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EXTENDED ABSTRACT 

There are three important reasons for the use of  
modeling frameworks in environmental science: 
dealing with complexity, re-using modules for 
different models, and providing support for 
commonly needed services. Literally dozens of 
modeling frameworks are being used   by 
environmental scientists, several of which are 
under active development. It was our objective to 
determine just how much common ground there is 
between these frameworks. A review of how the 
various frameworks support decomposition of the 
modeling problem, specification of the model 
(including sub-models and compositions of sub-
models), event-handling, numerical integration 
and run-time execution of models, revealed that it 
is helpful to make a distinction between 
implementation-level and modeling-level 
frameworks. An implementation-level 
framework’s primary purpose is to link existing 
model implementations. With an implementation-
level framework, the user is responsible for fully 
specifying links between modules and ensuring 
their correctness with respect to intention and 
logic. Differences between the various 
implementation-level frameworks are relatively 
unimportant. However, representing even a 
moderately complex system with an 
implementation-level framework requires the user 
to spend much effort to make sure that the 
necessary modules are properly connected. 
Modeling-level frameworks attempt to unburden 
the user by allowing domain-specific terms  to be 
used to specify which models or modules should 
be used and how they should be linked. There is a 
direct, if usually implicit, link between both kinds 
of frameworks: before a model specified with a 
modeling-level framework can be executed, it 
must be translated into a general-purpose 
programming language, which will be done using 
an implementation-level framework. It is argued 
that users and builders of frameworks in 
environmental science will benefit from making 
the distinction between implementation-level and 
modeling-level frameworks and that they should 
be explicit about the implementation-level 
frameworks targeted by the code generators of 
modeling-level frameworks. If at all possible, a 
widely accepted target implementation-level 

framework should be chosen. Then, at some 
future time, we may see re-use and extension of 
an existing framework instead of the 
creation of YAMF (Yet Another Modeling 
Framework). 
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1. INTRODUCTION 
 

There are three important reasons for the use of 
modeling frameworks in environmental science. 
First, the systems of interest to environmental 
scientists, and models of these systems, are 
complex. An effective way of dealing with 
complexity is to decompose the system into 
smaller systems, and possibly repeating this 
process, until sub-systems of manageable 
complexity have been identified. Supporting the 
composition of a model of the system of interest 
by combining models of sub-systems obtained in 
this way, is the most important task of a modeling 
framework. Second, it is often the case that two 
different systems of interest have one or more sub-
systems in common. A modeling framework 
enables the creation of models of such systems by 
drawing on a common pool of sub-models. Third, 
even modules that represent completely different 
biological or physical systems, have common 
characteristics and requirements, both at the level 
of modeling (distribution in space and time) and at 
the level of implementation (I/O, numerical 
integration). A framework can provide support for 
such common requirements. 

To date, literally dozens of frameworks have been 
proposed for use by environmental scientists, with 
several under active development at the time of 
writing. Each new framework claims some unique 
merits and while it is probably true that a new 
framework is needed from time to time, it will be 
sad indeed if the field of environmental science is 
so fragmented that dozens of frameworks are 
needed to satisfy all its modeling requirements. In 
the light of this, we consider in this paper several 
of these frameworks and try to determine just how 
much common ground there is between them. In 
our (somewhat arbitrary) selection of frameworks 
to be considered, we are slightly biased toward 
agronomic and hydrological simulation, but the 
analysis should be applicable outside these areas. 
The following frameworks are considered: IMA 
(Villa, 2005), OpenMI (Moore et al., 2004), 
APSIM (Keating et al., 2003), MODCOM (Hillyer 
et al., 2003), TIME (Rahman et al., 2003), SELES 
(Fall and Fall, 2001), MMS (Leavesley et al., 
1996), SME (Maxwell and Costanza, 1995) and 
FSE (Van Kraalingen, 1995). In the following 
sections we investigate how the various 
frameworks support decomposition of the 
modeling problem, specification of the model 
(including sub-models and compositions of sub-
models), event-handling, numerical integration and 
run-time execution of models. 

2. DECOMPOSITION OF THE MODELING 
PROBLEM 
 

Modeling frameworks support construction of 
model implementations by connecting two or more 

sub-model implementations. The sub-model 
implementations or modules are the result of a 
decomposition of the modeling problem. How to 
perform the composition is left to the user of the 
framework. Various authors have adopted an 
approach to model decomposition strongly 
influenced by software engineering principles. 
This results in the definition of sub-models such 
that there is much interaction within each sub-
model, and little interaction between them. The 
most commonly selected strategy by far is to 
decompose by structure. A simulation can then be 
redefined by replacing one module with another 
module that represents the same part of the 
modeled system. This is true whether the modules 
represent crops (APSIM), catchments (TIME), or 
population dynamics of a species (SME). But other 
strategies are possible. For example, Van Evert et 
al. (2003) use two instances of the sub-model 
“DairyCows” to represent one group of animals 
during two (housing and grazing) periods of the 
year. 

In summary, decomposition by structure is by far 
the most commonly used decomposition strategy. 

3. MODEL SPECIFICATION: MODULES 
 

Most frameworks take as the unit of 
decomposition the model function, adorned with 
such housekeeping info as number and names of 
parameters. An exception is OpenMI, where 
modules additionally contain machinery to buffer 
states and may perform spatial (dis)aggregation as 
well as averaging and interpolation over time.  

Some frameworks work only with the interface of 
modules. In other words, they treat modules as 
black boxes, in keeping with the object-oriented 
paradigm which stresses encapsulation and focuses 
on behaviour. An advantage of this method is that 
modules can be developed and tested separately 
from the application software in which they will be 
deployed and can then be delivered in binary form: 
C++ classes (Tarsier, (Watson and Rahman, 2004)), 
Microsoft COM classes (MODCOM), .NET 
classes (OpenMI, TIME, and the .NET version of 
MODCOM), or Java classes (OpenMI).  

From the above it is apparent that classes are the 
customary mapping of models to model 
implementations. This is appropriate, because even 
though a model itself is just a function, a model 
implementation needs to communicate, among 
other things, number and names of parameters to 
other program units. The resulting construct is best 
expressed as a class. Frameworks such as APSIM, 
MMS and FSE, where modules are typically 
written in Fortran, define modules as a set of 
functions, grouped in such a way that the effect is 
that of a class. 

Some frameworks allow specification of modules 
in a run-time environment using a scripting 
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language (VBScript in MODCOM, MickL in 
ICMS (Rahman et al., 2004)). Such modules are 
still black-box modules because this script is not 
processed by the framework or by other modules. 

In contrast to black-box modules, white-box 
modules provide processable information about the 
model to the framework. SME uses the Modular 
Modeling Language (Maxwell and Costanza, 
1997), SELES and IMA also define declarative 
modeling languages. Other declarative languages 
used in modeling include Stella (ISEE Systems, 
Lebanon, NH, USA), Simile (Simulistics Ltd., 
Edinburgh, United Kingdom), and Modelica 
(http://www.modelica.org). The declarative 
specification of a model can be used to document 
the model, allow drill-down through composite 
models, and present models in graphical form. In 
addition, from a model defined in a declarative 
language, code can be generated that will run in 
specific frameworks (Argent and Rizzoli, 2004; 
Ford et al., 2005; Muetzelfeldt, 2002). 

In summary, many frameworks use black-box 
modules. These are commonly expressed as 
classes, either at the source code level or at the 
binary level. Several frameworks use declaratively 
specified models. While this has some benefits at 
the level of module specification, we shall see in 
the next section that declaratively specified models 
are most useful in model composition. 

4. MODEL SPECIFICATION: 
COMPOSITIONS 
 

In a model composition, two or more modules 
(black-box or white-box) are connected. A black-
box module has pre-defined inputs and outputs. 
This is typically true for white-box modules, too, 
although the fact that the full model specification 
is available in processable format means that the 
model could be inverted during the code 
generation phase that follows. IMA in particular 
makes a distinction between a model (with, for 
example, state variables and parameters) and a 
workflow element (with inputs and outputs). 

A composition of black-box modules is bound to 
the execution platform that is targeted by its 
modules. On the other hand, a composition of 
white-box modules (sometimes called a “meta-
model”) can be deployed on different platforms by 
using appropriate code generators. For example, 
different SME translators target a supercomputer 
and an MPI-mediated cluster of machines. The 
meta-model frameworks considered in this paper 
(IMA, SME, and SELES) can also make use of 
black-box modules; this is indicative of the need to 
be able to incorporate “legacy”-modules or 
modules that are not easily expressed in the 

declarative modeling language of the meta-
model’s framework. 

There are good reasons for using white-box 
modules and for using black-box modules. Not all 
applications require the more expressive white-box 
modules; consequently, no convergence to 
frameworks that support white-box modules is 
taking place.  

5. SPECIFYING LINKS 
 

When two model implementations are linked, the 
semantics of output and input (physical quantity 
and units, time, space, etc.) as well as the 
representation (integer, double, etc.) must match. 
Frameworks such as MODCOM and TIME place 
no restrictions on links on the basis of semantics or 
representation, although both attempt to guide the 
user by allowing textual mark-up of inputs and 
outputs. TIME additionally supports “Raster” and 
“TimeSeries” datatypes and provides a library of 
operations, but the framework does not allow for 
the expression of spatial relationships between 
modules. OpenMI has a mechanism that requires 
the discretization in time and space of the 
requested information to be specified when a link 
is created. If the information is not available at the 
requested discretization, the module can either 
employ framework-supplied methods to provide a 
mapping, or generate the mapping using its own 
methods. SME’s MML and SELES’s modeling 
language both allow grid-spatial semantics to be 
expressed. IMA is by far the most ambitious of the 
frameworks: it can load and use arbitrary 
ontologies (Guarino and Giaretta, 1995) to fully 
specify the semantics of all models. Machine 
reasoning is then used during the code generation 
phase to produce algorithms to solve the models, 
inserting converters (accumulators, unit translators, 
aggregators) where necessary to address scale 
mismatches such as different time and space 
granularities. 

There is considerable interest in the semantics of 
model compositions. That is convergence. But 
there is a marked divergence in the approaches 
used to express the semantics of model 
compositions, with on the one hand frameworks 
such as TIME,  OpenMI, SME and SELES that 
offer classes and interfaces to support to some 
extent the semantic specification of links, and on 
the other hand the ontology-based approach 
supported by IMA. 

6. EXECUTING LINKS 
 

During the execution of a simulation run, 
information is exchanged between modules. A 
variety of techniques is used by the various 
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frameworks. FSE uses variables that are accessible 
to all modules; HUME (Kage and Stützel, 1999) 
uses pointers to object members. Both methods are 
fast, but the first requires source-code level linking 
and the second introduces tight dependencies 
between modules. APSIM and MMS use a black-
board mechanism where modules publish and 
retrieve information through a functional interface. 
This allows linking of executable modules, but 
incurs significant overhead. TIME and MODCOM 
achieve linking through pointers to objects. This 
incurs little overhead and is very flexible.  

Declaratively represented models can be linked by 
generating source code in which the linkages are 
already established. The translated (“flat”)  form of 
a Modelica or Simile model is an example of this; 
how links are represented in the generated 
executable code depends on the code generator 
used. Links in IMA-generated executables are 
represented as pointers to objects. 

Implementation-level links between modules are 
most commonly represented by pointers to objects 
in an object-oriented framework. 

7. NUMERICAL INTEGRATION 
 

The various modules of a composite model 
implementation represent different parts of the 
same system. If these modules contain differential 
equations and represent closely coupled parts of 
the system, it may be desirable to integrate them 
together, as in the case of populations of a predator 
and a prey occupying the same territory. In other 
cases, the problem at hand may call for modules to 
be integrated with different step sizes and/or 
algorithms. 

FSE offers several integrators but can use only one 
in a given simulation; the chosen integrator is used 
for all modules. MODCOM offers several 
integrator implementations; any number can be 
used in a given simulation; and any number of 
modules can be specified to be integrated together. 
OpenMI and TIME don’t offer explicit support to 
integrate modules together, but the effect can be 
achieved by compositing two or more modules. 

In summary, whether support for integration is 
offered, and the different ways and methods of 
integration supported, are features of a particular 
framework. 

8. EVENTS 
 

Three kinds of events can be recognized in 
simulation: time-, discrete- and state-events.  
Pritsker (1986) describes a simple yet realistic 
model with all three types of events; see Zeigler et 
al. (2000) for a full theory. Many frameworks 

allow for time events (“plowing will take place on 
15 October”) as well as discrete events. FSE 
(version 2.1) and MODCOM handle state events. 
Handling state events is not completely 
straightforward in OpenMI, but at one of the 
training workshops the first author was shown that 
it can be done. IMA can handle events by using an 
event ontology and appropriate software; however, 
this has not been implemented to date.  

Events are required to adequately model many 
systems, yet not all frameworks considered are 
able to handle the full range of events. The original 
version of FSE was not able to handle state events, 
but the current one is. 

9. RUN SIMULATION 
 

Running a simulation comprising two or more 
modules involves coordinating the repeated 
execution of the modules (applying the transfer 
function of the model implemented by the 
module). The order of execution of modules is 
determined by dependencies between modules and 
discretization of time and space. The use of an 
event list, where an event specifies which module 
needs to be run at which time, is common to many 
frameworks (SME, MODCOM, TIME). The event 
list may be simply a loop specifying time steps of 
equal size, with all modules being called at each 
time step (FSE), or it may be a dynamic list, 
allowing events spaced at arbitrary intervals, as 
well as insertion and deletion of events (TIME, 
MODCOM). In IMA an event list is created by the 
runtime to account for the discretization of the 
states implied by the observation contexts, such as 
time and space, defined by the modeller. Unique 
among modelling frameworks, IMA provides a 
generalization of the observation context that 
extends beyond time and space; as an example, an 
input parameter can be defined to have two 
alternative values, according to two different 
studies that have measured it. This multiplicity 
propagates automatically through the model 
structure and results in the calculation of two 
different sets of results, one per each study. The 
semantically explicit IMA allows independent 
developers to extend the observation context 
semantics and provide their own views of them, 
including alternative conceptualizations of time 
and space. 

OpenMI stands apart from the other frameworks in 
that it does not employ an event list. Instead it uses 
a pull-mechanism where each module performs 
calculations in response to requests. In the process 
of fulfilling a request, a module may “pull” values 
from one or more other modules, leading to a 
cascade of pulling actions. When a module can 
calculate the requested value without pulling 
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values from other modules, it does so and then 
calculated results start flowing up the chain of 
requests. 

An event list is by far the most common method of 
coordinating the execution of modules in the 
frameworks considered. OpenMI is the only 
framework that uses a different mechanism. 

10. DISCUSSION AND CONCLUSIONS 
 

With the feature-by-feature comparison of the 
preceding sections in hand, it becomes clear that 
the frameworks considered in this paper must be 
classified into two main groups. We will call these 
groups “implementation-level” frameworks and 
“modeling-level” frameworks. An implementation-
level framework’s primary purpose is to link 
existing model implementations. Thus, 
implementation-level frameworks (TIME, 
MODCOM, FSE, MMS) often treat their modules 
as black boxes. The user is responsible for 
specifying links between modules and ensuring 
their correctness with respect to intention and 
logic. Differences exist between the various 
implementation-level frameworks with regard to 
platform, language, efficiency, and the support of 
functionality such as state events. These 
differences are relatively unimportant and are 
related to implementation choices and 
completeness of the implementation; there are no 
fundamental differences between the 
implementation-level frameworks considered in 
this paper. 

While the implementation-level frameworks 
between them can represent the systems currently 
of interest to environmental scientist (and have 
been used to do so), representing even a 
moderately complex system with such a 
framework requires the user to spend a lot of effort 
to make sure that the necessary modules are 
properly connected. The OpenMI framework 
significantly unburdens the user by offering a 
facility whereby a module can specify the 
discretization in time and space of the values it 
requests from another module. Somewhat more 
generally, yet still in the realm of implementation-
level frameworks, John Bolte (2001, personal 
communication to Van Evert) has suggested using 
software tools to translate, for example, a spatially 
explicit model to an arrangement of objects in the 
MODCOM framework.  

Modeling-level frameworks formalize the attempt 
to unburden the user by allowing domain-specific 
terms  to be used to specify which models or 
modules should be used and how they should be 
linked. SME and SELES use declarative 
specifications of models in the domain of spatial 
(landscape) modeling. IMA extends this concept in 

that it is extensible to any domain, provided that 
such a domain is formalized through an ontology.  

Thus, it seems that there is a clear separation 
between implementation-level and modeling-level 
frameworks, with users forced to choose between 
one or the other. In reality, however, there is a 
direct link between both kinds of frameworks. 
Before a model specified with a modeling-level 
framework can be executed, it must be translated 
into a general-purpose programming language. 
Because this is done through software, the output 
of such a process represents an implementation-
level framework, whether intentionally or not. We 
are not aware of references that shed light on the 
frameworks targeted by the code generators of 
SME, SELES or IMA, which leads us to believe 
that the implementation-level frameworks used by 
these modeling-level frameworks should perhaps 
be called “accidental” frameworks.  

The link between implementation-level and 
modeling-level frameworks can be made explicit 
by specifying the target implementation-level 
framework. Such an implementation-level 
framework must be capable of representing the 
entire range of discrete event and continuous 
simulation. For example, frameworks based on the 
DEVS formalism (Zeigler et al., 2000) are widely 
recognized to meet this goal. Interestingly, little 
reference is made to DEVS in environmental 
science literature, although Filippi and 
Bisgambiglia (2004) applied a DEVS-based 
implementation-level framework to problems in 
environmental science. Levytskyy et al. (2003) 
have presented work on translating Modelica 
models to the DEVS formalism using the Atom3 
tool.  

In conclusion, we suggest that users and builders 
of frameworks in environmental science will 
benefit from making the distinction between 
implementation-level and modeling-level 
frameworks, and by being explicit about the 
implementation-level frameworks targeted by the 
code generators of modeling-level frameworks. If 
at all possible, a widely accepted target 
implementation-level framework should be 
chosen. DEVS may be helpful in this respect. 
Then, at some future time, we may see re-use and 
extension of an existing framework instead of the 
creation of YAMF (Yet Another Modeling 
Framework). 
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