
Spatial and temporal modelling of Ross River virus in
Queensland

1Wraith, Darren ,1Mengersen, Kerrie,1Low Choy, Sama, and2 Tong, Shilu

1School of Mathematical Sciences,2 School of Public Health,
Queensland University of Technology, GPO Box 2434, Brisbane Qld 4001, Australia. E-Mail:d.wraith@qut.edu.au

Keywords:Bayesian; Ross River virus; Disease modelling; Spatial; Temporal

EXTENDED ABSTRACT

Ross River virus (RRv), also known as Epidemic
Polyarthritis, is a debilitating disease and is the
most prevalent vector-borne disease in Australia
(Lin et al. 2002). The virus can survive and
replicate in humans and other vertebrae hosts, and
is transmitted by a variety of mosquito vectors
(Russell and Dwyer 2000). The disease in humans is
nonfatal and infections can be either asymptomatic or
symptomatic, with symptoms including polyarthritis,
rash, fever, myalgia, and lethargy (Harley et al. 2001).

There has been much recent research into the spatial
and temporal nature of Ross River virus in Queensland
(Gatton et al. 2004; Kelly-Hope et al. 2004; Tong
and Hu 2002). A recent paper byGatton et al.
(2004) focussed on the spatial and temporal nature of
outbreak periods, where outbreak periods are defined
by comparison against long term incidence rates
specific to that area. The spatial and temporal nature
of outbreak periods is of public health importance as
increased understanding will lead to more targeted
public health interventions (Tong 2004).

In this paper, we use a Bayesian mixture model
to analyse weekly cases of Ross River virus in
Queensland from 1984 to 2001. RRv notification
data was obtained from the Communicable Diseases
Section of Queensland Health. An exploratory
analysis revealed an association between climate
variables and cases of RRv, so we aggregated the
data to fifteen homogenous climate zones representing
Queensland.

We explore a mixture model to separate the RRv data
over time into a number of states or components, and
use model choice criteria to choose which number
of components is preferable. This is an extension
of previous work on RRv which has focussed on
two components or states, an outbreak state and non-
outbreak state. The method also allows the data to
indicate the component (state) in which it belongs,
and thereby avoid possibly subjective decision rules.
Extensions to more than two components is expected
to offer flexibility in cases where, for example,
hyperoutbreak periods can be identified.

The choice between competing models of a different
number of components invariably involves a selection
criteria that will take into account both measures of
fit and complexity. In this paper we use methodology
developed inCeleux et al. (2003) and choose between
competing models based on Deviance Information
Criterion (DIC) estimates. The parameters for the
different models were estimated by Markov Chain
Monte Carlo (MCMC) using the software package
WinBUGS (Spiegelhalter et al. 2002).

We focussed the analysis on two different climate
zones which appeared to display different temporal
behaviour, and found much variability in the results,
with a lower number of components preferred for
data from the zone which appeared to show a more
distinctive pattern.
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1. INTRODUCTION

Ross River virus (RRv), also known as Epidemic
Polyarthritis, is a debilitating disease and is the
most prevalent vector-borne disease in Australia (Lin
et al. 2002). It was first identified in 1958 from
mosquitoes collected at Ross River, Townsville, by
the Queensland Institute of Medical Research and
since then has become common in Queensland. The
virus can survive and replicate in humans and other
vertebrae hosts, and is transmitted by a variety of
mosquito vectors (Russell and Dwyer 2000). The
disease in humans is nonfatal and infections can be
either asymptomatic or symptomatic, with symptoms
including polyarthritis, rash, fever, myalgia, and
lethargy (Harley et al. 2001

In this paper we explore a mixture model to separate
the RRv data over time into a number of states or
components, and use model choice criteria to choose
which number of components is preferable. This is
an extension of previous work on RRv which has
focussed on two components or states, an outbreak
state and non-outbreak state. The method also
allows the data to indicate the component (state)
in which it belongs, and thereby avoid possibly
subjective decision rules. Extensions to more than two
components is expected to offer flexibility in cases
where, for example, hyperoutbreak periods can be
identified.

2. METHOD

2.1. Data

Ross river virus disease notification data from 1984 to
2001 was obtained from the Communicable Diseases
section of Queensland Health. A notification was
reported if serologic testing indicated a four-fold
change in antibody titer between paired acute and
convalescent sera, or if IgM and IgG antibody
levels against RR virus were consistent with acute
infection. Each complete notification included place
of residence (location and street/road), date of onset,
age and sex of the patient. Place of residence was
further geocoded by the Queensland Department of
Local Government and Planning into Statistical Local
Areas (SLA) and later grouped to Local Government
Areas (LGA).

An exploratory analysis of the data at the residence
level and recent research indicates a strong rela-
tionship between the incidence of RRv virus and
climate related variables such as rainfall, temperature,
humidity, Southern Oscillation Index, and sea levels
(McFallan 2001; Tong and Hu 2002; Kelly-Hope et al.
2004). On this basis, we decided to aggregate the
data to 15 climate zones as identified by the Australian
Bureau of Meteorology (See Figure1).

Figure 1. Queensland climate zones - Bureau of
Meteorology

A summary of the data for the fifteen climate zones is
provided in Table1.

Table 1.Summary results - all zones

Zone Min Q1 Median Mean Q3 Max
1 0.00 0.00 0.00 0.08 0.00 2.00
2 0.00 0.00 0.00 0.14 0.00 5.00
3 0.00 0.00 0.00 0.33 0.00 7.00
4 0.00 0.00 2.00 4.17 5.00 42.00
5 0.00 0.00 2.00 5.10 5.00 59.00
6 0.00 0.00 1.00 2.07 2.00 37.00
7 0.00 0.00 1.00 3.21 3.00 48.00
8 0.00 0.00 0.00 0.85 1.00 14.00
9 0.00 0.00 0.00 0.29 0.00 9.00
10 0.00 0.00 0.00 0.42 0.00 20.00
11 0.00 0.00 0.00 0.07 0.00 3.00
12 0.00 0.00 0.00 0.73 1.00 15.00
13 0.00 0.00 1.00 2.07 2.00 59.00
14 0.00 0.00 1.00 2.33 2.00 44.00
15 0.00 2.00 5.00 14.42 11.00 307.00

We decided to focus our analysis on data from two
climate zones, Zone 15 and 5, which appear to show
quite different temporal behaviour. Figures2 & 3
show the weekly number of RRv cases over time for
Zones 15 and 5 respectively. The data from Zone 15
appears to show a more distinctive outbreak pattern
than from Zone 5, and thus it is of interest to see how
the results of applying a mixture model to these zones
separately may differ.
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Figure 2. Time plot of weekly cases - Zone 15
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Figure 3. Time plot of weekly cases - Zone 5

2.2. Mixture models

The use of mixture distributions comprising a finite or
infinite number of components, possibly of different
distributional types, to describe different features of
data has attracted a great deal of recent research
interest (Marin et al. 2005; McLachlan and Peel
2000).

The mixture model can be formulated as,

p(y|θ) =
k∑

j=1

wjf(y|θj)

k∑

j=1

wj = 1, k > 1

(1)

F
re

qu
en

cy

0 50 100 150 200 250 300

0
20

0
40

0
60

0
80

0

Figure 4. Histogram of weekly cases - Zone 15

where k is the number of components,wj is the
probability of being allocated to componentj, and
where the allocation of each observationyi to one of
the components is represented by a latent variablezi

(zi ∈ N (discrete case))

p(zi = j) = wj

Z ∼Multinomial(1, p1 . . . pk)
(2)

Choice between competing models of a different
number of components invariably involves a selection
criteria that will take into account both measures of
fit and complexity. For example, a mixture model
with a large number of components may fit the data
well, but suffer from a lack of interpretability of
the parameters. In this paper we use methodology
developed inCeleux et al. (2003) and choose between
competing models based on Deviance Information
Criterion (DIC) estimates.

2.2.1. Application to RRv data

We first fitted a Poisson distribution to the RRv data
for Zones 15 and 5, and found that due to the large
number of zeros, this distribution does not offer a
good fit (See Figures4 & 5). There are a range of
methods available to handle the case of a large number
of zeros for count data (See for exampleDalrymple
et al. (2003)), here for simplicity we chose to let
log(yt+1) follow a normal distribution.

For RRv data relating to Zones 15 and 5 we specified,

log(yt + 1) ∼ N(µZt , τ)
Zt ∼ Categorical(P1,...,k)
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Figure 5. Histogram of weekly cases - Zone 5

and

µZt ∼ N(1, 0.01)
P1,...,k ∼ Dirichlet(α)

τ = 1/σ2

σ ∼ U(0.1, 20)

whereyt are the observed cases, andµ is restricted to
µ1 < µ2 < . . . µk, in order to prevent label switching.

The parameters for the different models were
estimated by Markov Chain Monte Carlo (MCMC)
using the software package WinBUGS (Spiegelhalter
et al. 2002). Estimates are based on runs of
10,000 iterations, or until evidence of convergence.
Convergence was assessed by examining Monte-carlo
error estimates and Gelman-Rubin statistics (Brooks
and Gelman (1998)).

3. RESULTS

The results for Zones 15 and 5 are provided in Tables2
and 3 respectively. The estimates forµ have been
exponentiated for ease of interpretability with the
original data.

Our model choice criterion is to examine the DIC
estimates (lowest being preferable), and indirectly
the effective number of parameters (pd). For Zone
15 (Table2), the estimates for four components and
above show weak signs of convergence in the MCMC
runs (Brooks and Gelman (1998)). This is also an
indication that we could be overfitting. On the basis
of this, the three component model appears to be
preferable as there is a reduction in the DIC estimate
from the two component model (2,880 (k = 2) to
2,869 (k = 3)), without a large increase in the number
of effective parameters (3.43 (k = 2) to 6.04 (k = 3)).

Table 2.Results for Log Normal - Zone 15

Value Credible Value
Interval

k=1 µ1 5.45 (4.97,5.99)
τ 1.99
DIC 2933.17 pd 2.12

k=2 µ1 3.89 (3.45,4.38) w1 0.88
µ2 48.01 (33.54,69.11) w2 0.12
τ 3.08
DIC 2880.76 pd 3.43

k=3 µ1 1.23 (0.85,2.07) w1 0.35
µ2 7.18 (6.01,8.56) w2 0.54
µ3 64.17 (51.93,80.53) w3 0.11
τ 8.83
DIC 2869.26 pd 6.04

k=4* µ1 0.81 (0.56,1.15) w1 0.28
µ2 5.73 (4.59,7.08) w2 0.52
µ3 23.51 (13.54,42.38) w3 0.13
µ4 96.32 (68.83,146.97) w4 0.06
τ 22.69
DIC 2860.85 pd 7.79

k=5* µ1 0.72 (0.41,1.07) w1 0.26
µ2 4.31 (1.37,6.39) w2 0.34
µ3 9.72 (5.42,24.30) w3 0.25
µ4 31.62 (17.38,73.66) w4 0.10
µ5 108.73 (74.57,178.83) w5 0.05
τ 33.28
DIC 2859.14 pd 8.21

Note: * the estimates given for these components are
unstable from the MCMC runs

Table 3.Results for Log Normal - Zone 5

Value Credible Value
Interval

k=1 µ1 2.17 (1.97,2.40)
τ 2.51
DIC 2668.44 pd 1.90

k=2 µ1 1.09 (0.97,1.21) w1 0.80
µ2 15.09 (13.10,17.41) w2 0.21
τ 11.55
DIC 2491.57 pd 3.66

k=3 µ1 0.57 (0.45,0.73) w1 0.56
µ2 3.62 (2.96,4.55) w2 0.30
µ3 20.41 (17.93,23.19) w3 0.15
τ 73.85
DIC 2461.81 pd 5.81

k=4 µ1 0.07 (0.01,0.14) w1 0.29
µ2 1.64 (1.52,1.79) w2 0.42
µ3 6.36 (5.70,7.13) w3 0.17
µ4 24.23 (22.48,26.36) w4 0.12
τ 43044.94
DIC 2413.33 pd 10.62

k=5 µ1 0.00 (0.00,0.03) w1 0.27
µ2 1.36 (1.29,1.43) w2 0.36
µ3 4.13 (3.88,4.45) w3 0.19
µ4 12.14 (11.15,13.22) w4 0.11
µ5 31.88 (29.45,34.41) w5 0.07
τ 3478962659.69
DIC 2276.10 pd 15.39
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The results for Zone 5 are quite different than for Zone
15, suggesting that up to five components could be
fitted to this data. For a five component model there
is a sizeable reduction in the DIC estimate compared
to a four component model (2,413 (k = 4) to 2,276
(k = 5)), with an increase in the number of effective
parameters (10.62 (k = 4) to 15.39 (k = 5)).

In the context of disease modelling, we could interpret
the results for the number of components in the
following way: Evidence for a two component
model suggests that over time, incidence of RRv can
be in either a background (or normal) state or an
outbreak state, with the latter state associated with
a higher mean value of cases than the former. We
could similarly interpret a three component model as
indicating an additional state to these two, and call
this a ‘hyper-outbreak’ state. By this, we mean a
state indicating an outbreak of greater magnitude than
normal. It is less clear at this point in time how to
interpret data best fitted by a model with four or more
components.

4. DISCUSSION

We explored a Bayesian mixture model to analyse
cases of RRv occurring in 15 climate zones
throughout Queensland, with a focus of the analysis
on two climate zones which appear to show quite
different temporal behaviour. We found much
variability in the results of applying a mixture model
to these two climate zones, with a lower number of
components preferred for data from the zone which
appeared to show a more distinctive pattern.

The analysis could be extended to assume other
distributional forms to take account of the large
number of zeros in the data. Further research will
investigate the impact these distributional forms have
on the results.
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