last two decades based on 
elliptical spread and Huygens’ principle. Unfortunately, all such implementations are plagued by topological 
complications. For example, sampling issues on the evolving front, represented in the Canadian simulator 
Prometheus as a set of polygons, evolving under the differential equations derived by Gwynfor Richards 
from Huygens’ principle, lead to tangling and other non-physical singularities.  In order to maintain stability 
of the numerical scheme, and to produce realistic fire fronts, these artefacts must be systematically removed 
between time steps. In the literature on interface tracking, this is called delooping or untangling the computed 
front. 
 
Recently, an automated untangling routine has been developed for Prometheus based on the so-called 2-
colour Theorem. Not only is this approach more intuitive than previous algorithms (which were based on 
scan lines and winding number calculations), it has proved to be more accurate and faster on all test cases 
employed by Prometheus developers (from 10 to 90 percent speedup compared to previous generation codes, 
depending on the examples). It is based on a concise and easy-to-implement set of rules that do not introduce 
the many special cases that previous methods required. 
 
This report presents a brief review of fire simulation models in general, and on their various approaches to 
untangling in particular. We describe the mathematical foundations for our new method and give a brief 
overview of the programming issues that arise in implementation. Finally, we report the results obtained by 
the new model on a test database of fires maintained by Prometheus developers. Good performance is 
obtained both in terms of run times and in the ability of the code to produce realistic fire fronts without 
operator intervention. 
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1.   FOREST FIRE SIMULATION 

 
1.1 Huygens’ Principle and Prometheus 
 
Data collected from wildfires and experimental burns over a wide range of fuel types supports the empirical 
observation of elliptical fire spread shape under homogeneous conditions of fuel load, moisture and wind 
(Van Wagner, 1969).  This basic principle can be incorporated in a fire spread simulator by invoking 
Huygens’ principle wherein the fire front is represented at time t  by a collection of point ignition sources 

(firelets) that evolve independently, using locally derived spread rate data over a small time step tΔ .  

Consequently, at time tt Δ+  the new fire front is the envelope of these many expanding elliptical firelets. 
Figure 1 shows a pictorial representation of the model where the blue curve represents the new front, evolved 
from the black elliptical front after one time step.  
 
Early attempts to implement this model on a computer were 
reported by Sanderlin and Sunderson (Sanderlin et al., 1975) and 
Anderson, Catchpole, De Meestre and Parkes (Anderson et. al., 
1981).  In these investigations the envelope was derived from the 
expanding ellipses by a direct geometric procedure.  Richards 
(Richards, 1990, Richards, 1999) refined the use of Huygens’ 
principle by deriving a system of continuous differential 
equations for spread of the fire front, again using the basic 
observation of an elliptical local spread shape. This has the 
advantage of incorporating the fire front modelling problem into 
the general literature on interface tracking and hyperbolic partial 
differential equations (Sethian, 1999). Thus, a number of 
techniques are available for numerical simulation. For example, 
the numerical procedure suggested in Richards (Richards, 1990) 
models the fire front at time t  as a closed polygonal path with 
finitely many vertices.  Using difference equations derived from the Richards equations, the vertices of this 
polygon are translated to new points representing the vertices on the new front at time tt Δ+ . The updated 
front is defined as the polygonal path passing through these new vertices.  In the interface literature, this is 
known as the marker method or bead method (Sethian, 1999).  
 
Prometheus, the Canadian wildland fire growth simulator (Tymstra et al., 2009) is a fully-functional, field 
tested computer program based on Richards’ equations, the marker method for front propagation and 
incorporating the Canadian Fire Behaviour Prediction (FBP) system (Forestry Canada Fire Danger Group, 
1992) as input for local spread rates. The FBP assumes elliptical spread. 
 
Unfortunately, all the approaches discussed above suffer from topological complications. The essential 
problem is that variation in the local velocity field combined with spatial and temporal discretisation leads to 
tangles and singularities in the computed front. In order to use this method in an iterative scheme, it is 
essential to identify and remove these artefacts by post-processing the computed front before the next 
iteration. In the front tracking literature, this is known as delooping or untangling (Sethian, 1999); we adopt 
the latter terminology. An early attempt to address the tangling issue appears in the work of Knight and 
Coleman (Knight and Coleman, 1993). There, geometric derivation of the new front is modified in regions of 
high curvature so as to reduce the generation of small scale tangles (the term rotation is used in that article; 
swallowtail  also appears commonly in the front tracking literature for this type of artefact).  Rotations that 
do appear despite these modifications are removed by a simple procedure, based on the local nature of the 
artefact.  Overlaps of widely separated parts of the fire front (for example, as in the horseshoe fire shown in 

Figure 1.  Huygens Principle 
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Figure 6) are also treated by a heuristic 
clipping routine that is dependent on the 
mild topological complexity of the artefact.  
 
1.2 Untangling in Prometheus prior to 
Version 5.0 
 
All versions of Prometheus have 
incorporated some level of automated 
untangling. Prior to version 5.0 the 
algorithm for untangling was based on a 
winding number1 calculation performed via 
the scan line method as proposed in 
(Richards et al., 1995). Once the winding 
numbers of vertices2 are determined, 
various heuristics are applied to assign each 
vertex either an active or inactive status. 
The front is simplified by removing strings of inactive vertices and associated edges. Unfortunately, artifacts 
in the form of loops and crossings and stranded inactive interior polygonal segments often remain after the 
version 4.5 untangling.  An example (Dogrib fire simulation) is shown in Figure 2.      
 
1.2 Untangling in Prometheus after Version 5.0 
 
Prometheus 5.0 introduced a new module for vertex management containing an untangling routine based on 
the 2-colour Theorem.  This approach is both simpler and faster than previously implemented algorithms and 
gives more realistic results. Applying the new algorithm (the current release, Version 5.3) to the Dogrib Fire 
data generating Figure 2 yields the untangled plots in Figure 3.  Note that these fronts have fewer topological 
complications while retaining main features of the front as computed by Version 4.5.  

2.   UNTANGLING VIA THE 2-COLOUR THEOREM 

2.1   Polygons and Crossings 

 
The fire front consists of one or more polygons, each determined by an ordered list of vertices 

),( iii yxP = , Ni ,,2,1 = , where NPP =1 , closing the polygon. The edges of each polygon are 

directed line segments in the plane 

connecting 1−iP  to iP . In order to 

simplify our discussion, we will 
consider only the case of a single 
polygon in this short article.  An edge 
crossing is any intersection of two 
distinct edges, excluding consecutive 
edges joined at their common vertex.  
This includes the possibility of a vertex 
meeting an edge or two distinct vertices 
occupying a common point. If a 
polygon has no edge crossings, it is 
said to be simple. 
 
We assume that at time step Tt =  the 
polygon is simple, and positively 

                                                 
1 The winding number of an oriented curve C with respect to a point P is the number of times the location 
vector from P to a point X on the curve rotates around P, as X traverses the curve C in positive direction. See 
(Krantz, 1999), for example. 
2 Strictly speaking, winding numbers cannot be computed at points on the front -- the Prometheus 
implementation uses an extended definition of winding number to handle vertices on the fire front. 

 
 

Figure 2.  Front evolution via Prometheus 4.5: Dogrib fire 

 
 

Figure 3.  Front evolution via Prometheus 5.3: Dogrib fire  
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oriented so that the burned area lies to the left. As discussed above, the propagation algorithm acts on each 

vertex )(TPi , moving it to )( tTPi Δ+  according to the (discrete) Richards' equations. This presents us 

with a new oriented polygon with edges connecting )(1 tTPi Δ+−  to )( tTPi Δ+  which we generally 

expect to be tangled, i.e. non-simple. Our goal is to replace this with a finite union of simple, disjoint 
polygons such that the active fire front is accurately represented by the union of the edges and with the 
burned area laying to the left with respect to the orientation. 
 

2.2   Resolving Crossings 

 
The algorithm is based on the following simple observation. Every crossing in the polygon creates an 
ambiguity in the assignment of the status `burned' or `unburned' to regions near the crossing. Figure 4 makes 
the problem clear, where the crossing of two oriented segments is shown on the left. Burned areas are 
indicated by black shading to the left and unburned (or currently burning) by red shading. The crossing 
determines (locally) four disconnected components. While two of the components are consistently labelled as 
burned or unburned, the other two necessarily have ambiguous labels. 
 

We remove the crossing by creating two new vertices at the crossing point, labelled 1R  and 2R  and paths as 

shown in Figure 4. In this figure we have labelled regions near the crossing with 0's and 1's in order to 
distinguish two methods of resolution. Edges are re-oriented so as to resolve the ambiguity in 
burned/unburned regions and leave the region labeled 1 to the left of the oriented curves.   
 
Such a labeling of the connected components forming the complement of the polygon with 0's and 1's forms 
an essential part of our algorithm. We are assisted in this by the following elementary result. 

 
2-Colour Theorem (Hunter) Every 
piecewise continuous, closed, planar 
curve admits a 2-colouring3. 
 
We choose a 2-colouring such that the 
infinite connected component is assigned 
the label 0. Then we have 
 
Rule 1. Uncrossings are chosen so as to 
connect regions having label 1. That is, 
make the lower choice in Figure 4. 

 
Each uncrossing induces a reordering of 
a portion of the polygon. In the Figure 5 
we show schematically how the two 
possible reorderings arise. Note that it is 
possible that after application of the 
crossing rule, we are left with two 
polygons as shown by the lower 
schematic in this figure. These can 
recombine to a single polygon later 

through application of the crossing rule, or not. In any event, after each application the total number of 
crossings (counting both self-crossings and crossings between distinct polygons) is reduced. 

 
 

                                                 
3A 2-colouring is an assignment of labels (which we may as well assume are 0 and 1) to connected 
components of the complement of the curve in such way that adjacent components sharing a common 
segment of the curve get distinct labels. Clearly such a colouring is unique up to a flip 10 ↔ . If the polygon 
is simple, this is the celebrated Jordan Curve Theorem: There are precisely 2 connected components, the 
interior (the bounded component) and the exterior of the curve (the infinite component) 
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Figure 4.  Resolution of crossing point, geometric version. 
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Theorem 2.  Finitely many 
applications of the Rule 1 will 
result in a finite number of disjoint 
(non-crossing) oriented simple 
polygons which divide the plane 
into a single bounded component 
with label 1 and a finite number of 
connected components labeled 0. 
Polygons are positively oriented 

with respect to the 0-1 labeling. 
 
Proof. (Sketch). Obtain the 2-colouring as in Theorem 1, arranging the colouring so that the infinite 
component is labeled 0.   Repeated application of Rule 1 at each crossing ensures that after untangling there 
will be a single bounded and connected component with label 1. Locally, edges have been re-oriented to 
satisfy the local rule that the label 1 lies to the left of the curve. The 2-colouring will ensure that this rule is 
satisfied globally. Since there are no crossings, each component is bounded by a simple polygon.                                                 

 

2.3   Clipping the Untangled Polygons 

 
Clipping is performed on the output from the previous section. The outer polygon is defined to be the one 
adjacent to the infinite connected component. 
 
Rule 2.  The outer polygon is retained. 
 
The remaining polygons are retained or removed (clipped) according to 
 
Rule 3.  Inner polygons are removed if the direction of one or more edges in that polygon has been reversed 
when compared to its direction in the original polygon. 
 
Figure 6 shows a simple application of the algorithm in a horseshoe fire. The Prometheus implementation 

untangles one vertex at a time, starting from the vertex *P , the bottom-most vertex, and working around the 

polygon in the natural orientation.  The untangling leaves two active fire fronts: the outer expanding front and 
an inward burning `island'.  One of the untangled polygons has been removed by Rule 3 (the overlap in the 
horseshoe). This is the correct untangling of the horseshoe fire. 
 
2.4 Connections to the literature on clipping. 
 
Techniques similar to the untangling algorithm above are applied to the problem of polygon clipping where 
one (closed, possibly non-simple) polygon (the clip) is used to remove an area from another polygon (the 
subject). This setting, while natural and extremely important in computer graphics, is too restrictive to handle 
the complex polygons arising from front propagation. Existing methods we have considered are Vatti's 

Figure 5.  Resolution of crossing point, data structure version. 
 

 
 

Figure 6.  Horseshoe fire 
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algorithm (Vatti, 1992) and its more modern extended heuristics (in Murta, 1999) and Weiler’s algorithm 
(Weiler, 1980), which assumes a 'clockwise' orientation on each polygon. We have compared our problem 
with the Greiner-Hormann algorithm (Greiner et.al., 1998) and a recent extension of their method due to Kim 
and Kim (Kim et al., 2006). Of the three, this is closest in spirit to our 2-colour solution but really only 
applies to the clip and subject setting.  None of these methods appear to be easily implemented for our 
problem within their design parameters. 
 
3. Performance 
 
3.1 The Prometheus Nightmare 
 
One early success with Version 5.0 was correct resolution of a simple tangle known as the Prometheus 
Nightmare. This figure-eight artefact had inexplicably resisted solution by all prior routines and is shown in 
Figure 7.   The fire is assumed to be burning from the lower right toward the upper left in this scenario. The 
point labeled A should be part of the active fire front but is removed by the Version 4.5 untangler. It is 
retained, however by the 2-colour untangling routine of Version 5.0 and later. 

 

 
Figure 3.  The nightmare untangled under (left) Version 4.5 and (right) Version 5.0 

3.2  Timing 

The new algorithm is simpler and faster than previous vertex management schemes based on winding 
number.  We present some comparative results on a set of test problems. The first two columns contain a 
count of the cumulative number of vertices arising in the simulation.  

 
Table 1.  Run times (in seconds) for standardized test datasets 

 
Test Dataset # of vertices in 

simulation 
4.5.2 

# of vertices in 
simulation 

5.3.0 

Version 4.5.2 
run time 
(seconds) 

Version 5.3.0 
Run time 
(seconds) 

Percentage 
improvement: 
# vertices/time 

Grande Cache 3367621 206543 765 80 94/89% 
Chisholm 34130 30700 40 35 10/13% 
Mount Somers 83091 56555 50 40 32/20% 
Dogrib 143577 115431 45 20 20/56% 
Quebec Lakes 15955515 1673169 375 140 79/63% 
Jasper 7972214 1673169 1950 210 76/89% 
 
It should be noted that startup overhead dominates in short simulations and this may reduce the percentage 
speed gains in small fires. Field users report increased speed of approximately 30% in Version 5.0 over 
previous releases. This speed gain is despite higher overhead from more elaborate routines written into other 
parts of Version 5.0. It seems reasonable to attribute some of the reduction in vertices processed to the more 
efficient untangling routine, but due to the nature of the program, it has not been possible to make a direct 
comparison between versions on the untangling computations as distinct from other parts of the simulation. 
The timings reported above were performed using a computer with an Intel Pentium P8400 processor running 
@ 2.26 GHz with 4GB RAM. 
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4.   CONCLUSIONS 

 
The algorithm is a significant improvement over previous version untanglers. It is based on a concise and 
easy-to-implement set of rules that do not introduce many `special cases' compared to previous methods. 
However, it is not infallible. For example, it has been noticed that it fails to give correct results on a simple 
triple-loop example. The difficulty appears to be in the clipping heuristic contained in Rules 2. and 3. and not 
in the untangling part of the routine. It is possible that a modified clipping heuristic using the more detailed 
winding number (the 2-colouring can be determined by winding number, but throws away much of the 
information) could address examples such as this.  Experiments were performed with the full Prometheus 
package where it is not possible to quantify exactly how much time is spent in untangling.  It would be 
interesting to make detailed comparisons between the two versions untangling schemes as separate from the 
rest of the program.  
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