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EXTENDED ABSTRACT

Ensemble modelling, whereby predictions from sev-
eral models are pooled in an attempt to improve pre-
diction accuracy, has often been used in the climate
and atmospheric sciences, but until recently, has re-
ceived little attention in hydrology. One of the key
aims of the ensemble approach is to reduce uncer-
tainty in the modelled predictions. This paper re-
ports on a project to compare predictions from a
range of catchment models applied to a mesoscale
river basin in central Germany and to produce en-
semble predictions of the effects of several pro-
jected land use changes. The models encompass a
large range in inherent complexity and input require-
ments. In approximate order of decreasing com-
plexity, they are DHSVM, MIKE-SHE, TOPLATS,
WASIM-ETH, SWAT, PRMS, SLURP, HBV, LAS-
CAM and IHACRES.

Overall, the simpler models tend to perform better in
both calibration and validation, but while all models
tend to show improved performance during the less-
extreme validation period, this improvement is great-
est for some of the more complex models. Despite
the disparity in model performance, three ensemble
predictions made up of various combinations of the
10 model predictions outperform all of the individ-
ual models. In calibration, the ensemble based on a
multi-variable regression of all models provides the
best predictions, but its prediction accuracy declines
to a greater extent than all of the models in terms of
both its bias and Nash-Sutcliffe efficency when used
in the validation period. In the validation period, the
best predictions are provided by an ensemble consist-
ing of the daily median model predictions. The predic-
tions of this median ensemble also improve more be-
tween calibration and validation than any of the other
models, thus indicating its robustness.

The calibrated models are applied to three land use
change scenarios. In the scenarios, the projected pat-
terns of land use are based on assumed average field
sizes of 0.5 ha, 1.5 ha and 5.0 ha, respectively. These
contrast with a current average field size of about
0.7 ha. There is broad agreement among the mod-
els on the expected hydrological change (Figure 1).
This, coupled with the validation success of the mean
and median ensembles, suggests that we can predict
with some confidence the direction and magnitude of
streamflow changes associated with the three scenar-
ios.
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Figure 1. Changes in predicted mean annual
streamflow for the three land use change scenarios

relative to the current land use. Each line represents a
different model. No predictions are available for the

MIKE-SHE model for this data set.
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1 INTRODUCTION

A model is a simplified conceptualisation of a com-
plex, possibly chaotic system, which is often char-
acterised by highly variable behaviour in space and
time. As such, no model, particularly those associated
with natural systems, can ever provide a perfect real-
isation. Indeed, it can even sometimes be difficult to
quantify the degree of uncertainty in input data, model
structure and model parameterisation. Taken together,
these uncertainties inevitably lead to considerable un-
certainty in model predictions.

One of the ways of addressing some of these uncer-
tainty issues is through ensemble modelling. The term
“ensemble modelling” encompasses a large range of
approaches to producing predictions of fluxes and
properties. A single-model ensemble involves the use
of a number of realisations of a single deterministic
model. Distinct predictions are obtained for each re-
alisation by either perturbing the input data or initial
conditions, or by selecting different sets of model pa-
rameters. These perturbations may be stochastic or
deterministic (e.g., derived from alternative sources).
In a multi-model ensemble, several different deter-
ministic models are used. These realisations may or
may not use a common input data set.

Ensemble modelling has often been used in the cli-
mate and atmospheric sciences, where operational en-
sembles have been in use for well over a decade. Most
studies of the accuracy of multi-model ensemble fore-
casts in weather prediction report that they tend to out-
perform individual models (Georgakakos et al., 2004)
and that multi-model ensembles tend to perform better
than single-model ensembles (Ziehmann, 2000).

Ensemble modelling has, however, received little at-
tention in hydrology, where most modelling studies
use only one model. There have been several stud-
ies comparing predictions from various hydrological
models (e.g., Ye et al., 1997, Perrin et al., 2001). In
general, these studies have been limited to describ-
ing how different models and different modelling ap-
proaches can affect prediction accuracy, but usually
have not considered the issue of pooling model pre-
dictions to arrive at some consensus prediction.

Recently, some new cooperative initiatives such as
DMIP and ESP in the United States and the inter-
national HEPEX project have begun to explore en-
semble modelling in a hydrological setting. These
projects are aimed primarily at producing short term
streamflow forecasts conditioned on climate forecasts.
In what appears to be the only published study on
multi-member hydrologic ensembles, Georgakakos et
al. (2004), as part of DMIP, assessed predictions from
seven distributed models applied to six catchments.
They found that a simple mean of the five best models

in each catchment consistently outperformed the best
individual model, but that a weighted mean ensemble,
while usually better than the best model, was inferior
to the simple mean ensemble.

To date, none of these projects have considered en-
semble modelling of the hydrological impacts of land
use change. This paper describes the application of
ten catchment models to a basin with nested gauges.

2 THE DILL RIVER CATCHMENT

The Dill River in Hesse, Germany is a tributary of the
Lahn River, which ultimately flows westward into the
Rhine River. The Dill River at Asslar has a catchment
area of 693 km2. The topography of the catchment
is characterised by low mountains and has an altitude
range of 155–674 m. The mean annual precipitation of
the Dill catchment varies fom 700 mm in the south to
more than 1100 mm in the higher elevation areas in the
north and exhibits a general west-east gradient. Areas
with lower annual precipitation tend to have summer-
dominated rainfall patterns, while the wetter parts of
the catchment are dominated by winter precipitation
patterns. A small proportion of winter precipitation
falls as snow, particularly at higher elevations.

Just over half of the catchment is forested (with
nearly even proportions of deciduous and coniferous
species), while 21 % is pasture, 9 % is fallow, 6 % is
cropped (winter rape, winter barley, oats) and the re-
maining 10 % is either urban or water. However, the
pattern of land use across the catchment is highly frag-
mented, with an average field size of less than 1 ha
and few individual land use patches covering more
than 1 km2. Social, political and economic pressures
are slowly transforming land uses away from cropping
and leading to increasing pasture and forest cover.
This transformation is also accompanied by increas-
ing patch sizes.

Streamflow in the Dill catchment is generated pri-
marily from interflow processes with relatively little
baseflow and surface runoff. Mean annual streamflow
for the period 1983–1998 is 438 mm (about 48 % of
catchment-averaged precipitation). There is a distinct
winter peak, with 77 % of streamflow occurring in the
six months from November to April. There are, how-
ever, some significant temporal trends in streamflow
patterns during the 19-year period used in this study.
The mean annual streamflow recorded in the 1990s
is about 20 % less than that for the 1980s and this
has been accompanied by a significant reduction in
runoff coefficient. Most of the reduction in streamflow
has occurred during the winter months. There is also
some evidence that the winter peak and the period of
summer low flows are arriving about one month later
during the 1990s than during the 1980s. Three sub-
catchments of the Dill catchment are gauged. These
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are the Aar catchment (area 133 km2; mean annual
streamflow 328 mm), the Dietzhölze catchment (area
80 km2; mean annual streamflow 551 mm) and the
Obere-Dill catchment (area 62 km2; mean annual
streamflow 483 mm).

3 THE MODELS

Ten models with the capability of predicting the im-
pacts of land use change are applied to the Dill catch-
ment. In approximately decreasing order of com-
plexity, they are: DHSVM (Wigmosta et al., 1994),
MIKE-SHE (Refsgaard and Storm, 1995), TOPLATS
(Peters-Lidard et al., 1997), WASIM-ETH (Niehoff
et al., 2002), SWAT (Arnold et al., 1998), PRMS
(Leavesley and Stannard, 1995), SLURP (Kite, 1995),
HBV (Bergström, 1995), LASCAM (Sivapalan et
al., 1996) and IHACRES (Jakeman et al., 1990).
In terms of their spatial resolution and the overall
number of model parameters, the models represent
a broad cross-section of complexity ranging from
fully distributed, physically-based models with ex-
plicit groundwater schemes (DHSVM, MIKE-SHE)
to fully lumped, conceptual models (e.g., IHACRES).
There are also other more subtle differences among
the models, including differences in rainfall interpola-
tion, channel routing and estimation of potential evap-
oration. Some models use explicit snow accumulation
routines, while others treat all precipitation as rainfall.

Each model was prepared, calibrated and operated ei-
ther by its creator or by a modeller with consider-
able familiarity in its use. Each modeller was pro-
vided with common digital maps of elevation, soil
type (discriminated into 149 soil classes and includ-
ing soil physical characteristics) and land cover. Daily
precipitation (16 sites) and weather (2 sites) data were
provided, but modellers were free to interpolate and
re-process this data by any suitable method. Simi-
larly, the calibration methods and objective functions
were different from model to model. All models were
calibrated using observed streamflow data for the pe-
riod 1983–1989 and model predictions were devel-
oped for the validation period 1990–1998. A maxi-
mum of three years of additional weather data (1980–
1982) was available for model spin-up.

4 MODEL PREDICTIONS

4.1 Predictions of individual models

A time series of model predictions is shown in Fig-
ure 2 for part of the calibration period. Qualitatively,
the models are shown to be providing good predic-
tions of the observed streamflow in terms of timing
and magnitude of events. The envelope defined by the
range of model predictions encompasses the observed
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Figure 2. Time series of observed streamflow (thick
black line) in the Dill catchment, 1983, together with
the various model predictions (thin coloured lines).

Refer to Figure 1 for legend.
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Figure 3. Bias and efficiency of model predictions
(thin blue lines) and ensemble predictions (thick red

lines) for the original dataset for the calibration (open
circles) and validation (solid circles) periods. There

are no predictions of the MIKE-SHE model available
for the original dataset.

streamflow on 96 % of days, with little difference be-
tween calibration and validation periods. When this
envelope is trimmed to eliminate the largest and small-
est prediction, it still includes the observed streamflow
on 83 % of days.

Scatter plots for two of the performance statistics
(daily Nash-Sutcliffe efficiency and bias) for each of
the models are shown in Figure 3. Statistically, the
best models are those with efficiencies approaching
1.0 and biases near 0 %. For the calibration period
(open circles), all but two of the models have negative
biases (that is, they underpredict). However, no model
has an absolute bias as high as 10 %. The calibration
efficiencies range from about 0.6 to 0.9, with the less
complex models tending to have higher values.

When the predictions in the validation period are as-
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Figure 4. Bias and efficiency of model predictions
(thin blue lines) and ensemble predictions (thick red
lines) for the calibration period for the original (open

circles) and homogeneous (solid circles) datasets.

sessed (solid circles in Figure 3), the relative positions
of the models remain largely unchanged. However,
all models (except WASIM-ETH) have increased bi-
ases, to the extent that they are all now overpredicting.
All models (except TOPLATS) also have increased ef-
ficiencies in the validation period. These increases
are particularly noticeable for IHACRES, PRMS and
DHSVM, but less so for the two models with the
largest calibration efficiencies (HBV and LASCAM).

In an attempt to highlight structural differences among
the models, as opposed to differences in input pre-
processing, a second calibration was performed for
each model. This involved using common fields (at
the 25 m scale) of catchment rainfall, potential evapo-
ration and vegetation density. The recalibrations were
intended to be performed with the same level of rigour
as the original calibrations and are hereafter referred
to as the homogeneous calibrations.

The recalibration statistics (solid circles) are shown in
Figure 4 alongside those for the original calibration.
For some models the differences are quite small and
typically yield slightly better efficiencies and slightly
more positive bias, but for others, especially DHSVM
and WASIM-ETH, efficiencies decline and bias in-
creases substantially.

When the homogenised calibrations are used in the
validation period (Figure 5), once again, most mod-
els have increased biases and, except for LASCAM
and TOPLATS, also have increased efficiencies. The
trajectories of movement between calibration and val-
idation are similar to those in Figure 3.

The patterns of prediction statistics are similar for
the other three flow gauges (not shown). In all three
cases, the models, on average, tend to underpredict in
the calibration period and overpredict in the valida-
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Figure 5. As for Figure 3, but for the homogeneous
dataset.

Table 1. Model statistics averaged over all four
subcatchments and for both datatsets. The unit of
MSE change is percent. Note that the statistics for
MIKE-SHE are for the homogenised data set only.

Bias (%) Efficiency MSE
Model Cal. Val. Cal. Val. Change
DHSVM 5.0 14.7 0.73 0.83 −33.2
MIKE-SHE 8.9 24.5 0.57 0.57 −1.8
TOPLATS −2.9 1.0 0.64 0.62 4.9
WASIM −4.8 −7.6 0.65 0.72 −17.6
SWAT 5.1 11.9 0.70 0.72 −5.5
PRMS −3.1 2.8 0.82 0.87 −25.0
SLURP 5.1 21.2 0.60 0.68 −18.9
HBV 1.4 10.0 0.89 0.89 −5.5
LASCAM −3.3 7.6 0.87 0.88 −4.3
IHACRES −4.5 4.1 0.78 0.83 −23.6
Mean 0.1 8.1 0.88 0.91 −22.7
Median −3.6 4.7 0.85 0.91 −40.7
Regression 0.0 7.0 0.93 0.90 38.2

tion period. The increases in bias are greatest for the
Obere-Dill catchment. When averaged over all four
catchments and over both datasets (Table 1), HBV,
TOPLATS and PRMS are the least biased in calibra-
tion and TOPLATS and PRMS are the least biased in
validation. These latter two, together with WASIM-
ETH, show the smallest changes in bias between cali-
bration and validation.

The ranking of model efficiencies is also similar to
Dill, with HBV, LASCAM and PRMS having the
best efficiencies for both calibration and validation,
and for both datasets (Table 1). The models also
tend to show increased efficiencies (decreased mean
square errors) in the validation period for all three
catchments. When averaged over the four catch-
ments and over both datasets, the models with the
greatest proportional decrease in mean square error
(MSE) are DHSVM, PRMS and IHACRES. The mod-
els with the least decreases are TOPLATS (which ac-
tually increases MSE) and MIKE-SHE, while LAS-
CAM, SWAT and HBV all have small decreases.
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4.2 Ensemble predictions

Ensemble predictions may be constructed in a num-
ber of ways. Perhaps the simplest is to take the raw
mean of the model predictions for each day. Another
simple ensemble prediction is to adopt the daily me-
dian of all ensemble members. A third method that is
also adopted here is to construct a multi-variable lin-
ear regression during the calibration period and to ap-
ply that regression during the validation period. One
disadvantage of this approach is that it might include a
non-zero intercept. It might also involve negative co-
efficients for some models and can potentially result
in negative flow predictions. Given the high correla-
tion between efficiency and the square of the correla-
tion coefficient for values of both approaching one, it
is reasonable to expect that the regression ensemble
represents the optimal linear combination of model
predictions during the calibration phase and it should
therefore give better efficiencies than both the raw
mean, which is an inferior linear combination, and any
individual model. The regression ensemble must also
have zero bias during the calibration period. However,
none of these properties will necessarily hold for the
validation period.

The prediction capabilities of the three ensembles are
shown in Figures 3 and 5. For both datasets the re-
gression ensemble has the best efficiency in the cal-
ibration period and the median has the worst. How-
ever, in the validation periods, the median is the best
ensemble in terms of both efficiency and bias. These
patterns are similar for the other three catchments (not
shown). The performance of the regression model
degrades universally between calibration and valida-
tion periods (in both bias and efficiency), while the
mean and median always improve in efficiency. The
mean always has a larger (i.e., more positive) bias than
the median for both calibration and validation peri-
ods. When averaged over all four catchments and both
datasets (Table 1), the regression ensemble increases
MSE between calibration and validation by 38.2 %,
while the mean and median ensembles decrease MSE
by 22.7 % and 40.7 %, respectively.

Interestingly, although the raw mean is a simple en-
semble and includes contributions from some mod-
els that have quite modest performance statistics, it
generally gives validation predictions that have bet-
ter or at least similar efficiencies to the best of the
individual models. HBV and LASCAM sometimes
have calibration efficiencies that are better than the
mean and median ensembles. However, there is only
one instance—the homogeneous dataset in Obere-Dill
catchment (where HBV has the best efficiency)—in
which any individual model has a validation efficiency
that exceeds those of any of the ensembles. This is
also the only case in which all ten models have posi-
tive bias in the validation period.

4.3 Predictions of the impacts land use change

Three scenarios of land use change are considered and
are based on land use simulations involving different
field sizes. The three scenarios are based on predicted
land uses associated with average field sizes of 0.5 ha,
1.5 ha and 5.0 ha. In general, increasing field sizes are
associated with decreasing areas of forested land and
increasing areas of cropland.

The impacts of land use change are assessed by
running each of the models calibrated for current
land uses with the changed land use scenarios, us-
ing weather input from the period 1983–1998. The
resulting annual streamflow predictions for the Dill
catchment appear in Figure 1. The slopes of the lines
in Figure 1 are quite similar, indicating that all the
models are in broad agreement about the the rela-
tive increases in predicted streamflow as field size in-
creases. However, some models have predictions that
are substantially offset either above (SLURP) or be-
low (TOPLATS) the main cohort. For the models in
Figure 1, the mean changes in mean annual stream-
flow, relative to the baseline case, for each of the three
scenarios are−7 mm, 13 mm and 27 mm, respectively.
For the third scenario, this represents an increase of
about 6 %. In percentage terms, the increases tend to
be greater in summer (11 % for the third scenario) than
winter (5 %), but the patterns of change among mod-
els and among scenarios for summer and winter (not
shown) are similar to those for the entire year.

There is substantial spatial variability within the
catchment in the predicted streamflow changes (not
shown). For the three internal subcatchments, pre-
dicted increases in streamflow are greatest in the two
wettest subcatchments. For Dietzhölze, the mean pre-
dicted increase for the third scenario is 93 mm, (17 %
of mean annual flow) and in Obere-Dill it is 86 mm
(18 % of mean flow). In contrast, the mean increase in
Aar subcatchment is just 10 mm, or 3 %.

5 DISCUSSION

Prediction uncertainty arises from three sources: data
uncertainty, model structural uncertainty and param-
eter uncertainty. Ensemble modelling can be used to
reduce any of these uncertainties. In this study we do
not explore parameter uncertainty (this is best done
using a Monte Carlo approach in a single member en-
semble). A multi-model ensemble approach generally
helps reduce prediction uncertainty by sampling mod-
els with a range of structural uncertainties. Differ-
ent models have different strengths and weaknesses.
Some models will predict better than others in dif-
ferent parts of the hydrograph (e.g., baseflow or peak
flows, summer or winter). In an ensemble, the defi-
ciencies in one model may be masked by the strengths

2971



in others or even by a compensating weakness in an-
other model. In the original calibrations in this study,
each model used the input data in different ways to
construct precipitation, potential evaporation and veg-
etation density fields. In this way, the ensembles based
on the original calibration encompass a wide range
of input data and associated uncertainty. The use of
the homogeneous data set is an attempt to isolate dif-
ferences in model structural uncertainty by providing
consistent input data for each model.

Ensemble modelling thus provides an estimate of the
most probable state of the system. In certain circum-
stances, particulary for single-model ensembles, it can
also provide an estimate of the range of possible out-
comes. For multi-model ensembles, this may be un-
reliable as it is dependent on the prediction accuracy
of the ensemble members. Nonetheless, the observa-
tion here that 96 % of observed daily flows fall within
the envelope defined by the daily range of predictions,
suggests that this envelope might be an approximate
representation of the 95 % confidence interval.

The calibration statistics (Table 1, Figure 4) indi-
cate that the semi-distributed conceptual models (es-
pecially HBV and LASCAM) tend to provide the best
fits to the calibration period. This is possibly related
to the generally larger numbers of optimisable param-
eters in this type of model as compared to the dis-
tributed models, which tend to have many parameters
that must be prescribed a priori, but few optimisable
parameters. The use of manual calibration for many
of the distributed models may also compromise their
calibration efficiencies. However, in the validation pe-
riod, the prediction efficiencies of some of the dis-
tributed models (most notably DHSVM) tend to in-
crease more than those of the semi-distributed mod-
els (Table 1, Figures 3 and 5). A notable exception
here is that the most lumped model, IHACRES, also
increases efficiency quite significantly between cali-
bration and validation.

All models except WASIM-ETH show increased bias
in the validation period, a period that is characterised
by reduced runoff coefficients. This perhaps high-
lights the potential problems associated with applying
models in situations that are even only slightly differ-
ent to the periods of calibration.

Figure 4 indicates considerable variability in model
calibration response between the two input data sets.
Most prominent is the substantial increase in bias by
DHSVM and WASIM-ETH for the homogenised data
set, which included nearest-neighbour interpolation
of precipitation. These two distributed models both
used inverse-distance interpolation in the original data
set. On the other hand, LASCAM, which also used
inverse-distance interpolation originally, shows little
change in bias. This is presumably due to LASCAM’s
semi-distributed lumping of precipitation input and its

greater calibration flexibility. Nonetheless, the expe-
riences of DHSVM and WASIM-ETH, together with
TOPLATS, which shows increased efficiency, high-
light the importance of uncertainties in model input
for distributed models.

All three simple ensembles consistently outperform
all models in terms of model efficiency. This hap-
pens despite the modest prediction statistics of some
of the models. This finding is in agreement with expe-
riences in the atmospheric sciences and also with the
outcomes of Georgakakos et al. (2004).

Among the three ensembles, the regression-based en-
semble is consistently best in calibration, but its per-
formance degrades noticeably in validation. This
degradation is possibly associated with differences in
model cross-correlations between the calibration and
validation periods. When two models have highly cor-
related predictions there is greater scope for one of
them to have a negative regression coefficient. If that
correlation is reduced in the validation period, there
is potential for those negative contributions to the en-
semble to behave in unfavourable ways. The median
ensemble, although having the weakest predictions of
the three in calibration, consistently has the best val-
idation statistics. It is not clear why it should outper-
form the mean in validation. It is interesting to note
that each model contributes directly to the Dill catch-
ment median ensemble at least 4 % of the time and
that no model contributes more than 19 % of the time.

Many other, more sophisticated ensembles can be
readily envisaged. An obvious example would be
a weighted mean ensemble with weights dependent
on calibration statistics (e.g., efficiency), so that the
stronger models have a greater impact on the en-
semble. Such an ensemble was not tested here, but
we might speculate that while it would almost cer-
tainly have poorer calibration statistics than the re-
gression ensemble, it might provide better validation
statistics than either the regression or mean ensem-
bles. Other weighted ensembles might involve select-
ing and weighting ensemble members differently for
different characteristics of the hydrograph (for exam-
ple, summer and winter, high flows and low flows, ris-
ing limbs and falling limbs, presence or absence of
snow). Testing of such ensembles remains for a more
detailed study than this one.

In predicting the impacts of land use change, there
is strong agreement between the models on the rela-
tive streamflow changes associated with each scenario
(Figure 1). Despite this, there is not uniform agree-
ment on how far these flows should deviate from the
baseline (i.e., current) case. However, the two main
outliers are the models with the lowest efficiencies.

The various gauged subcatchments of the Dill include
a range of land uses, with some land use types more
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prevalent in some parts of the catchment than in oth-
ers. Thus we would expect those models that demon-
strate superior predictions across all subcatchments
to provide the most reliable predictions of the im-
pacts of land use change. This of course assumes
that all predictions are made without recalibration for
each subcatchment. It is encouraging therefore, that
apart from the two outliers in Figure 1, the predic-
tions of the remaining models do not vary greatly.
This, coupled with the validation success of the mean
and median ensembles, suggest that we can conclude,
with strong—but still unquantified—confidence that
the streamflow changes associated with the three land
use scenarios are approximately equal to the (virtually
identical) mean and median of the model predictions:
−7 mm, 13 mm and 27 mm, respectively.

6 CONCLUSIONS

Ten models have been applied to the Dill catchment
to predict streamflow at four sites. The general model
performance is satisfactory during both calibration
and validation periods. The semi-distributed models
tend to perform best during both periods, but do not
improve their fits during the less-demanding valida-
tion period as much as some of the distributed models
that do not require as much calibration.

The study has confirmed the potential for multi-model
ensembles to provide hydrological predictions whose
accuracy exceeds those of individual models. Of the
three simple ensembles tested, the median ensemble,
which includes the daily median model prediction is
shown to be superior to the mean and regression based
ensembles during the validation period.

The study has also demonstrated the advantages of
a multi-model approach to predict the impacts of
land use change. Although the predicted streamflow
changes in this study are quite small, there is strong
agreement among the models on the direction and
magnitude of change for each scenario.
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