
Convergence in integrated modeling frameworks
1Frits van Evert, 2Dean Holzworth, 3Robert Muetzelfeldt, 4Andrea Rizzoli, 5Ferdinando Villa

1Plant Research International, Wageningen, The Netherlands, frits.vanevert@wur.nl
2APSRU, Toowoomba, Australia

3Simulistics, Edinburgh, United Kingdom
4IDSIA, Manno, Switzerland
5University of Vermont, USA

Keywords: modeling framework; semantic linking.

EXTENDED ABSTRACT

There are three important reasons for the use of
modeling frameworks in environmental science:
dealing with complexity, re-using modules for
different models, and providing support for
commonly needed services. Literally dozens of
modeling frameworks are being used by
environmental scientists, several of which are
under active development. It was our objective to
determine just how much common ground there is
between these frameworks. A review of how the
various frameworks support decomposition of the
modeling problem, specification of the model
(including sub-models and compositions of sub-
models), event-handling, numerical integration
and run-time execution of models, revealed that it
is helpful to make a distinction between
implementation-level and modeling-level
frameworks. An implementation-level
framework’s primary purpose is to link existing
model implementations. With an implementation-
level framework, the user is responsible for fully
specifying links between modules and ensuring
their correctness with respect to intention and
logic. Differences between the various
implementation-level frameworks are relatively
unimportant. However, representing even a
moderately complex system with an
implementation-level framework requires the user
to spend much effort to make sure that the
necessary modules are properly connected.
Modeling-level frameworks attempt to unburden
the user by allowing domain-specific terms to be
used to specify which models or modules should
be used and how they should be linked. There is a
direct, if usually implicit, link between both kinds
of frameworks: before a model specified with a
modeling-level framework can be executed, it
must be translated into a general-purpose
programming language, which will be done using
an implementation-level framework. It is argued
that users and builders of frameworks in
environmental science will benefit from making
the distinction between implementation-level and
modeling-level frameworks and that they should
be explicit about the implementation-level
frameworks targeted by the code generators of
modeling-level frameworks. If at all possible, a
widely accepted target implementation-level

framework should be chosen. Then, at some
future time, we may see re-use and extension of
an existing framework instead of the
creation of YAMF (Yet Another Modeling
Framework).

745

1. INTRODUCTION

There are three important reasons for the use of
modeling frameworks in environmental science.
First, the systems of interest to environmental
scientists, and models of these systems, are
complex. An effective way of dealing with
complexity is to decompose the system into
smaller systems, and possibly repeating this
process, until sub-systems of manageable
complexity have been identified. Supporting the
composition of a model of the system of interest
by combining models of sub-systems obtained in
this way, is the most important task of a modeling
framework. Second, it is often the case that two
different systems of interest have one or more sub-
systems in common. A modeling framework
enables the creation of models of such systems by
drawing on a common pool of sub-models. Third,
even modules that represent completely different
biological or physical systems, have common
characteristics and requirements, both at the level
of modeling (distribution in space and time) and at
the level of implementation (I/O, numerical
integration). A framework can provide support for
such common requirements.

To date, literally dozens of frameworks have been
proposed for use by environmental scientists, with
several under active development at the time of
writing. Each new framework claims some unique
merits and while it is probably true that a new
framework is needed from time to time, it will be
sad indeed if the field of environmental science is
so fragmented that dozens of frameworks are
needed to satisfy all its modeling requirements. In
the light of this, we consider in this paper several
of these frameworks and try to determine just how
much common ground there is between them. In
our (somewhat arbitrary) selection of frameworks
to be considered, we are slightly biased toward
agronomic and hydrological simulation, but the
analysis should be applicable outside these areas.
The following frameworks are considered: IMA
(Villa, 2005), OpenMI (Moore et al., 2004),
APSIM (Keating et al., 2003), MODCOM (Hillyer
et al., 2003), TIME (Rahman et al., 2003), SELES
(Fall and Fall, 2001), MMS (Leavesley et al.,
1996), SME (Maxwell and Costanza, 1995) and
FSE (Van Kraalingen, 1995). In the following
sections we investigate how the various
frameworks support decomposition of the
modeling problem, specification of the model
(including sub-models and compositions of sub-
models), event-handling, numerical integration and
run-time execution of models.

2. DECOMPOSITION OF THE MODELING
PROBLEM

Modeling frameworks support construction of
model implementations by connecting two or more

sub-model implementations. The sub-model
implementations or modules are the result of a
decomposition of the modeling problem. How to
perform the composition is left to the user of the
framework. Various authors have adopted an
approach to model decomposition strongly
influenced by software engineering principles.
This results in the definition of sub-models such
that there is much interaction within each sub-
model, and little interaction between them. The
most commonly selected strategy by far is to
decompose by structure. A simulation can then be
redefined by replacing one module with another
module that represents the same part of the
modeled system. This is true whether the modules
represent crops (APSIM), catchments (TIME), or
population dynamics of a species (SME). But other
strategies are possible. For example, Van Evert et
al. (2003) use two instances of the sub-model
“DairyCows” to represent one group of animals
during two (housing and grazing) periods of the
year.

In summary, decomposition by structure is by far
the most commonly used decomposition strategy.

3. MODEL SPECIFICATION: MODULES

Most frameworks take as the unit of
decomposition the model function, adorned with
such housekeeping info as number and names of
parameters. An exception is OpenMI, where
modules additionally contain machinery to buffer
states and may perform spatial (dis)aggregation as
well as averaging and interpolation over time.

Some frameworks work only with the interface of
modules. In other words, they treat modules as
black boxes, in keeping with the object-oriented
paradigm which stresses encapsulation and focuses
on behaviour. An advantage of this method is that
modules can be developed and tested separately
from the application software in which they will be
deployed and can then be delivered in binary form:
C++ classes (Tarsier, (Watson and Rahman, 2004)),
Microsoft COM classes (MODCOM), .NET
classes (OpenMI, TIME, and the .NET version of
MODCOM), or Java classes (OpenMI).

From the above it is apparent that classes are the
customary mapping of models to model
implementations. This is appropriate, because even
though a model itself is just a function, a model
implementation needs to communicate, among
other things, number and names of parameters to
other program units. The resulting construct is best
expressed as a class. Frameworks such as APSIM,
MMS and FSE, where modules are typically
written in Fortran, define modules as a set of
functions, grouped in such a way that the effect is
that of a class.

Some frameworks allow specification of modules
in a run-time environment using a scripting

746

language (VBScript in MODCOM, MickL in
ICMS (Rahman et al., 2004)). Such modules are
still black-box modules because this script is not
processed by the framework or by other modules.

In contrast to black-box modules, white-box
modules provide processable information about the
model to the framework. SME uses the Modular
Modeling Language (Maxwell and Costanza,
1997), SELES and IMA also define declarative
modeling languages. Other declarative languages
used in modeling include Stella (ISEE Systems,
Lebanon, NH, USA), Simile (Simulistics Ltd.,
Edinburgh, United Kingdom), and Modelica
(http://www.modelica.org). The declarative
specification of a model can be used to document
the model, allow drill-down through composite
models, and present models in graphical form. In
addition, from a model defined in a declarative
language, code can be generated that will run in
specific frameworks (Argent and Rizzoli, 2004;
Ford et al., 2005; Muetzelfeldt, 2002).

In summary, many frameworks use black-box
modules. These are commonly expressed as
classes, either at the source code level or at the
binary level. Several frameworks use declaratively
specified models. While this has some benefits at
the level of module specification, we shall see in
the next section that declaratively specified models
are most useful in model composition.

4. MODEL SPECIFICATION:
COMPOSITIONS

In a model composition, two or more modules
(black-box or white-box) are connected. A black-
box module has pre-defined inputs and outputs.
This is typically true for white-box modules, too,
although the fact that the full model specification
is available in processable format means that the
model could be inverted during the code
generation phase that follows. IMA in particular
makes a distinction between a model (with, for
example, state variables and parameters) and a
workflow element (with inputs and outputs).

A composition of black-box modules is bound to
the execution platform that is targeted by its
modules. On the other hand, a composition of
white-box modules (sometimes called a “meta-
model”) can be deployed on different platforms by
using appropriate code generators. For example,
different SME translators target a supercomputer
and an MPI-mediated cluster of machines. The
meta-model frameworks considered in this paper
(IMA, SME, and SELES) can also make use of
black-box modules; this is indicative of the need to
be able to incorporate “legacy”-modules or
modules that are not easily expressed in the

declarative modeling language of the meta-
model’s framework.

There are good reasons for using white-box
modules and for using black-box modules. Not all
applications require the more expressive white-box
modules; consequently, no convergence to
frameworks that support white-box modules is
taking place.

5. SPECIFYING LINKS

When two model implementations are linked, the
semantics of output and input (physical quantity
and units, time, space, etc.) as well as the
representation (integer, double, etc.) must match.
Frameworks such as MODCOM and TIME place
no restrictions on links on the basis of semantics or
representation, although both attempt to guide the
user by allowing textual mark-up of inputs and
outputs. TIME additionally supports “Raster” and
“TimeSeries” datatypes and provides a library of
operations, but the framework does not allow for
the expression of spatial relationships between
modules. OpenMI has a mechanism that requires
the discretization in time and space of the
requested information to be specified when a link
is created. If the information is not available at the
requested discretization, the module can either
employ framework-supplied methods to provide a
mapping, or generate the mapping using its own
methods. SME’s MML and SELES’s modeling
language both allow grid-spatial semantics to be
expressed. IMA is by far the most ambitious of the
frameworks: it can load and use arbitrary
ontologies (Guarino and Giaretta, 1995) to fully
specify the semantics of all models. Machine
reasoning is then used during the code generation
phase to produce algorithms to solve the models,
inserting converters (accumulators, unit translators,
aggregators) where necessary to address scale
mismatches such as different time and space
granularities.

There is considerable interest in the semantics of
model compositions. That is convergence. But
there is a marked divergence in the approaches
used to express the semantics of model
compositions, with on the one hand frameworks
such as TIME, OpenMI, SME and SELES that
offer classes and interfaces to support to some
extent the semantic specification of links, and on
the other hand the ontology-based approach
supported by IMA.

6. EXECUTING LINKS

During the execution of a simulation run,
information is exchanged between modules. A
variety of techniques is used by the various

747

frameworks. FSE uses variables that are accessible
to all modules; HUME (Kage and Stützel, 1999)
uses pointers to object members. Both methods are
fast, but the first requires source-code level linking
and the second introduces tight dependencies
between modules. APSIM and MMS use a black-
board mechanism where modules publish and
retrieve information through a functional interface.
This allows linking of executable modules, but
incurs significant overhead. TIME and MODCOM
achieve linking through pointers to objects. This
incurs little overhead and is very flexible.

Declaratively represented models can be linked by
generating source code in which the linkages are
already established. The translated (“flat”) form of
a Modelica or Simile model is an example of this;
how links are represented in the generated
executable code depends on the code generator
used. Links in IMA-generated executables are
represented as pointers to objects.

Implementation-level links between modules are
most commonly represented by pointers to objects
in an object-oriented framework.

7. NUMERICAL INTEGRATION

The various modules of a composite model
implementation represent different parts of the
same system. If these modules contain differential
equations and represent closely coupled parts of
the system, it may be desirable to integrate them
together, as in the case of populations of a predator
and a prey occupying the same territory. In other
cases, the problem at hand may call for modules to
be integrated with different step sizes and/or
algorithms.

FSE offers several integrators but can use only one
in a given simulation; the chosen integrator is used
for all modules. MODCOM offers several
integrator implementations; any number can be
used in a given simulation; and any number of
modules can be specified to be integrated together.
OpenMI and TIME don’t offer explicit support to
integrate modules together, but the effect can be
achieved by compositing two or more modules.

In summary, whether support for integration is
offered, and the different ways and methods of
integration supported, are features of a particular
framework.

8. EVENTS

Three kinds of events can be recognized in
simulation: time-, discrete- and state-events.
Pritsker (1986) describes a simple yet realistic
model with all three types of events; see Zeigler et
al. (2000) for a full theory. Many frameworks

allow for time events (“plowing will take place on
15 October”) as well as discrete events. FSE
(version 2.1) and MODCOM handle state events.
Handling state events is not completely
straightforward in OpenMI, but at one of the
training workshops the first author was shown that
it can be done. IMA can handle events by using an
event ontology and appropriate software; however,
this has not been implemented to date.

Events are required to adequately model many
systems, yet not all frameworks considered are
able to handle the full range of events. The original
version of FSE was not able to handle state events,
but the current one is.

9. RUN SIMULATION

Running a simulation comprising two or more
modules involves coordinating the repeated
execution of the modules (applying the transfer
function of the model implemented by the
module). The order of execution of modules is
determined by dependencies between modules and
discretization of time and space. The use of an
event list, where an event specifies which module
needs to be run at which time, is common to many
frameworks (SME, MODCOM, TIME). The event
list may be simply a loop specifying time steps of
equal size, with all modules being called at each
time step (FSE), or it may be a dynamic list,
allowing events spaced at arbitrary intervals, as
well as insertion and deletion of events (TIME,
MODCOM). In IMA an event list is created by the
runtime to account for the discretization of the
states implied by the observation contexts, such as
time and space, defined by the modeller. Unique
among modelling frameworks, IMA provides a
generalization of the observation context that
extends beyond time and space; as an example, an
input parameter can be defined to have two
alternative values, according to two different
studies that have measured it. This multiplicity
propagates automatically through the model
structure and results in the calculation of two
different sets of results, one per each study. The
semantically explicit IMA allows independent
developers to extend the observation context
semantics and provide their own views of them,
including alternative conceptualizations of time
and space.

OpenMI stands apart from the other frameworks in
that it does not employ an event list. Instead it uses
a pull-mechanism where each module performs
calculations in response to requests. In the process
of fulfilling a request, a module may “pull” values
from one or more other modules, leading to a
cascade of pulling actions. When a module can
calculate the requested value without pulling

748

values from other modules, it does so and then
calculated results start flowing up the chain of
requests.

An event list is by far the most common method of
coordinating the execution of modules in the
frameworks considered. OpenMI is the only
framework that uses a different mechanism.

10. DISCUSSION AND CONCLUSIONS

With the feature-by-feature comparison of the
preceding sections in hand, it becomes clear that
the frameworks considered in this paper must be
classified into two main groups. We will call these
groups “implementation-level” frameworks and
“modeling-level” frameworks. An implementation-
level framework’s primary purpose is to link
existing model implementations. Thus,
implementation-level frameworks (TIME,
MODCOM, FSE, MMS) often treat their modules
as black boxes. The user is responsible for
specifying links between modules and ensuring
their correctness with respect to intention and
logic. Differences exist between the various
implementation-level frameworks with regard to
platform, language, efficiency, and the support of
functionality such as state events. These
differences are relatively unimportant and are
related to implementation choices and
completeness of the implementation; there are no
fundamental differences between the
implementation-level frameworks considered in
this paper.

While the implementation-level frameworks
between them can represent the systems currently
of interest to environmental scientist (and have
been used to do so), representing even a
moderately complex system with such a
framework requires the user to spend a lot of effort
to make sure that the necessary modules are
properly connected. The OpenMI framework
significantly unburdens the user by offering a
facility whereby a module can specify the
discretization in time and space of the values it
requests from another module. Somewhat more
generally, yet still in the realm of implementation-
level frameworks, John Bolte (2001, personal
communication to Van Evert) has suggested using
software tools to translate, for example, a spatially
explicit model to an arrangement of objects in the
MODCOM framework.

Modeling-level frameworks formalize the attempt
to unburden the user by allowing domain-specific
terms to be used to specify which models or
modules should be used and how they should be
linked. SME and SELES use declarative
specifications of models in the domain of spatial
(landscape) modeling. IMA extends this concept in

that it is extensible to any domain, provided that
such a domain is formalized through an ontology.

Thus, it seems that there is a clear separation
between implementation-level and modeling-level
frameworks, with users forced to choose between
one or the other. In reality, however, there is a
direct link between both kinds of frameworks.
Before a model specified with a modeling-level
framework can be executed, it must be translated
into a general-purpose programming language.
Because this is done through software, the output
of such a process represents an implementation-
level framework, whether intentionally or not. We
are not aware of references that shed light on the
frameworks targeted by the code generators of
SME, SELES or IMA, which leads us to believe
that the implementation-level frameworks used by
these modeling-level frameworks should perhaps
be called “accidental” frameworks.

The link between implementation-level and
modeling-level frameworks can be made explicit
by specifying the target implementation-level
framework. Such an implementation-level
framework must be capable of representing the
entire range of discrete event and continuous
simulation. For example, frameworks based on the
DEVS formalism (Zeigler et al., 2000) are widely
recognized to meet this goal. Interestingly, little
reference is made to DEVS in environmental
science literature, although Filippi and
Bisgambiglia (2004) applied a DEVS-based
implementation-level framework to problems in
environmental science. Levytskyy et al. (2003)
have presented work on translating Modelica
models to the DEVS formalism using the Atom3
tool.

In conclusion, we suggest that users and builders
of frameworks in environmental science will
benefit from making the distinction between
implementation-level and modeling-level
frameworks, and by being explicit about the
implementation-level frameworks targeted by the
code generators of modeling-level frameworks. If
at all possible, a widely accepted target
implementation-level framework should be
chosen. DEVS may be helpful in this respect.
Then, at some future time, we may see re-use and
extension of an existing framework instead of the
creation of YAMF (Yet Another Modeling
Framework).

11. ACKNOWLEDGEMENTS

This publication has been partially funded under
the SEAMLESS Integrated Project (European
Commission, DG Research, contract no. 010036-
2). The comments of an anonymous reviewer were
helpful in improving this paper.

749

12. REFERENCES

Argent, R.M., and A.E. Rizzoli. 2004.
Development of Multi-Framework Model
Components. International Environmental
Modelling and Software Society
Conference 2004, University of
Osnabrück, Germany.

Fall, A., and J. Fall. 2001. A domain-specific
language for models of landscape
dynamics. Ecological Modelling 141:1-
18.

Filippi, J.B., and P. Bisgambiglia. 2004. JDEVS:
an implementation of a DEVS based
formal framework for environmental
modelling. Environmental Modelling &
Software 19:261-274.

Ford, R.W., G.D. Riley, M.K. Bane, C.W.
Armstrong, and T.L. Freeman. 2005.
GCF: A General Coupling Framework.
Concurrency and Computation: Practice
and Experience.

Guarino, N., and P. Giaretta. 1995. p. 25-32
Towards Very Large Knowledge Bases.
IOS Press.

Hillyer, C., J. Bolte, F. van Evert, and A. Lamaker.
2003. The ModCom modular simulation
system. European Journal of Agronomy
18:333-343.

Kage, H., and H. Stützel. 1999. HUME: An objekt
oriented component library for generic
modular modelling of dynamic systems.
Modelling cropping systems. Symposium
of the European Society of Agronomy.,
Lleida, Spain.

Keating, B.A., P.S. Carberry, G.L. Hammer, M.E.
Probert, M.J. Robertson, D. Holzworth,
N.I. Huth, J.N.G. Hargreaves, H. Meinke,
Z. Hochman, G. McLean, K. Verburg, V.
Snow, J.P. Dimes, M. Silburn, E. Wang,
S. Brown, K.L. Bristow, S. Asseng, S.
Chapman, R.L. McCown, D.M.
Freebairn, and C.J. Smith. 2003. An
overview of APSIM, a model designed
for farming systems simulation. European
Journal Of Agronomy 18:267-288.

Leavesley, G.H., S.L. Markstrom, M.S. Brewer,
and R.J. Viger. 1996. The modular
modeling system (MMS) - The physical
process modeling component of a
database-centered decision support
system for water and power management.
Water Air And Soil Pollution 90:303-311.

Levytskyy, A., E.J.H. Kerckhoffs, E. Posse, and H.
Vangheluwe. 2003. Creating DEVS
components with the meta-modelling tool
AToM3. 15th European Simulation
Symposium (ESS), October 2003. Delft,
The Netherlands. Society for Modeling

and Simulation International (SCS), Delft,
The Netherlands.

Maxwell, T., and R. Costanza. 1995. Distributed
Modular Spatial Ecosystem Modelling.
International Journal of Computer
Simulation 5:247–262.

Maxwell, T., and R. Costanza. 1997. A language
for modular spatio-temporal simulation.
Ecological Modelling 103:105-113.

Moore, R., I. Tindall, and D. Fortune. 2004.
Update on the Harmonit Project – The
OpenMI Standard for Model Linking 6th
International Hydroinformatics
Conference, Singapore.

Muetzelfeldt, R.M. 2002. Using Simile to make
MODCOM components [Online]
http://www.decmod.org/documents/simile
_modcom/ (verified 11 August 2005).

Pritsker, A.A.B. 1986. Introduction to simulation
and SLAM II. Halsted Press, New York.

Rahman, J.M., S.M. Cuddy, and F.G.R. Watson.
2004. Tarsier and ICMS: two approaches
to framework development. Mathematics
and Computers in Simulation 64:339-350.

Rahman, J.M., S.P. Seaton, J.-M. Perraud, H.
Hotham, D.I. Verrelli, and J.R. Coleman.
2003. It's TIME for a New Environmental
Modelling Framework MODSIM 2004
International Congress on Modelling and
Simulation, Townsville, Australia.

Van Evert, F., H. Ten Berge, H. Van der Meer, B.
Rutgers, T. Schut, and J. Ketelaars. 2003.
FARMMIN: Modeling Crop-Livestock
Nutrient Flows. ASA/CSSA/SSSA
Annual Meetings, Denver, Colorado,
USA.

Van Kraalingen, D.W.G. 1995. The FSE-system
for crop simulation, version 2.1 Report no
1. C.T. de Wit Graduate School for
Production Ecology, Wageningen
University.

Villa, F. 2005. A semantic framework and
software design to enable the transparent
integration, reorganization and discovery
of natural systems knowledge. Journal Of
Intelligent Information Systems
(Available online at
http://ecoinformatics.uvm.edu/papers/vill
a_jiis.pdf). In press.

Watson, F.G.R., and J.M. Rahman. 2004. Tarsier:
a practical software framework for model
development, testing and deployment.
Environmental Modelling & Software
19:245-260.

Zeigler, B.P., H. Praehofer, and T.G. Kim. 2000.
Theory of modeling and simulation. 2nd
ed. Academic Press, San Diego.

750

