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EXTENDED ABSTRACT 

Daily rainfall is a key input into models that 
simulate water resources, agricultural and 
ecological systems. Stochastic rainfall data 
provide alternative realisations that are equally 
likely to have occurred, and are often used to 
drive hydrological and other models to quantify 
uncertainty in environmental systems associated 
with climatic variability. 

This paper describes the comparison of two 
stochastic spatial daily rainfall generation 
approaches: a multi-site two-part model (M2P) 
and a transition probability matrix-random 
cascade model (CAS), using 101 years of rainfall 
data across the eastern Gippsland region in south-
east Victoria, Australia. 

The M2P model consists of a two-state, first-order 
Markov chain for rainfall occurrences and a two-
parameter Gamma distribution for rainfall 
amounts. It generates rainfall simultaneously at 
multiple locations by driving a collection of 
individual models with serially independent but 
spatially correlated random numbers. In the CAS 
approach, daily regional rainfall is first generated 
using a first-order transition probability matrix 
with a two-parameter Gamma distribution for 
rainfall amounts in the largest state. The spatial 
rain field is then simulated using a non-
homogeneous random cascade model that utilises 
scaling invariance features in the historical rain 
field. 

The M2P and CAS models are used to generate 
20 replicates of 101-year daily concurrent 
catchment average rainfall time series for five 
catchments (Tambo, Nicholson, Mitchell Low, 
Mitchell Up and Avon) across the eastern 
Gippsland region. These generated rainfall time 
series are then used as inputs into a calibrated 
daily conceptual rainfall-runoff model for each of 
the four major catchments (Tambo, Nicholson, 
Mitchell and Avon) to generate 20 replicates of 

101-year daily concurrent catchment flow time 
series. 

The stochastic flow simulations using rainfall 
inputs from M2P and CAS are assessed by 
comparing key statistics (spatial and temporal) in 
the stochastic replicates with those of the historical 
data. The statistics assessed are: correlations of 1-
day, 3-day and annual flows between catchments; 
mean annual flow, standard deviation of annual 
flow and 5-year low flow total in the four 
catchments; and 1-day and 3-day annual 
exceedance probabilities (AEPs) in the four 
catchments. Runoff (or flow), rather than rainfall, 
are assessed because it is the variable directly 
affecting catchment yield and flood studies. In any 
case, the general results for stochastic rainfall and 
flow simulations from the M2P and CAS models 
are similar, but with the errors accentuated in the 
flow. 

The results indicate that both models slightly 
overestimate mean annual flow, simulates the inter-
annual variability well, and the 5-year low flow 
total reasonably. M2P underestimates the spatial 1-
day and 3-day correlations slightly while CAS 
overestimates the correlations, which will lead to 
slight underestimations and overestimations 
respectively in regional flood estimates. M2P also 
underestimates the spatial annual correlations, 
which will lead to underestimation of droughts in 
system simulations. The CAS model simulates 1-
day and 3-day flow AEP characteristics much better 
than the M2P model, and is therefore a better model 
for regional flood studies. 

Many of the limitations in the M2P model can be 
overcome with model improvements, and the paper 
provides some suggestions. The main limitation of 
the CAS model is the absence of space-time 
correlation of rain fields on consecutive days, and 
the limitation in simulating the clustering (i.e. 
spatial correlation) of daily rain field during 
extreme storm events, both of which are difficult to 
overcome and require further research. 
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1. INTRODUCTION 

Daily rainfall is a key input into hydrological 
models that estimate flow, sediment, pollutant 
loads and other hydrological fluxes and state 
variables. Rainfall is highly variable over space 
(e.g. point, catchment, regional) and time (e.g. 
daily, seasonal, inter-annual) scales. The use of 
historical rainfall time series as input into 
hydrologic models provides results that are based 
on only one realisation of the past climate. 
Stochastic rainfall data provide alternative 
realisations that are equally likely to have 
occurred, and are often used as inputs into 
hydrologic models to quantify uncertainty in 
environmental systems associated with climatic 
variability, allowing informed risk-based design, 
system operation and environmental management 
decisions to be made (McMahon et al. 1996). 

Stochastic rainfall data are random numbers that 
are generated so that they have the same statistical 
characteristics (e.g. mean, variance, long-term 
persistency, auto-correlations) as the historical 
data from which they are based. Different 
characteristics are important for different 
applications (e.g. extreme rainfall for floods, dry 
spell and long-term persistency for droughts). 
Each stochastic replicate (sequence) is different 
and has different characteristics compared to the 
historical data, but the average (and distribution) 
of each characteristic from all the stochastic 
replicates should be the same as the historical 
data. Generation of daily rainfall data at a single 
site is a well-researched area. However, for 
accessing environmental systems at the regional 
scale, the spatial dependence of rainfall must be 
accounted for, in addition to the preservation of 
statistical properties of rainfall series at each site. 

There are two major groups of stochastic spatial 
rainfall models: multi-site rainfall models and 
space-time rainfall models. Multi-site rainfall 
models are extensions to single site stochastic 
rainfall models that simulate multi-site rainfall 
concurrently using serially independent but 
spatially correlated uniform random numbers (e.g. 
Wilks 1998). More complex conditional multi-site 
models are hidden state multi-site Markov models 
where different probability of rainfall occurrence 
at each site is conditional on a number of hidden 
states (e.g. regional weather classes, atmospheric 
circulation patterns). The rainfall intensities at all 
the sites are then simulated concurrently based on 
the rainfall correlation structure for each season 
and for each weather class, or resampled from the 
historical rainfall record (e.g. Zucchini and 
Guttorp 1991; Pegram and Seed 1998; Charles et 
al. 1999). In general, multi-site rainfall models are 
not parsimonious, difficult to parameterise, and 

suffer from the deficiency in preserving the cross-
correlation as the number of stations increases 
(Srikanthan and McMahon 2001). 

An alternative to multi-site rainfall model is the 
space-time rainfall model. There are two general 
approaches to stochastic space-time rainfall 
modelling: cluster point process; and scaling-
based multiplicative random cascade approach. 
Cluster point process models (Northrop 1998; 
Cowpertwait et al. 2002) are intermediate 
stochastic models that combine both physical and 
stochastic processes into their model structure. 
They are developed to reproduce the hierarchical 
spatial-temporal organisation in the observed rain 
fields (LeCam 1961; Waymire et al. 1984), which 
is defined such that rain clusters (fields) occur in a 
temporal Poisson process, rain bands (storms) 
occur within each field in a spatial Poisson 
process, and rain cells occur in each storm, 
clustering in space and time. There are two 
problems with cluster point process models: the 
overall number of parameters is quite large and 
difficult to estimate unambiguously arising from 
the need to characterise rainfall at each scale 
separately in the model hierarchy (Sivapalan and 
Wood 1987); and it cannot describe the statistical 
structure of rain fields (e.g. intermittency, non-
homogeneity) over a large range of scales 
(Foufoula-Georgiou and Krajewski 1995). 

Stochastic multiplicative random cascade models 
utilise certain scaling invariance features, such as 
extreme variability and strong intermittence, seen 
in the observed rain fields to model space-time 
rainfall (Lovejoy and Schertzer 1990; Gupta and 
Waymire 1990). Theoretical arguments and 
empirical evidence suggest that spatial and 
temporal organisation of rain fields tend to exhibit 
certain self-similarity in their patterns at different 
scales, and can be modelled within the 
multifractal framework (Seed 2003). This self-
similarity property enables parsimonious 
parameterisations of rain fields over a wide range 
of scales, hence circumventing the problem of 
separate parameterisation at each scale in the 
cluster point process approach (Lovejoy and 
Schertzer 1990). The conceptual basis of 
multiplicative random cascades originates from 
the turbulence theory, where a cascade of 
turbulent eddies is seen as transferring kinetic 
energy from a large energy scale progressively to 
smaller dissipation scales (Over and Gupta, 
1996). The analogy to rainfall is that total mass of 
rainfall is disaggregated in a scaling hierarchical 
manner, such that an area of higher intensity is 
embedded in larger areas of lower intensity, 
which are part of even larger structures but of 
even lower intensity (Jothityangkoon et al. 2000). 
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This paper assesses the performance of two 
stochastic spatial daily rainfall generation 
approaches: a multi-site two-part (M2P) 
approach; and a transition probability matrix-
random cascade (CAS) approach, using 101 years 
of space-time rainfall data across the eastern 
Gippsland region in Victoria. Stochastic flows are 
generated using a calibrated daily conceptual 
rainfall-runoff model for each catchment, using 
rainfall inputs from M2P and CAS. The stochastic 
flow (and also rainfall) series are then assessed by 
comparing the key statistics (spatial and temporal) 
in the stochastic replicates with those of the 
historical data. Runoff (or flow), rather than 
rainfall, are assessed because it is the variable 
directly affecting catchment yields and floods. 

2. MODEL DESCRIPTION 

2.1. Daily Multi-Site Two-Part Model (M2P) 

The daily multi-site two-part model (M2P) 
consists of a two-state, first-order Markov chain 
for rainfall occurrences and a two-parameter 
Gamma distribution for rainfall amounts. The 
model generates rainfall simultaneously at 
multiple sites by driving a collection of individual 
models with serially independent but spatially 
correlated random numbers based on the 
procedure described in Wilks (1998). Seasonality 
is considered by model calibration and simulation 
in different months. Nesting of the daily model in 
monthly and annual rainfall models resulted in 
improved preservation of monthly and annual 
characteristics (Srikanthan 2005). M2P model is 
one of the stochastic models in SCL (Stochastic 
Climate Library, http://www.toolkit.net.au/scl), a 
software product in the Catchment Modelling 
Toolkit designed to facilitate the generation of 
stochastic climate data. 

2.2. Daily TPM and Cascade Model (CAS) 

The stochastic daily space-time rainfall model 
(CAS) used here comprises a transition 
probability matrix-based temporal areal rainfall 
model, and a scaling-based spatial rainfall 
disaggregation model (Jothityangkoon et al. 2000; 
Tan 2004). Daily temporal regional rainfall is first 
generated using a first-order TPM (transition 
probability matrix) with a two-parameter Gamma 
distribution for rainfall amounts in the largest 
state. The generated daily regional rainfall time 
series is then disaggregated into daily spatial rain 
fields using a modified non-homogeneous random 
cascade model. Concurrent daily catchment 
average rainfall time series for each of the five 
catchments are then derived from the simulated 
daily rain fields. 

In the TPM modelling, the daily regional rainfall 
can occur in one of up to ten states: state 1 is dry 
(rainfall less than 0.1 mm), and states 2 to 9 are 
intermediate rainfall states with lower and upper 
bounds, and state 10 is the largest rainfall state 
with no upper bound (rainfall greater than 25 
mm). A shifted Gamma distribution is used to 
model rainfall amounts in the unbounded largest 
state, while a linear distribution is used for states 
2 to 9. The parameters in the model, which are 
estimated from the historical data, are therefore 
the transition probabilities of being in a particular 
state given the state on the previous day, and the 
two parameters of the Gamma distribution for the 
largest state. The seasonality in occurrence and 
magnitude of daily rainfall are taken into account 
by considering each month separately (three-
running month is used here). Boughton’s 
adjustment (Boughton 1999) is used to reproduce 
the rainfall inter-annual variability. 

A non-homogeneous random cascade model is 
used here to disaggregate the generated daily 
regional rainfall into rain field. It is a modified 
version (Tan 2004) of the model described by 
Jothityangkoon et al. (2000) that improved the 
realism of simulated rain fields, notably during 
extreme events. The model also has a 
deterministic component to explicitly model the 
non-homogeneities due to systematic spatial 
gradient in the historical daily rain fields, and 
strong seasonal dependence of both the spatial 
gradients and rainfall intensity. 

3. STUDY AREA, DATA AND RAINFALL-
RUNOFF MODELLING 

Figure 1 shows a meso-scale square region of 128 
km x 128 km (i.e. 32 x 32 cells of 4 km x 4 km 
each) covering the eastern region of the Gippsland 
Lakes catchment, in south-east Victoria, 
Australia. The square region is devised so as to 
adequately and tightly cover the five catchments 
comprising the Tambo, Nicholson, Mitchell Low, 
Mitchell Up and Avon to suit the random cascade 
modelling approach. 

Daily catchment average rainfall used here is 101 
years (1900-2000) of historical data derived from 
the SILO 0.05º x 0.05º daily girded rainfall 
(QDNRM 2000). Mean monthly potential 
evapotranspiration (PET) values (required for the 
rainfall-runoff modelling) are obtained from the 
PET maps produced jointly by the CRC for 
Catchment Hydrology and Australian Bureau of 
Meteorology (Wang et al. 2000). Twenty five 
years of river flow data are obtained from the 
Victorian Water Resources Data Warehouse 
(http://www.vicwaterdata.net). 
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Figure 1. Eastern Gippsland Lakes catchments 
enclosed in a meso-scale modelling square box. 

The M2P and CAS approaches are used to 
generate 20 replicates of 101-year daily 
concurrent catchment average rainfall time series 
for the five major catchments across the eastern 
Gippsland region. These generated rainfall time 
series are then used as key inputs into a calibrated 
daily conceptual rainfall-runoff model SIMHYD 
for each of the four major catchments (Tambo, 
Nicholson, Mitchell combined and Avon) to 
generate 20 replicates of 101-year daily 
concurrent catchment flow series. SIMHYD 
(http://www.toolkit.net.au/rrl) is chosen because it 
is simple (seven parameters), easy to calibrate, 
and has been used extensively to simulate flows 
across Australia catchments (Chiew and 
McMahon 1994, Chiew et al. 2002). The 
SIMHYD models for catchments flowing into the 
Gippsland Lakes are well-calibrated against the 
25 years of historical flow data (here models with 
standard calibration are used, see Tan et al. 2005). 

4. RESULTS 

The plots in Figure 2 summarise the spatial 
correlations of 1-day flow, 3-day flow and annual 
flow between the four catchments simulated by 
SIMHYD using 20 replicates of 101-year daily 
rainfall time series generated by M2P and CAS 
(box and whisker plots), and compare them 
against those of the historical data (OBS) (solid 
red squares). The blue dash line is the median of 
the statistic from the 20 generated replicates, the 
upper and lower box indicate the 25th and 75th 
percentiles, solid circles give the 5th and 95th 
percentiles, and crosses represent the 2.5th and 
97.5th percentiles, while the whiskers indicate the 
minimum and maximum values. 

The plots in Figure 3 show the mean and standard 
deviation of annual flow, and 5-year low flow 
total. The left y-axis corresponds to the box and 
whisker plots that indicate the distribution of the 

ratio between the statistic in the stochastic 
replicates and that of the historical data. The right 
y-axis corresponds to the red solid squares that 
indicate the absolute values of the historical data. 

The plots in Figure 4 show the annual exceedence 
probability (AEP) curves for 1-day (circles) and 
3-day (triangles) annual maximum flows. The 
solid blue symbols represent the historical data, 
while the generated flows are plotted in hollow 
red (M2P) and green (CAS) symbols. 

(a) 1-Day Flow Correlation (All)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

(b) 3-Day Flow Correlation (All)
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(c) Annual Flow Correlation
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Figure 2. Spatial correlation of flows. 

(a) Mean Annual Flow

95 129
220

153
0.4

0.6

0.8

1.0

1.2

1.4

1.6

R
at
io

0

100

200

300

400

500

600

700

800

900

1000

O
B
S
 (m

m
)

(b) Std Deviation of Mean Annual Flow
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(c) 5-Year Low Flow Total
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Figure 3. Annual flow statistics. 
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(b) Nicholson
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(d) Avon
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(c) Mitchell
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Figure 4. Flow AEP curves. 

Runoff (or flow), rather than rainfall, are assessed 
because it is the variable directly affecting 
catchment yields and floods. In any case, the 
general results for stochastic rainfall and flow 
simulations from the M2P and CAS models are 
similar, but with errors accentuated in the flow. 

5. DISCUSSION 

5.1. Spatial Correlation 

The correlations at short time scales (e.g. daily, 3-
day total) are important for regional flood studies, 
while correlation at longer time scale (e.g. annual) 
are important for assessing regional water 
resources and drought. The results indicate that 
M2P model underestimates the spatial correlation 
at both daily, 3-day and annual time scales 
(Figures 2a-c). This is because the model attempts 
to preserve the spatial dependence structure in the 
historical data by generating correlated pseudo-
random numbers (standard normal variates), and 
underestimation occurs due to downward 
transformation bias (from normal variates into 
uniform variates). This bias becomes larger in 

accumulations over longer periods (e.g. annual), 
and is further accentuated through the rainfall-
runoff process. This could possibly be improved 
by forcing the correlation upward in calibration to 
match the historical rainfall correlation. 

The CAS approach, on the other hand, 
overestimates the spatial correlation at all time 
scales. This is expected, as the multiplicative 
random cascade approach in CAS is known to 
produce simulated rain fields that tend to 
decorrelate too quickly and hence appear to be 
less clustered (e.g. Seed et al. 1999; Tan 2004). 
This also leads to more simulated rainy days with 
light drizzle than the historical rainy days at the 
catchment scale. For these reasons, CAS will 
always overestimate spatial correlation with 
poorer stochasticity. 

The implications of the results are that: slight 
underestimation of the spatial correlations in 1-
day and 3-day flows in M2P could lead to slight 
underestimation of regional floods, while 
underestimation in annual flows is a shortcoming 
for regional water yield and drought assessment. 

Overestimation of spatial correlations in CAS 
may not be a serious drawback because flows in 
close-by catchments tend to be highly correlated 
(particular in annual time scale). However, this 
can be a problem for regions with weakly 
correlated flows in close-by catchments. The lack 
of stochasticity in the generated spatial 
correlations in CAS may also pose a problem for 
risk-based assessment. 

Although both models have problems in 
reproducing the exact cross-correlations in the 
historical data, they are able to reproduce the 
pattern in the spatial dependence structure. Note 
that the four catchments span across an area more 
than 100 km in the east-west direction, but there 
is no discernible relationship between the strength 
of spatial dependence with distance.  

5.2. Annual Characteristics 

Annual characteristics, such as the mean and 
standard deviation of annual flow are key 
characteristics for assessing system yields and 
hydro-climatic variability, while the 5-year low 
rainfall total reflects persistent low rainfall 
conditions over several years, and is an important 
characteristic in drought studies. 

The results show that both M2P and CAS slightly 
overestimate the mean annual flow by 5-10% 
(median) for all the four catchments (Figure 3a). 
M2P also produces slightly larger spread in the 
mean annual rainfall than CAS in the 20 
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stochastic replicates. Overall, CAS reproduces 
mean annual flow (similar to rainfall, not shown 
here) slightly better because unlike M2P which 
generates all rainfall amounts using a two 
parameter Gamma function, the TPM model in 
CAS has many intermediate states and a largest 
state (fitted with two parameter Gamma function), 
hence simulates the rainfall amount better. 

The standard deviations of generated mean annual 
flow for all the catchments are also preserved 
with the medians largely confined within 10% of 
the historical values (Figure 3b). Slight 
underestimation is observed in the Mitchell and 
Avon (notably in CAS), both catchments have the 
highest standard deviation of historical mean 
annual flow amongst the four catchments. 

Both M2P and CAS also preserve the 5-year low 
flow total, with the medians in the 20 replicates 
within 10% of the historical values in all 
catchments except the Mitchell (Figure 3c). The 
uncertainty in the 5-year low flow in the 20 
replicates for all four catchments is generally high 
(40-60% higher than the historical values). This 
result is not surprising, given that the 5-year low 
total is a statistic that reflects longer-term 
variability (assuming stationary in the climate) 
which can only be reliably modelled with longer 
historical record. The corresponding uncertainty 
in the rainfall replicates is 20-30%) Similar 
pattern of uncertainty in the generated flow is also 
observed in the generated vs. historical rainfall 
(results not shown here), indicating that the errors 
are accentuated from the generated rainfall into 
flow thru the non-linear rainfall-runoff process. 

5.3. Annual Exceedence Probabilities 

For meaningful flood risk assessment, a key 
feature that must be preserved in a stochastic 
rainfall generation model is the characteristic of 
extreme high rainfall and flow. 1-day and 3-day 
AEP curves of the annual maxima in the 20 
generated flow replicates of M2P and CAS are 
plotted against those of the historical data at each 
of the four catchments (Figure 4a to 4d). The 
plots show that CAS reproduces 1-day and 3-day 
flood characteristic remarkably well for all 
catchments except the Avon, while M2P slightly 
underestimates the 1-day flow AEP, but grossly 
underestimates the 3-day flow AEP (notably for 
events rarer than 5% AEP (i.e. 20-year average 
recurrence interval, ARI). In the Avon, both M2P 
and CAS underestimate the historical 1-day and 
3-day AEP. It is interesting to note that slightly 
different patterns are observed in the comparison 
of the rainfall AEP curves (results not shown 
here). For 1-day rainfall AEP, both M2P and CAS 
produce results that match the historical curves, 

with M2P performing slightly better in some 
catchments. However, for the 3-day rainfall AEP, 
the performance of CAS is better except in the 
Avon, while M2P performs poorly in all 
catchments. 

M2P is unable to simulate 3-day rainfall because 
the approach does not account for serial 
correlation in rainfall amount generation (only in 
rainfall occurrence), leading to deterioration in 
not just the 3-day flow, but also the daily flow, 
since the memory length of floods in the 
hydrologic system may last for a few days (due to 
antecedent soil moisture condition). This 
shortcoming in M2P may be improved by 
incorporating a multi-site Markov models for 
rainfall amount generation. In CAS, serial 
correlation is captured during the generation of 
daily rainfall at the regional scale using a first-
order TPM. The correlation is propagated into 
daily rainfall at the catchment scale as the random 
cascade model merely disaggregates the generated 
daily regional rainfall into daily spatial rain field. 
However, the lack of daily space-time correlations 
(no memory between spatial rain fields over 
consecutive days) in the random cascade model is 
a challenge for further research into space-time 
coupling in daily rain field simulation. In CAS, 
the inability of the random cascade model in 
simulating the clustering (i.e. spatial correlation) 
of daily rain field during storms (within the same 
day) could be the reason why the extreme rainfall 
(and flow) in the Avon (which has seen a number 
of relatively more concentrated storms in the 
historical record) is underestimated. 

6. CONCLUSIONS 

This paper assesses the performance of two 
stochastic spatial daily rainfall generation 
approaches: a multi-site two-part model (M2P) 
and a transition probability matrix-random 
cascade model (CAS), using 101 years of rainfall 
data across the eastern Gippsland region in south-
east Victoria, Australia.  

The M2P and CAS models are used to generate 
20 replicates of 101-year daily concurrent 
catchment average rainfall time series for five 
catchments (Tambo, Nicholson, Mitchell Low, 
Mitchell Up and Avon) across the eastern 
Gippsland region. These generated rainfall time 
series are then used as inputs into a calibrated 
daily conceptual rainfall-runoff model for each of 
the four major catchments (Tambo, Nicholson, 
Mitchell and Avon) to generate 20 replicates of 
101-year daily concurrent catchment flow series. 

The stochastic flow simulations using rainfall 
inputs from M2P and CAS are assessed by 
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comparing key statistics (spatial and temporal) in 
the stochastic replicates with those of the 
historical data. The statistics assessed are: 
correlations of 1-day, 3-day and annual flows 
between catchments; mean annual flow, standard 
deviation of annual flow and 5-year low flow total 
in the four catchments; and 1-day and 3-day 
annual exceedance probabilities (AEPs) in the 
four catchments. Runoff (or flow), rather than 
rainfall, are assessed because it is the variable 
directly affecting catchment yield and flood 
studies. In any case, the general results for 
stochastic rainfall and flow simulations from the 
M2P and CAS models are similar, but with the 
errors accentuated in the flow. 

The results indicate that both models slightly 
overestimate mean annual flow, simulates the 
inter-annual variability well, and the 5-year low 
flow total reasonably. M2P underestimates the 
spatial 1-day and 3-day correlations slightly while 
CAS overestimates the correlations, which will 
lead to slight underestimations and 
overestimations respectively in regional flood 
estimates. M2P also underestimates the spatial 
annual correlations, which will lead to 
underestimation of droughts in system 
simulations. The CAS model simulates 1-day and 
3-day flow AEP characteristics much better than 
the M2P model, and is therefore a better model 
for regional flood studies. 

Many of the limitations in the M2P model can be 
overcome with model improvements, and the 
paper provides some suggestions. The main 
limitations of the CAS model is the absence of 
space-time correlation of rain fields on 
consecutive days, and in simulating the clustering 
(i.e. spatial correlation) of daily rain field during 
extreme storm events, both of which are difficult 
to overcome and require further research. 
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