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EXTENDED ABSTRACT 

Component extraction techniques have been used 
frequently by climate and water resources 
researchers to analyse high dimensional datasets 
such as global sea surface temperature (SST) and 
rainfall time series. The motivation for using 
these techniques is usually twofold; firstly to 
reduce the dimension of the dataset, by 
representing the data using a small number of 
components that are able to describe a significant 
proportion of the total variance, and secondly to 
enhance our understanding of the dynamics of the 
underlying system, by interpreting these 
components as representing physically significant 
‘modes’ of climate variability. 

In this study we explore the potential of a 
relatively new technique known as independent 
component analysis (ICA), which has been 
developed as a means to separate mixtures of 
signals when little is known about either the 
original signals, or the manner in which they have 
been mixed. This is a problem that occurs 
frequently in the climate field, where one wishes 
to understand the factors that contribute to the 
dynamical nature of a given set of observations.   

The premise of ICA is based on central limit 
theorem, which asserts that if a set of independent 
random variables is mixed using a linear 
transformation, the result will be a set of variables 
that tend towards a Gaussian distribution.  
Reversing this logic, if one rotates a mixed dataset 
in a manner that maximises the divergence from a 
Gaussian distribution, then under certain 
conditions it is possible to retrieve the original 
independent variables.  Therefore, ICA focuses on 
higher-order statistics that measure the divergence 
from a Gaussian distribution. 

The ICA method is contrasted to the more widely 
used principal component analysis (PCA), which 
removes the correlation between the components 
while at the same time maximising the variance of 
successive principal components. This latter 
property in particular has proved to be useful to 

reduce the dimension of the datasets while retaining 
much of the information, and in the present study 
PCA is also used as a pre-processing step for ICA. 
The primary distinction between ICA and PCA is 
that while PCA uses only second order statistics to 
obtain uncorrelated components, ICA maximises 
the independence between components through the 
use of higher order statistics. Thus, while PCA may 
be well suited to variance maximisation and 
dimension reduction, ICA is fundamentally more 
suited to ensuring the statistical independence of 
the components and in certain cases is also capable 
of determining the underlying causes of this 
variability.   

To demonstrate the potential of the ICA technique 
in highlighting physically ‘interesting’ modes of 
variability, we apply PCA and ICA to a set of 
seasonal rainfall time series from over 200 rainfall 
gauges located around the Australian continent. It is 
assumed, based on the results of a number of earlier 
studies, that the El Niño Southern Oscillation 
(ENSO) phenomenon is an important factor in 
influencing Australian rainfall. Furthermore, it has 
been shown that an inter-decadal phenomenon, 
particularly the Inter-decadal Pacific Oscillation 
(IPO), may influence the degree of correlation 
between ENSO and Australian rainfall, with an 
enhanced link when the IPO is negative, and a 
reduced link when the IPO is positive. 

The results of this study consistently show that, for 
each season of the year, one independent 
component is significantly correlated with an index 
of the ENSO phenomenon known as the Southern 
Oscillation Index (SOI), with the highest 
correlation occurring during spring. Furthermore, 
during the IPO negative phase from 1946-1977, the 
correlation between one of the independent 
components and the SOI is further enhanced. This 
is contrasted with the PCA solution, in which the 
correlation coefficients for the majority of cases are 
not statistically significant. These results therefore 
indicate that ICA may have a significant potential 
to be applied to a number of alternative climate 
datasets to develop an improved understanding of 
the climate dynamics that govern those datasets.  
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1. INTRODUCTION 

Component extraction techniques have been used 
in a variety of climate studies to (1) reduce the 
dimension of large datasets, and (2) aid in the 
identification and interpretation of significant 
‘modes’ of climate variability. These two types of 
analysis are usually performed simultaneously, so 
that large climate datasets such as Australia-wide 
rainfall or the historical sea surface temperature 
(SST) reconstructions are represented by a 
relatively small set of ‘components’, with each 
component assigned a physical interpretation 
relating to the dynamics of the underlying system 
(Zwiers and Von Storch, 2004).  

The dominant component extraction technique 
currently in use is known as principal component 
analysis (PCA), or the closely related empirical 
orthogonal function analysis (EOF; Wilks, 1995). 
This technique focuses on second-order statistics, 
by reducing the correlation of the extracted 
components while at the same time maximizing 
the variance (in a least squares sense) of successive 
principal components. There are many examples in 
the literature where this technique has been applied 
to climate datasets, and this has assisted in the 
identification of a wide range of climate 
phenomena, such as the Interdecadal Pacific 
Oscillation (IPO; Zhang et al, 1997), the Indian 
Ocean Dipole (IOD; Saji et al, 1999), and the Artic 
Oscillation (AO; Thompson and Wallace, 1998). 

Despite the popularity of PCA, the technique 
suffers from a number of limitations, such as the 
restriction that principal components must be 
mutually orthogonal, thereby limiting the 
interpretability of components after the first 
component, and that successive components must 
explain the maximum remaining variance, thus 
potentially resulting in the mixing of several 
independent physical phenomena into one 
principal component.  To address these concerns, a 
variety of rotation techniques have been developed 
(Richman, 1986), which involve the application of 
a linear transform to the PCs, so that the PCs are 
no longer constrained to be orthogonal and so the 
interpretations of the rotated PCs can be 
simplified. This is usually achieved by minimizing 
some form of objective function, which aims to 
measure certain properties such as the simplicity of 
the geometrical patterns identified by the rotated 
PCs. The wide variety of available objective 
functions illustrates one of the fundamental 
limitations of rotational PCA methods, which is 
that the criteria used for rotation will always be 
somewhat arbitrary, so that the meaning of the 
rotated PCs will always be open to interpretation. 

A recently developed alternative technique is 
known as independent component analysis (ICA), 
which seeks to separate mixtures of signals when 
little is known about either the nature of the 
original signals, or the manner in which they have 
been mixed. ICA seeks to achieve this aim by 
maximizing the independence of the extracted 
components. Thus, in contrast to second-order 
methods such as PCA, ICA not only removes the 
correlation between the signals but also reduces 
higher-order statistical dependencies, attempting to 
make the signals as independent from each other as 
possible (Hyvarinen et al, 2001). 

The objective of this paper is to highlight the 
differences between PCA and ICA, and to 
demonstrate that ICA has some important 
advantages with respect to the interpretability of 
the extracted components. We will commence with 
a review of the theory of ICA, and a simple 
synthetic example to illustrate the difference 
between ICA and PCA. These two methods will 
then be applied on a dataset of Australian rainfall, 
and differences between the results will be 
discussed. 

2. INDEPENDENT COMPONENT 
ANALYSIS 

2.1. Overview  

The ICA method was first introduced by Herault 
and Jutten [1986], and has been applied 
successfully in a wide range of fields, including 
blind source separation and feature extraction (see 
Hyvarinen et al, 2001, and references therein).  
The simplest and most commonly used form of 
ICA involves the mixing of an n-dimensional 
source vector, s = (s1,…, sn)T, referred to as the 
independent components (ICs), resulting in an m-
dimensional observation vector, x = (x1,…, xm)T

  
(Comon, 1994) These ICs are assumed to be non-
Gaussian (with the possible exception of at most 
one IC; Hyvarinen et al, 2001), mutually 
statistically independent and zero-mean. In 
addition, it is assumed in this paper that n ≤ m. Put 
into vector-matrix notation, and assuming that the 
mixing is both linear and stationary, yields: 

 x = As    (1) 

where A is known as the mixing matrix of 
dimension m × n. The objective of ICA is to 
estimate the mixing matrix, A, as well as the 
independent components, s, knowing only the 
observations x.  This can be achieved up to some 
scalar multiple of s, since any constant multiplying 
an independent component in Equation 1 can be 
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cancelled by dividing the corresponding column of 
the mixing matrix A by the same constant.   

Central to the identification of the ICs from the 
data x is the assumption that all except at-most one 
IC will be “maximally non-Gaussian” (Hyvarinen 
et al, 2001). This follows from the logic outlined 
in the central limit theorem, which is that if one 
mixes independent random variables through a 
linear transformation, the result will be a set of 
variables that tend to be Gaussian. If one reverses 
this logic, it can be presumed that the original 
independent components must have a distribution 
that has minimal similarity to a Gaussian 
distribution. Consequently, the approach adopted 
to extract ICs from data containing mixed signals 
amounts to finding a transformation that results in 
variables that exhibit maximal divergence from a 
Gaussian distribution as defined through an 
appropriately specified statistic. This focus on 
higher order statistics explains why ICA is often 
successful at finding sources when techniques such 
as PCA fail completely (Oja, 2004).  

2.2. An example 

To illustrate some important differences between 
PCA and ICA, consider the following example.  
Here, we combine two independent signals which 
each have a uniform distribution ]3,3[−U , 
denoted s1 and s2, using a mixing matrix A defined 
as follows: 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

21
13

A    (2) 

The bounds of the uniform distribution were 
selected so that the signals had unit variance.  The 
joint probability density function of the mixed 
components, x1 and x2, for a sample of size 1000 is 
shown in Figure 1. As expected based on the 
central limit theorem, the mixed signals appear to 
be much closer to a Gaussian distribution 
compared to the original signals, which by 
construction are uniformly distributed. The PCA 
directions are also shown, with e1 representing the 
direction of maximum variance, and e2 constrained 
to be orthogonal to e1. 

To simplify the ICA process, it is common to ‘pre-
whiten’ the data, which means projecting the data 
on the principal directions shown in Figure 1, and 
then standardizing the data so that each direction 
has unit variance. This is frequently achieved using 
PCA, since this also allows for the dimension of 
the data to be reduced, thereby facilitating the 
optimization process for ICA. We thus have the 

following relationships between the independent 
components, s, the observed variables, x, and the 
whitened data, z: 

 z = Vx = VAs   (3) 

where V is a linear transform used to whiten the 
data. The whitened variables are shown in Figure 
2, and show that marginal probability distributions 
are clearly not uniformly distributed, thus  
demonstrating that the original (uniformly 
distributed) source signals, s, still have not been 
found. The advantage of this process, however, is 
that since we are now dealing with a transformed 
variable whose elements have zero mean, are 
mutually uncorrelated and have unit variance, the 
ICA solution is now limited to some orthogonal 
rotation of the whitened data set about the origin. 

 

Figure 1: Plot of x = [x1, x2].  The directions of 
eigenvectors e1 and e2 of the data are shown, and 
represent the principal directions of the bi-variate 
dataset. The principal components are the 
projections of x onto the principal directions e1 and 
e2. 

Denoting a unit vector defining a line passing 
through the origin of the data in Figure 2 by w, 
then the projection of z on the line is given by y = 
wTz. It has been shown (Oja, 2004) that due to pre-
whitening the data, no matter what the angle of the 
projection, it always holds that y has zero mean 
and unit variance.  The object of ICA, therefore, is 
to find a suitable vector, w, that ensures the 
resulting components y are independent, which is 
obtained through a maximisation of the higher-
order moments of wTz as described in section 2.3.   

The ICA solution is shown in Figure 3, and 
illustrates that the optimum solution recovers the 
uniform distribution of the original signals.  This 
process is repeated until all the ICs are found, and 
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w approximates one of the rows of the matrix 
[VA]-1.  Thus, y becomes an estimator of the 
original independent components, s.   

 

Figure 2: Plot of the whitened data time series z = 
[z1, z2].  To find the ICA solution, we search for a 
vector w such that the projection y = wTz has 
maximal divergence from a Gaussian distribution.   
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Figure 3: Plot of the estimated independent 
components, y = [y1, y2]. The probability 
distributions approximate a uniform distribution. 

2.3. Estimating the Independent Components 

As mentioned previously, the objective of ICA is 
to find projections which yield components that 
are as independent as possible. It has furthermore 
been illustrated that, as inferred from the central 
limit theorem, this objective is equivalent to 
finding the directions of maximum divergence 
from a Gaussian distribution. ICA can thus be 
thought of as consisting of two basic elements: 

1) Identifying a measure of divergence from 
a Gaussian distribution of the projection 
wTz, often referred to as an objective 
function or contrast function; and 

2) Finding an algorithm that optimises this 
divergence from a Gaussian distribution.  

While a variety of measures of divergence from a 
Gaussian distribution are available, this study will 
focus on a method that uses a quantity known as 
negentropy (Comon, 1994, Hyvarinen et al, 2001), 
and is based on the information theoretic result that 
a Gaussian variable has the largest entropy of all 
random variables of equal variance. Negentropy J 
for a random variable y is defined as  

J(y) = H(ygauss) – H(y),    (4) 

where H(y) is the differential entropy of y and 
H(ygauss) is the entropy of a Gaussian variable ygauss 
of the same covariance matrix as y (Comon, 1994).  
The benefit of this quantity is that it is always 
nonnegative, and zero only when y has a Gaussian 
distribution (Hyvarinen et al, 2001). The problem, 
however, is that using negentropy is 
computationally difficult, as it requires the 
estimate of the probability density function of y.  
An approximation of negentropy can be used 
instead, which is given as: 

J(y) ≈ [E{G(y)}-E{G(ygauss)}]2  (5) 

where G is an appropriately chosen nonlinear 
function often referred to as a contrast function, 
and the second term in the parentheses is a 
normalisation constant that makes the negentropy J 
equal to zero if y has a Gaussian distribution.  It 
has been shown that G can be almost any non-
quadratic, well behaving even function (Hyvarinen 
and Oja, 1997).  In the present case, we use: 

G(y) = log cosh(y)   (6) 

as this is regarded as a good general-purpose 
contrast function due to its convergence properties 
and robustness against outliers.  Since the second 
term in Equation 5 is constant, maximising the 
divergence from a Gaussian distribution for a 
projection y = wTz can be achieved by looking at 
the extrema of the contrast function E{G(y)} = 
E{G(wTz)} over the unit sphere ||w||.  The FastICA 
algorithm (Hyvarinen and Oja, 1997) is an 
efficient method for finding this extrema, with 
further details found in Hyvarinen et al (2001). 

3. APPLICATION TO AUSTRLIAN 
RAINFALL 

The analysis described in the earlier section was 
conducted on a synthetic data set in which the 
independent components were already known. In 
reality, the objective of ICA is to find these 
independent components so that the dataset is 
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represented in a way that is easy to analyse and 
interpret. We now apply ICA to a dataset 
containing time series of Australian rainfall, and 
examine the relationship between the extracted ICs 
and the source signals we expect would have the 
maximum influence on the rainfall characteristics 
in Australia. Based on recommendations in the 
literature (e.g. Chiew et al, 1998, and references 
therein), the dominant source of variability in 
Australian rainfall is the El Niño Southern 
Oscillation (ENSO). In addition, a second source 
of variability is the modulation of the ENSO at a 
decadal or longer time scale (Zhang et al, 1997). 

Our analysis seeks to identify the dominant 
independent components of seasonal rainfall data 
from a number of point locations spread over 
Australia, with the presumption that these ICs will 
be related to the two main sources of rainfall 
variability – ENSO and inter-decadal climate 
fluctuations. We use the Southern Oscillation 
Index (SOI) as an indicator of the ENSO, and an 
index describing the strength of the Interdecadal 
Pacific Oscillation (IPO) as an indicator of the 
inter-decadal signal outlined above. Our 
hypothesis is that if ICA leads to components that 
are more strongly related to the underlying source 
signals that influence Australian rainfall, the 
relationship between the ICs and above mentioned 
source signals (SOI and IPO) should be stronger 
than what would result if PCA were used. This 
hypothesis is based on the theoretical advantages 
of ICA over PCA in extracting physically 
meaningful signals from mixed data, which was 
demonstrated in the example described above. 

3.1. Data 

The rainfall data used in this analysis is based on a 
set of high quality rain gauges located throughout 
Australia that were identified by Lavery et al. 
(1997). For the purpose of this study, only those 
locations that contain records between 1921 and 
2000 were used. In regions where the records were 
sparse, some infilling of data was undertaken using 
near-by rain gauges, so that the final time series 
consisted of less than 1 % missing data. In total, 
rainfall time series from 201 gauging stations were 
used, the locations of which are shown in Figure 4.  
We used seasonal data for the analysis, where the 
seasons were defined as autumn (MAM), winter 
(JJA), spring (SON) and summer (DJF). 

The SOI data set was obtained from International 
Research Institute for Climate Prediction (IRI) / 
Lamont Doherty Earth Observatory (LDEO) 
climate data library (http://iri.columbia.edu) and is 
defined as the difference between the standardised 
Tahiti sea level pressure (SLP) and the 

standardised Darwin SLP. As with the rainfall 
data, seasonal average SOI values were used. Only 
concurrent relationships were examined. 

 
Figure 4: Location of rain gauge sites. 

3.2. Results 

To establish the benefits of ICA over PCA in 
representing Australian rainfall time series in a 
manner that is easy to interpret, we examine the 
correlation of the extracted components with the 
SOI, since a successful analysis of the rainfall data 
should result in at least one component that 
represents the contribution of the ENSO 
phenomenon on Australian rainfall. Specifically, 
we examine the following cases: 

1. We compare the PCs and ICs extracted from 
the Australian rainfall data set from 1921 to 
2000 with concurrent SOI data.   

2. We then examine the links between the PCs 
and ICs of Australian rainfall with the SOI 
during an IPO negative phase, which spans 
from 1946 to 1977. Rainfall during this period 
has been shown to be more closely correlated 
with ENSO than during the IPO positive phase 
(Power et al, 1999, Verdon et al, 2004), and 
this should be reflected in the ICA results. 

For each case we present correlation results of the 
PC or IC that yields the maximum correlation 
coefficient with the SOI.  Based on the conclusions 
from a synthetic study relating to the number of 
ICs that can be extracted from a given length of 
data (results not shown), we extract 2 ICs both for 
the data set from 1921 to 2000 (80 data points), 
and for the data set from 1946 to 1977 (32 data 
points). Before using the ICA technique, we apply 
a PCA reduction to the data so that the number of 
PCs was the same as the number of ICs. In a 
separate analysis, we also retained an additional 
PC, and found the conclusions to be very similar. 
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The correlation coefficients between the extracted 
components (PCs and ICs) and the SOI are 
presented in Table 1 for each season of the year.   
In each case we only present the absolute value of 
the correlation coefficient, since ICs can only be 
determined up to a scalar multiple so that the sign 
of the correlation coefficient is meaningless.  
Correlation coefficients greater than 0.22 and 0.35 
are statistically significant at the 95 percent level 
for the 80 year and 32 year datasets, respectively. 

Comparison of the ICA results with the PCA 
results shows that in all cases, the ICs display a 
greater level of correlation with the SOI compared 
with the PCs. In fact, correlation coefficients for 
all the ICs are statistically significant at the 95 
percent level, whereas correlation coefficients for 
all the PCs (except for spring from 1921 to 2000) 
are not statistically significant.    

Furthermore, a comparison between the 1921 to 
2000 data and the 1946 to 1977 data sets show a 
substantially improved performance for the 
shorter, IPO negative data set, and this is 
consistent with the literature, which suggests that 
the influence of ENSO is enhanced during the IPO 
negative phase (Power et al, 1999; Verdon et al, 
2004). The consensus of these results therefore 
suggest that the manner in which ICA represents 
the data is more in line with finding the sources of 
variability of Australian rainfall than with PCA. 
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PCA 1921-2000 0.19 0.22 0.28 0.17 
ICA 1921-2000 0.25 0.41 0.51 0.39 
PCA 1946-1977 0.25 0.33 0.30 0.24 
ICA 1946-1977 0.44 0.53 0.66 0.64 

Table 1:  The absolute value of the correlation 
coefficient between the PCs and the SOI, and the 
ICs and the SOI, for an 80 year period from 1921 
to 2000, and a shorter 32 year period from 1946 to 
1977 corresponding to the IPO negative phase.  
Statistically significant correlation coefficients at 
the 95th percentile confidence level were 0.22 and 
0.35 for the 1921 to 2000 and the 1946 to 1977 
datasets, respectively. The results show that, for 
the majority of PCA results, the relationship 
between the PCs and the SOI is not statistically 
significant, while for each of the ICA results, the 
relationship is clearly statistically significant.  
Finally, a marked improvement in performance is 
observed during the IPO negative time period. 

To provide a reference point for the ICA and PCA 
results, we also compare the correlation 
coefficients from each of the individual 201 
rainfall time series with the SOI.  Due to the large 
number of results, we sort the correlation 
coefficients from smallest to largest, and only 
consider the 50th and the 95th percentile correlation 
coefficients. These results are presented in Table 2.  

A comparison of the results in Tables 1 and 2 
indicates that, whereas the correlation coefficients 
between the PCs and the SOI are similar to the 
median (50th percentile) correlation coefficients, 
the ICA results are closer to the 95th percentile 
results. This should not be surprising, since the 
objective of PCA is to find a transformation that 
faithfully represents the variance of the original 
data, where ICA aims to find a transformation that 
facilitates the interpretation of the dataset.  
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50 percentile 
1921-2000 

0.16 0.24 0.25 0.18 

95 percentile 
1921-2000 

0.35 0.44 0.47 0.33 

50 percentile 
1946-1977 

0.28 0.25 0.41 0.23 

95 percentile 
1946-1977 

0.54 0.58 0.63 0.50 

Table 2: Correlation between individual rain 
gauges and the SOI.  Correlation coefficients for 
each of the 201 rainfall time series were computed, 
and the 50 percentile and 95 percentile results are 
shown. Statistically significant correlation 
coefficients at the 95% confidence level were 0.22 
for the data set from 1921 to 2000, and 0.35 for the 
data set from 1946 to 1977. 

4. CONCLUSIONS 

The results presented herein indicate that PCA and 
ICA represent fundamentally different solutions to 
the mixing problem. Mathematically we can 
summarise these differences as follows: 

1) PCA is able to describe maximum variance of 
the data set (in a least squares sense), whereas 
under certain conditions ICA is able to 
separate distinct signals from mixed data; 

2) PCA constrains the solution to an orthogonal 
transformation of the original data set, 
resulting in difficulties interpreting 
components beyond the first PC. This 
constraint does not apply to ICA; 
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3) PCA uses second-order statistics resulting in 
components that are mutually uncorrelated, 
whereas ICA is also able to reduce higher-
order dependencies to find components that 
are statistically mutually independent. 

Therefore, while PCA may be beneficial for 
dimension reduction, ICA should in theory provide 
results with a much greater degree of 
interpretability. In Section 2 of this paper we 
illustrated this concept using a simple example in 
which two uniform signals were linearly mixed, 
demonstrating that ICA was clearly successful in 
recovering these signals whereas PCA was not. 

Application of PCA and ICA to an Australian 
rainfall dataset showed that whereas the PCs were 
unable to resolve the influence of ENSO on 
Australian rainfall, at least one of the ICs from 
each analysis were found to be correlated with the 
SOI at or above the 95 percent significance level 
for each season. This result was further enhanced 
during the IPO negative phase from 1946 to 1977, 
where correlation coefficients between one of the 
ICs and the SOI were found to be as high as 0.66 
and 0.64 for the spring and summer time series, 
respectively, illustrating that ICA is capable of 
identifying at least some of the dominant physical 
processes that give rise to rainfall in Australia. 

These results therefore suggest that ICA has some 
significant advantages over PCA in analysing 
climatic time series such as rainfall, particularly 
with regards to the interpretability of the extracted 
signals. Areas for future research include exploring 
extensions to the simple ICA model presented 
here, such as developing models that account for 
noise, non-stationary mixing matrixes or nonlinear 
mixing. The application of ICA to alternative 
climate datasets, such as SSTs, is also an avenue 
worth pursuing. Finally, the performance of ICA 
should be tested as a basis for developing 
statistical forecasts for rainfall or other hydro-
climatic variables. 
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