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EXTENDED ABSTRACT 

Dryland salinity in southern Australia is caused 
by increased deep water losses (deep drainage) 
under annual crops and pastures that replaced the 
original perennial vegetation. Phase farming, in 
which lucerne, a perennial pasture with a deep 
root system, is grown in rotation with annual 
crops is a promising option to reduce deep 
drainage. The lucerne phase extracts soil water 
from below the rooting depth of annual crops, 
preventing its loss to the groundwater, and 
creating a buffer which refills again under annual 
cropping. The optimal length of the phases is 
variable and depends strongly on rainfall. Basing 
phase change decisions on a measurement of soil 
water below the root zone of annual crops 
(tactical management) is expected to optimise 
phase lengths, reducing drainage and maximising 
the time under (more profitable) cropping. 

Computer simulations are the only practical way 
to evaluate the benefits and risks of such a system 
as year-to-year variability of deep drainage under 
these systems is high. It is important, however, 
that the effect of climatic variability is fully 
explored. Simulations of agricultural systems 
usually use an historical climate record, implicitly 
assuming that this captures climatic variability 
adequately. For stream flow and flood prediction 
purposes, the historical climate data record is 
usually not considered long enough to describe 
the variability that may be experienced. Stochastic 
data generation is therefore employed to capture 
more of the variability contained in the historical 
climate record. 

We explored the effects of climatic variability on 
deep drainage under dryland agriculture using two 
different methods to capture this variability: the 
48-year historical climate record and multiple 
records generated by a daily stochastic climate 
model. 

Using a stochastic climate model demonstrates 
the potential variability in average annual rainfall. 

While the overall average (557 mm) matched that 
of the 48-year historical record (553 mm), the 48-
year averages for individual generated records 
ranged from 495 to 627 mm. 

Deep drainage under dryland agriculture is a 
complex and non-linear process. The simulations 
showed that the ordering of years in a climate 
record affected the predicted drainage due to carry-
over effects from year to year. Predicted average 
annual drainage under annual cropping varied by 
20% when specific patterns of wetter and drier 
years were created by manually reordering the 
years in the historical climate record. With 
stochastically generated climate input, the predicted 
average annual drainage varied even more, due to a 
strong relationship between average annual 
drainage and average annual rainfall, which is not 
constrained to the historical average, as it is for the 
manually reordered records. 

Introduction of a more complete description of the 
potential climate variability by using stochastically 
generated records when simulating the outcomes of 
using a fixed rotation and tactical management of 
lucerne resulted in a different evaluation of the 
options. The outcomes predicted using the 
historical record rarely coincided with the average 
of outcomes predicted using the stochastic climate 
records. It also resulted in an understanding of the 
probability of different outcomes, not possible from 
using the historical record alone. 

We conclude that when outputs are a consequence 
of the combination of crop type and climate over a 
number of years a better representation of the 
variability of the climate-soil-vegetation system is 
required than can be obtained using the historical 
climate record alone. The use of stochastically 
generated climate input into multiple simulations 
allows a better understanding of the potential 
outcomes and their probability of occurrence, while 
preserving the inherent nature of the historical 
record. 
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1. INTRODUCTION 

Vegetation change is the accepted cause of 
increasing river salt concentrations and the 
salinisation of millions of hectares of farm land in 
Australia. Replacement of perennial native 
vegetation by annual crops and pastures following 
European settlement has altered the water balance 
causing increased groundwater recharge and 
mobilising the naturally saline groundwater. Deep 
drainage (the loss of water below the root zone of 
the vegetation) is the source of the additional 
recharge. Considerable effort has gone into 
quantifying deep drainage under different 
vegetation types and finding management systems 
that reduce it. 

A promising option in the 300-600 mm rainfall 
zone is phase farming, in which lucerne, a 
perennial pasture with a deep root system, is 
grown in rotation with annual crops. It is based on 
the idea that the lucerne phase extracts water from 
the soil below the root zone of annual crops, 
preventing its loss to the groundwater, and creating 
a buffer which refills again under annual cropping. 

The effectiveness of such a system has been tested 
in a number of experimental field studies (e.g. 
Ridley et al. 2001; Ward et al. 2002). These 
studies are, however, limited by the range of 
climatic conditions experienced during the 
measurement period (typically 3-5 years). 
Simulation analyses using longer historical climate 
records have been used to extend these studies and 
incorporate more variability in climatic conditions 
(e.g. Zhang et al. 1999; Verburg and Bond 2003). 

Simulations using 40 to 50 year historical climate 
records may not be long enough to capture the 
stochastic nature of these systems. For stream flow 
and flood prediction, the length of historical 
climate data is usually considered not long enough 
to describe the potential variability that may be 
experienced during the life of a water resources 
project. Stochastic data generation based on the 
statistical characteristics of the historical data has 
therefore become an important tool for water 
resource planners to evaluate proposed system 
designs more thoroughly. 

A range of models for generation of rainfall and 
other climate data is available (see review by 
Srikanthan and McMahon 2001). In Australia the 
CRC for Catchment Hydrology has developed the 
Stochastic Climate Library (SCL) - a library of 
stochastic models for generating climate data at 
different time scales (Srikanthan and Chiew 2003, 
2005). 

There is no reason to believe that drainage 
behaviour under dryland agriculture is less 
influenced by climate variability than runoff and 
stream flow, but simulations of agricultural 
systems are most commonly carried out using only 
historical climate data. Stochastic climate 
generation has been employed, but generally only 
where historical daily climate data were lacking or 
to study the impacts of climate change scenarios 
(e.g. Wilks 1992; Semenov and Porter 1995). 

The implicit assumption that simulations with 
historical climate records capture climatic 
variability to a sufficient extent does not appear to 
have been tested for agricultural systems. In this 
paper we, therefore, explore the effects of climatic 
variability on deep drainage under dryland 
agriculture using two methods to capture this 
variability: the 48-year historical climate record 
and multiple records generated by the daily 
stochastic climate model within the SCL. 

The motivating case study for this paper focuses 
on the effect of introducing tactical decision 
making in phase farming. The length of the 
cropping and lucerne phases in phase farming is 
determined by a range of agronomic and economic 
factors. It has been proposed that a measurement 
of soil water below the root zone of the annual 
crops may provide a trigger for timing decisions to 
change phase from a perspective of reducing 
drainage and maximising the time under cropping 
(Verburg et al. 2001). As computer simulations are 
the only practical way to evaluate the benefits and 
risks of such a system, it is important that climatic 
variability is fully accounted for in the analysis. 
We therefore evaluated whether simulations using 
an historical climate record capture the potential 
variability in outcomes or whether these 
simulations should be complemented with 
simulations using stochastically derived climate 
inputs. The analysis focussed on quantifying the 
impact of climatic variability rather than 
forecasting the impact of future climate, so climate 
change was not considered in this study. 

2. MATERIALS AND METHODS 

2.1. APSIM model 

The Agricultural Production Systems Simulator 
(APSIM; Keating et al. 2003) has a flexible 
structure in which crops and major soil processes 
are dealt with in separate modules. Here we used a 
point-scale configuration with a wheat module 
(Wang et al. 2003), a lucerne module (Robertson et 
al. 2002), a water balance module (APSWIM), a 
surface residue module (RESIDUE2, Probert et al. 
1998), and a soil nitrogen module (SOILN2, 
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Probert et al. 1998). In addition, the operations, 
manager and fertilisation modules were used to 
mimic management actions such as tillage, sowing 
and harvesting. The APSWIM module is derived 
from the Soil Water Infiltration and Movement 
model (SWIM, Verburg et al. 1996). It is based on 
the Richards equation for water flow and the 
advection-dispersion equation for solute transport, 
which are solved numerically using sub-daily time 
steps. All other APSIM modules have a daily time 
step. We used APSIM version 2.1 patch 2, except 
for beta release (patch 3) versions of the crop 
modules. This version was satisfactorily tested 
against four detailed data sets by Verburg and 
Bond (2003). Soil properties from one of these 
data sets, a reasonably well drained Red Kandosol 
(Isbell, 1996) from Wagga Wagga, NSW, were 
used for this study. 

2.2. Simulated dryland agriculture scenarios 

Three dryland agriculture systems were analysed. 
The first was a continuous wheat system. Sowing 
of wheat was conditional on sufficient rainfall 
within a sowing window between 1 May and 15 
June, or sown “dry” on 15 June. Wheat was 
fertilised with 140 kg N/ha/season (20 kg N/ha 
applied at sowing, the balance 60 days later) and 
70% of crop residues were burned on 31 March 
with the remainder incorporated by tillage on 15 
April. Summer weeds were allowed to germinate 
in response to rainfall between harvest and 15 
April. The other systems were lucerne-wheat 
rotations. The rotation was either a fixed rotation 
with three years wheat/three years lucerne or a 
tactical one in which the change of phase was 
prompted by soil water status below the root zone 
(at depths of 1.3 m, 1.7 m or 2.1 m). Wheat was 
allowed to root to 1.2 m, whereas lucerne roots 
explored the soil to 3 m depth. Deep drainage was 
evaluated below the deepest roots, i.e. at 3 m. 

The simulations were run for a 48-year period 
(1957-2004). The first five years of the simulation 
period were used to allow the simulation to 
stabilise and settle into the rotation. These years 
were not included in the analyses, which focused 
on the period 1962-2003 (42 years). In the case of 
the fixed rotation, this allowed 7 cycles of 6 years 
(three years wheat, three years lucerne). For both 
fixed and tactical rotations, the simulations started 
with first year wheat in 1962, unless otherwise 
indicated. Tactical management started in 1962 for 
the tactical simulations. 

2.3. Historical climate record 

The APSIM model requires daily values of 
rainfall, solar radiation, maximum and minimum 

temperatures as input. One set of simulations used 
historical data (1957-2004) from the Australian 
Bureau of Meteorology station 73127 (Wagga 
Wagga Agricultural Institute). These were 
extracted from the SILO Patched Point Dataset 
(Jeffrey et al. 2001; http://www.bom.gov.au/silo/). 

2.4. Stochastic climate generation 

A modified version of the daily climate model 
from the Stochastic Climate Library (SCL) 
(Srikanthan and Zhou, 2003; 
http://www.toolkit.net.au/scl) was used to obtain 
100 stochastically generated records (each for 
1957-2004). In this model a daily model is nested 
in a monthly model which in turn is nested in an 
annual model. It focuses on daily characteristics 
and generates these first. It uses a multivariate 
AR(1) model to preserve the auto and cross 
correlations of the climate data. Monthly and 
annual totals are formed from the daily generated 
data, and an adjustment procedure is used to 
ensure that monthly and annual characteristics are 
preserved. The daily climate model has been 
successfully evaluated using climate data (rainfall, 
evaporation and maximum temperature) from 10 
sites located in various parts of Australia 
(Srikanthan and Zhou, 2003). The modified 
version used here also generated solar radiation 
and minimum temperature. 

3. RESULTS AND DISCUSSION 

3.1. Assessment of generated climate data 

The climate at Wagga Wagga is temperate with a 
mean annual rainfall of 553 mm (coefficient of 
variation = 26%) for the period 1957-2004 
(Australian Bureau of Meteorology station 73127). 
The data generated by the SCL model reproduced 
the statistics relating to annual rainfall closely 
(Table 1). Overall the model satisfactory preserved 
29 of 35 annual statistics, 279 of 360 monthly 
statistics, and 272 of 312 daily statistics (including 
mean, standard deviation, coefficient of skewness, 
lag-one correlation, minimum, maximum, length 
of wet and dry spells and the various cross 
correlations; Srikanthan and Chiew 2003) of the 
four input variables required by APSIM. 

Average annual rainfall for the 100 SCL generated 
climate records varied between 495 and 627 mm. 
The distribution of average annual rainfall of these 
48-year sequences is related to the distribution of 
annual rainfall in the historical record. Despite the 
variation in average annual rainfall, each of the 
100 stochastically generated records is an equally 
valid realisation of the climate. However, 
sequences with an average annual rainfall close to  
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Table 1. Descriptive statistics of historical and generated annual rainfall (1957-2004) 

Parameter Historical SCL 
Mean 

SCL 
2.5% 

SCL 
25% 

SCL 
50% 

SCL 
75% 

SCL 
97.5% 

Mean 552.6 557.4 516.2 538.8 556.8 573.1 613.2 
Stdev 142.8 142.5 111.1 131.1 141.8 152.0 187.0 
Skew 0.130 0.318 -0.219 0.090 0.290 0.519 1.170 
Corr 0.026 0.004 -0.257 -0.062 0.012 0.080 0.361 
Max 854.8 912.5 764.8 855.4 900.8 964.4 1123.4 
Min 243.8 281.2 198.5 247.5 285.9 312.7 367.1 
2-yr low 781.2 709.0 536.9 664.6 714.6 762.3 859.3 
3-yr low 1202.6 1185.0 920.4 1128.0 1200.7 1259.6 1408.8 
5-yr low 2227.9 2193.1 1896.1 2090.5 2198.3 2297.9 2531.6 
7-yr low 3270.7 3233.7 2797.1 3089.4 3244.4 3384.2 3684.7 
10-yr low 5011.4 4840.6 4248.7 4644.0 4865.9 5034.4 5447.8 

 

 
the historical mean have a higher likelihood of 
occurrence than sequences with an average far 
away from the historical mean. As this is the case, 
there is no need for weighting individual 
sequences when using the sampled sequences in 
simulations. 

3.2. Deep drainage under annual cropping 

Annual deep drainage under cropping is highly 
variable (coefficient of variation of 126% for the 
historical simulation), as a result of the interaction 
between the soil-crop system and the already 
variable (inter-annual and intra-annual) rainfall. 
Comparing the two methods of accounting for 
climate variability, the cumulative probability 
functions for predicted annual drainage are similar 
(Figure 1). This shows that the stochastic model 
did not have any bias. 
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Figure 1. Cumulative probability functions of 
predicted annual drainage under annual cropping 

using the historical climate record (black) and 100 
SCL generated climate records (grey). 

The average annual drainage over a 42-year period 
(1962-2003) was highly variable for the 100 
simulations with SCL generated climate records 
(Figure 2). It varied between 12.2 and 74.1 mm, 
with a mean of 40.1 mm and a standard deviation 
of 10.7 mm. The average annual drainage 

predicted for the historical simulation (48.9 mm) 
falls within this range as it is just one realisation of 
the past climate (Srikanthan and Chiew, 2005). 
From this we conclude that there is significantly 
more potential variability in average annual 
drainage than suggested by the use of the historical 
climate record alone. 

A large part of this variability (77%) is explained 
by the variability in average annual rainfall, but it 
is enhanced by different sequences of wetter and 
drier years. Drainage is likely to be larger when a 
wet year is followed by another wet year than if it 
is followed by a dry year. This is illustrated by the 
predicted average annual drainage for two 
additional simulations in which the years within 
the historical climate record were manually 
reordered. In both cases the average annual rainfall 
was identical to that of the historical record. 
Average annual drainage was 44.6 mm for a record 
in which manual reordering created alternating wet 
and dry years, whereas it was 54.5 mm for the a 
record with cycles of 3 years of above average 
followed by 3 years of below average rainfall. 
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Figure 2. Predicted 42-year average annual 
drainage vs. average annual rainfall under annual 

cropping using the historical climate record (black) 
and 100 SCL generated climate records (grey). 
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3.3. Deep drainage under a fixed lucerne-
wheat rotation 

Drainage under a lucerne-wheat rotation was even 
more episodic than that under annual cropping, 
with most of the drainage occurring in less than 
20% of the years in the fixed rotation. The 
coefficient of variation in annual drainage 
increased to 227% for the historical simulation. 

Lucerne is very effective in reducing drainage 
during its second and third year and has an 
ongoing effect during the subsequent wheat phase, 
although the longevity of that effect depends on 
rainfall. This means that the amount of drainage 
predicted is very sensitive to how the 6 different 
years of the rotation (first, second, third year 
wheat, first, second, third year lucerne) coincide 
with wetter and drier years in a climate record. 
This is illustrated by the predicted average annual 
drainage of 6 alternative simulations using the 
historical climate record, which each started with a 
different crop in 1962 (Table 2). It shows that the 
reduction in drainage achieved by introducing 
lucerne in an annual cropping system can vary 
from 55 to 69% depending on timing of phases 
with rainfall in the historical record. 

Table 2. Effect of the timing of phases in a fixed 
6-year lucerne-wheat rotation on the simulated 42-

year average annual drainage (mm) and the 
reduction (%) compared with annual cropping  

(W = wheat, L = lucerne). 

 Vegetation type and year in 1962 
 1st 

W 
2nd 
W 

3rd 
W 

1st 
L 

2nd 
L 

3rd 
L 

Drainage 18.2 15.2 17.4 22.0 18.3 22.2 
Reduction 63 69 65 55 63 55 

Combining this inherent variability of the lucerne-
wheat system with the variability in 42-year 
average annual rainfall for the 100 runs with SCL 
generated climate resulted in a range of 0 to 38 
mm annual drainage, or 46 to 98% reduction in 
drainage compared with annual cropping. 

3.4. Tactical phase farming 

The introduction of tactical decision making in 
phase farming has the potential to further reduce 
deep drainage and/or increase the time under 
cropping, because it prompts a shift from annual 
cropping to lucerne when the soil starts to wet up 
and allows a return to annual cropping as soon as 
lucerne has dried out the soil, rather than wait for a 
fixed number of years. It may not always work 
however. Deep drainage may not be prevented if 

wetting up occurs after the decision has been made 
(on 1 March in the simulations) or if a wet year 
coincides with the first year of lucerne (because 
lucerne in its first winter-spring uses less water 
than annual crops, resulting in more drainage in 
that period). 

The benefits and risks of tactical management can 
therefore only be evaluated over the longer term. 
As shown in Figure 3, when evaluated with the 
historical climate record (black symbol) a soil 
water trigger at 1.7 m depth resulted in a further 
reduction of average annual deep drainage of 5.5 
mm (compared with the fixed rotation), while the 
number of wheat crops remained the same (21) in 
the 42-year evaluation period (1962-2003). 

For the runs using SCL generated climate records 
the 42-year average response was highly variable 
due to the interaction of variability in climatic 
input with evapotranspiration patterns of the 
different vegetation types. The trend was, 
however, for a larger reduction in deep drainage to 
occur at higher average annual rainfall, and lower 
average rainfall to lead to more years under 
cropping (Figure 3). 
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Figure 3. Simulated effect of the introduction of 
tactical decision making in phase farming (soil 

water trigger at 1.7 m depth) on (a) average annual 
drainage and (b) number of wheat crops grown in 

the 42-year analysis period as a function of 
average annual rainfall using the historical climate 

record (black) and 100 SCL generated climate 
records (grey). 
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Evaluating the soil water trigger at different depths 
below the root zone of the annual crops, allows 
one to vary the balance between a larger reduction 
in drainage (shallower placement) and increased 
time under cropping (deeper placement) (Figure 
4). A more complete cost-benefit analysis would 
include translation of time under cropping into an 
average gross margin for the system as a whole, 
but this is beyond the scope of the current paper 
and will be discussed elsewhere. 
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Figure 4. Simulated effect of the introduction of 
tactical decision making in phase farming (soil 
water triggers at 1.3, 1.7, and 2.1 m depth) on 
average annual drainage and number of wheat 

crops grown in the 42-year analysis period using 
the historical climate record (black) and 100 SCL 

generated climate records (grey); 90 percent 
confidence intervals shown also. 

What is clear from Figure 4 is that evaluating the 
use of tactical decision making or determining the 
optimum depth of the soil water trigger on the 
basis of the historical climate record on its own 
could be misleading. The historical simulation 
predicted an increase in average annual drainage 
when the soil water trigger is at 2.1 m (Figure 4c). 
This does not seem to be the most probable result 

indicated by the results of runs with generated 
climate records. It appears the historical simulation 
may have had an unfavourable timing of wet years, 
as discussed above. Similarly, the large reduction 
in drainage at a cost of several crops predicted 
using the historical record when the trigger was at 
1.3 m is almost outside the 90% confidence region 
predicted using SCL generated climate records 
(Figure 4a). It is clear that the predictions of the 
simulations with SCL generated climate records 
capture more of the stochastic nature of the system 
than the historical simulation alone and provide 
information about the probability of outcomes 
which is critical for the evaluation of management 
decisions. 

4. CONCLUSIONS 

Deep drainage under dryland agriculture is a 
complex and non-linear process. The ordering of 
wet periods in a climate record affects the 
predicted drainage due to year-to-year carry-over 
effects. In rotational systems with vegetation types 
that have different evapotranspiration patterns, the 
timing of the vegetation cycle relative to wetter 
and drier years affects deep drainage as well. 

In annual cropping systems the use of only an 
historical record may be sufficient when 
simulations are used to determine the probability 
distributions of annual outputs. In rotational 
systems or when outputs are evaluated over a 
number of years and confidence limits are 
important, one needs a better representation of the 
variability of the climate-soil-vegetation system 
than can be achieved with an historical simulation 
alone. It is then more informative to perform 
multiple simulations with stochastically derived 
climate inputs, based on the historical data. This 
has the advantage of incorporating climate 
variability according to a chosen model, whilst 
also allowing for the complex non-linearity 
inherent within the environmental system. The 
generation of stochastic climate data does not add 
information to the historical record, but taking 
account of the stochastic nature of observed 
climate data this way is a more efficient use of the 
data than the traditional approach based on 
simulations with historical data only. 

It should be noted that it is important to use a well 
tested stochastic climate model. In the current 
study the generated climate data were deemed 
satisfactory as most statistics were within specified 
relative or absolute tolerances (Srikanthan and 
Chiew, 2003). These tolerance limits are to some 
extent subjective and further verification of the 
statistics produced by the daily climate model in 
SCL may be desired. 

1721



5. ACKNOWLEDGMENTS 

The research described here was funded by CSIRO 
with supporting funds from the Grains Research 
and Development Corporation. We thank Brent 
Henderson for advice on calculation of the 
bivariate confidence regions in Figure 4, and 
Hamish Cresswell and anonymous reviewers for 
comments on an earlier version of the manuscript. 

6. REFERENCES 
Isbell, R.F. (1996), The Australian Soil 

Classification. Australian soil and land survey 
handbook series; Vol. 4. CSIRO, Melbourne, 
Australia. 

Jeffrey, S.J., J.O. Carter, K.B. Moodie, and A.R. 
Beswick (2001), Using spatial interpolation to 
construct a comprehensive archive of 
Australian climate data, Environmental 
Modelling and Software, 16, 309-330. 

Keating, B.A., P.S. Carberry, G.L. Hammer, M.E. 
Probert, M.J. Robertson, D. Holzworth, N.I. 
Huth, J.N.G. Hargreaves, H. Meinke, Z. 
Hochman, G. McLean, K. Verburg, V. Snow, 
J.P. Dimes, M. Silburn, E. Wang, S. Brown, 
K.L. Bristow, S. Asseng, S. Chapman, R.L. 
McCown, D.M. Freebairn, and C.J. Smith 
(2003), An overview of APSIM, a model 
designed for farming systems simulation, 
European Journal of Agronomy, 18, 267-288. 

Probert, M.E., J.P. Dimes, B.A. Keating, R.C. 
Dalal, and W.M. Strong (1998), APSIM's 
water and nitrogen modules and simulation of 
the dynamics of water and nitrogen in fallow 
systems, Agricultural Systems, 56, 1-28. 

Ridley, A.M., B. Christy, F.X. Dunin, P.J. Haines, 
K.F. Wilson, the late A. Ellington (2001), 
Lucerne in crop rotations on the Riverine 
Plains. 1. The soil water balance, Australian 
Journal of Agricultural Research, 52, 263 277 

Robertson, M.J., P.S. Carberry, N.I. Huth, J.E. 
Turpin, M.E. Probert, P.L. Poulton, M. Bell, 
G.C. Wright, S.J. Yeates, and R.B. Brinsmead 
(2002), Simulation of growth and 
development of diverse legume species in 
APSIM, Australian Journal of Agricultural 
Research, 53, 429–446. 

Semenov, M.A. and J.R. Porter (1995), Climatic 
variability and the modelling of crop yields. 
Agricultural and Forest Meteorology, 73, 265-
283. 

Srikanthan, R., and T.A. McMahon TA (2001), 
Stochastic generation of annual, monthly and 
daily climate data: A review, Hydrology and 
Earth Systems Sciences, 5(4), 653-670. 

Srikanthan R., and S.L. Zhou (2003), Stochastic 
generation of climate data, CRC for 
Catchment Hydrology Technical Report 03/12 
(http://www.toolkit.net.au/scl). 

Srikanthan R., and F.H.S. Chiew (2003), 
Stochastic models for generating annual, 
monthly and daily rainfall and climate data at 
a site, CRC for Catchment Hydrology 
Technical Report 03/16 
(http://www.toolkit.net.au/scl). 

Srikanthan R., and F.H.S. Chiew (2005), 
Stochastic climate modelling library, 
Engineers Australia 29th Hydrology and Water 
Resources Symposium, 21-23 February 2005, 
Canberra. 

Verburg K., P.J. Ross, and K.L. Bristow (1996), 
SWIMv2.1 User Manual, Divisional Report 
130, CSIRO Division of Soils, Australia. 

Verburg, K., W.J. Bond, B.A. Keating, C.J. Smith, 
M.J. Robertson, and P. Hutchinson. (2001). 
Simulation of tactical use of phase farming to 
reduce deep drainage. Proceedings 10th 
Australian Agronomy Conference, Hobart TA, 
Australia, 29 January – 1 February 2001. 
(http://www.regional.org.au/au/asa/2001/p/1/v
erburg.htm) 

Verburg K., and W.J. Bond (2003), Use of APSIM 
to simulate water balances of dryland farming 
systems in south eastern Australia. Technical 
Report 50/03, CSIRO Land and Water, 
Canberra, Australia. 
(http://www.clw.csiro.au/publications/technica
l2003/). 

Ward, P.R., F.X. Dunin and S.F. Micin (2002), 
Water use and root growth by annual and 
perennial pastures and subsequent crops in a 
phase rotation, Agricultural Water 
Management, 53, 83-97. 

Wilks, D.S. (1992), Adapting stochastic weather 
generation algorithms for climate change 
studies, Climatic Change, 22, 67-84. 

Zhang L.,W.R. Dawes, R.J. Hatton, I.H. Hume, 
M.G. O’Connell, D.C. Mitchell, P.L. 
Milthorp, and M. Yee (1999), Estimating 
episodic recharge under different crop/pasture 
rotations in the Mallee region. Part 2. 
Recharge control by agronomic practices, 
Agricultural Water Management, 42, 237-24. 

 

1722


