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EXTENDED ABSTRACT 

Eleven years of water quality time-series of the 
two Dutch lakes Veluwemeer and Wolderwijd 
were subject to predictive modelling by recurrent 
supervised artificial neural networks  (RNN) and 
hybrid evolutionary algorithms (HEA). The 
modeling aimed at forecasting changes of the 
phytoplankton community in response to the 
control of external nutrient loadings and fish 
abundances as consecutively implemented to both 
lakes since 1979. The water quality time-series of 
both lakes were structured for the RNN and HEA 
modeling in order to reflect following three 
different management periods by both training 
and validation datasets: no management (1976-
1978), lake flushing and waste water treatment 
(1979 onwards) and lake flushing, waste water 
treatment and food web manipulation (1991-
1993). This approach facilitated a comparative 
analysis for the two lakes and the three 
management periods. Firstly recurrent RNN 
achieved reasonably accurate results for 5-days-
ahead forecasting of abundances of blue-green 
algae Oscillatoria and green algae Scenedesmus 
in both lakes. Secondly hybrid evolutionary 
algorithms (HEA) achieved similar good 
forecasting results but also provided model 
representations for both algae species in the form 
of rule sets. HEA has been designed to evolve 
both the structure of rule sets as well as the 
parameter values imbedded in the rule sets by 
means of a genetic algorithms.  With regards to 
the different approaches for eutrophication 
management the modeling results have shown 
that only the combination of external nutrient 
control with food web manipulation has changed 
the lakes from hypereutrophic to mesotrophic 
conditions reflected by the change from the 
dominance of blue-green algae Oscillatoria to the 

dominance of green algae Scenedesmus. Even 
though both modeling techniques have forecasted 
the succession of two functional algal groups 
represented by   Oscillatoria and Scenedesmus only 
HEA provides rule sets for the explanation of these 
ecological changes. The results revealed that  
phosphorus limitation by means of seasonal lake 
flushing and wastewater treatment in combination 
with  increased zooplankton grazing by food-web 
manipulation diminished  the abundance of the 
harmful Oscillatoria but enhanced the abundance of 
harmless Scenedesmus. These findings consent well 
with literature findings e.g. by Benndorf (1995) that 
the eutrophic lakes requires primarily efficient 
nutrient control that secondarily can be finetuned 
by food-web manipulation.  
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1. INTRODUCTION 

In the framework of the present study recurrent 
supervised artificial neural networks  (RNN) and 
hybrid evolutionary algorithms (HEA) were 
applied to forecasting population dynamics  of the 
blue-green algae Oscillatoria and the green algae 
Scenedesmus in the Dutch lakes Veluwemeer and 
Wolderwijd.  RNN have successfully been applied 
for modelling eutrophication processes in 
freshwater lakes and rivers based on long-term 
time series (Jeong et al. 2001; Walter et al. 2001; 
Jeong et al. 2005; Recknagel, Kim and Welk 2005; 
Recknagel et al. 2005). HEA is a newly emerging 
technique that not only facilitates time series 
forecasting but also discovery of explanatory rules 
(Cao et al. 2005).  Both methods are applied to 
eleven years of water quality time-series of the two 
Dutch lakes in order to forecast changes of the 
algal populations in response to the control of 
external nutrient loadings and fish abundances as 
consecutively implemented to both lakes since 
1979. The water quality time-series of both lakes 
are structured for the RNN and HEA modeling so 
that it is possible to reflect the following three 
different management periods by both training and 
validation datasets: no management (1976-1978), 
lake flushing and waste water treatment (1979 
onwards) and lake flushing, waste water treatment 
and food web manipulation (1991-1993). This 
approach facilitates a comparative analysis for the 
two lakes and the three management periods. It 
also allows a comparison between the two 
computational techniques with regards to 
forecasting accuracy and explanation similar to 
Recknagel et al (2002). The results demonstrate 
firstly that RNN achieve reasonably accurate 5-
days-ahead forecasts of abundances of blue-green 
algae Oscillatoria and green algae Scenedesmus in 
both lakes. Secondly it is shown that hybrid 
evolutionary algorithms (HEA) achieve similar 
good forecasting results but also provided model 
representations for both algae species in the form 
of rule sets which can be causally interpreted. 
Thirdly it is revealed that phosphorus limitation by 
means of seasonal lake flushing and wastewater 
treatment in combination with increased 
zooplankton grazing by food-web manipulation 
successfully diminished the abundance of the 
harmful Oscillatoria but enhanced the abundance 
of harmless Scenedesmus in both lakes.  

  

 

2. STUDY SITES, MATERIALS AND 
METHODS 

 

2.1.  Lake Veluwemeer  

Lake Veluwemeer was created in 1957 and is 
adjacent to Lake Wolderwijd (Fig. 1).  Both lakes 
have similar geographical and hydrological 
conditions (Table 2.1). Originally Veluwemeer 
was a clear water lake with abundant macrophytes. 
From 1965 onwards the lake became increasingly 
turbid as a result of rising phosphorus loadings. As 
a result frequent blooms by Oscillatoria agardhii 
occurred in the mid 1970s. Phosphorus control by 
a sewage treatment plant and lake flushing in 
winter was implemented in 1979. Polder water 
with low concentrations of algae and phosphorus 
but high concentrations of calcium and nitrate was 
used for flushing. From 1985 onwards, summer 
flushing was also implemented. Commercial 
fishing was introduced to Lake Veluwemeer in the 
early 1990s, peaking in 1994 (Portielje & Rijsdijk 
2003). 

2.2.  Lake Wolderwijd 

Lake Wolderwijd was created in 1968 and ongoing 
eutrophication processes caused hypertrophic 
conditions in the 1970’s and early 1980s with high 
abundances of blue-green algae. Between 1980 
and 1983 large amounts of water from upstream 
lake Veluwemeer have occasionally been flushed 
through Lake Wolderwijd (van der Molen 1999). 
From November 1990 to July 1991 a food web 
manipulation was carried out whereby 75% of 
bream was removed and young pike introduced. 
During that period the abundance of blue-green 
algae decreased by approximately 50%. From 
1996 and 1997 the water quality declined again 
(Van der Molen, 1999). 
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 Figure 1 Locations of Lakes Veluwemeer and 
Wolderwijd in central Netherlands 

Table 2.1 Atttributes of Lake Veluwemeer and 
Wolderwijd 

Attributes Lake Veluwemeer Lake Wolderwijd 

Latitude 52 o 23'  52 o 20' 
Longitude (-0.2 m below sea level) 5 o 40'  5o  35'  
Area ( Km2) 32.4 26.7 
Maximum Depth (m) 7.8 5.7 
Mean Depth (m) 1.58 1.81 
Precipitation (mm) 800 800 
Geological Components Sandy deposits Sandy deposits 
  

Table 2.2 Analyses of limnological variables of 
Lake Veluwemeer and Wolderwijd 

 
 Lake Veluwemeer 

(1976-1993) 
Lake Wolderwijd 
(1976-1993) 

Limnological variables Mean/Min/Max Mean/Min/max 
Nitrate NO3-N  DIN mg/l 0.86/0.001/5.77 0.24/0.001/7.24 
Phosphate PO4-P  DIP mg/l 0.04/0.0001/0.42 0.01/0.0001/0.12 
Silica  Si  mg/l 2.6/0.05/7.05 2.06/0.01/19.1 
Ammonium NH4

+ mg/l 0.12/0.001/1.77 0.05/0.001/0.85 
pH 8.5/7.3/10.5 8.5/7.1/9.7 
Temperature Temp oC 10.8/-1.7/25 11.0/0/23.9 
Secchi Depth  SD m 0.4/0.1/1.7 0.4/0.15/1.3 
Chlorophyll-a  Chla μg/l  111.8/12.6/459.2 95.6/9/265.3 
Oscillatoria  cells/ml  17658/25/95850 26970/0/97650 
Scenedesmus  cells/ml 2216/0/17250 1299/0/12688 
  

2.3. Lake Data 

Data of the Lakes Veluwemeer and Wolderwijd 
were preprocessed by linear interpolation to create 
two consistent data sets. Table 2.2 lists the water 
quality variables from both lakes that were 
considered for the present study. 

2.4. Recurrent Artificial Neural Networks 
RNN 

RNN as introduced by (Pineda 1987) mimic 
deterministic modelling whereby the system state 
at time t is calculated by means of the system state 
at time (t-1) (Recknagel 2001) and the copied 
weights of time (t-1) used as feedback inputs to 
determine weights of neurons at time t.  Eleven 
years of water quality data of the two lakes from 
1976 to 1993 were used for training the 2 recurrent 
supervised ANN models. The selection of training 
and testing years was based on data availability to 
include the years typical for distinct eutrophication 
management approaches. Testing was based on 
three years data that represented different 
management periods: 1978, 1985 and 1993. The 
output variables tested by the recurrent supervised 
ANN models for both lakes are 5-days ahead 
forecasts of Oscillatoria agardhii and 
Scenedesmus cell counts. To achieve this aim, the 
models were trained with input variables time 
lagged by 5 days. The remaining variables listed in 
Table 2.2 were considered as input variables. 

The RNN were designed with one hidden layer for 
all applications. All models were trained using 21 
nodes. Hyperbolic tangent function was chosen to 
estimate the activation level for both the hidden 
and output layers with momentum set at 0.7 for 
both layers. Training was done for up to a 
maximum of 1000 iterations. The termination was 
based on the minimum MSE (mean squared error) 
of 0.01. Model validation was based on visual 
comparison of the curve fitting trends and the R2 
value derived from linear regression without 
intercept for the measured and predicted output 
data. All models were developed using 
NeuroSolutions Version 4.24 (NeuroDimension 
2003). 

2.5. Hybrid Evolutionary Algorithms HEA 

HEA has been designed in order to discover 
predictive rule set. It firstly evolves the structure of 
the rule sets by using genetic programming (GP) 
(Koza 1992, 1994; Banzhaf et al. 1997), and 
secondly optimises the random parameters in the 
rule set by using a general genetic algorithm (Yu et 
al. 1999). Rules discovered by HEA have the IF-
THEN-ELSE structure and allow imbedding 
complex functions synthesised from various 
predefined arithmetic operators. The principal 
framework of HEA for the rule discovery in water 
quality time-series is represented in Fig. 2.  
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Fig 2 Conceptual diagram of HEA for the 
discovery of predictive rule sets in water quality 
time-series 
 

     In order to make comparisons with RNN 
results, we used the same data sets for training and 
testing.  100 runs were conducted independently 
for each data set. For simplicity, we set the 
maximal rule size to be 1 (single rule). All the 
experiments were performed on a Hydra 
supercomputer (IBM eServer 1350 Linux) with a 
peak speed of 1.2 TFlops by using the 
programming language C.  

     In order to validate the results of different rules, 
we define the RMSE (Root Mean Square Error) as 

the training error and testing error:  

where k is the number of training (testing data 
points) iy  and  ˆiy  are the ith observed value and 
the ith predicted value of the output variable. 

3. RESULTS AND DISCUSSION 

3.1. Forecasting of Oscillatoria abundance 
under different lake management 
conditions 

The measured data of the three independent testing 
years 1978, 1985 and 1993 showed similar trends 
of the development of Oscillatoria abundances in 
response to different management for both lakes. 
The two modeling techniques achieved 5-days-
ahead forecasts of the observed trends of 
Oscillatoria in Lake Veluwemeer with R2 = 0.87 
(RNN, see Fig 3a) respective R2 = 0.92 (HEA, see 
Fig 3b, and in Lake Wolderwijd with R2 = 0.66 
(RNN see Fig 3e) respective R2 = 0.65 (HEA see 
Fig 3f). Both models predicted reasonably well the 
high abundances of Oscillatoria in 1978 as result 
of highly eutrophic conditions, but consistently 
overestimated the abundances in 1985 when 
external nutrient control was implemented in both 
lakes. In 1993 when nutrient control was 
complemented by food web manipulation both 
models the peaks of Oscillatoria  in summer. 

3.2. Forecasting of Scenedesmus abundance 
under different lake management conditions  

Both modeling techniques performed 5-days-ahead 
predictions of the observed trends of Scenedesmus 
in Lake Veluwemeer less accurately compared to 
Oscillatoria with R2 = 0.42 (RNN, see Fig 3c) 
respective R2 = 0.52 (HEA, see Fig 3d), and in 
Lake Wolderwijd with R2 = 0.29 (RNN see Fig 3g) 
respective R2 = 0.29 (HEA, see Fig 3h).                             
Whilst the RNN model overestimated the 
abundances of Scenedesmus in Lake Veluwemeer 
in 1985 and matched well the observed abundance 
in 1993, the HEA model performed more 
accurately for 1985 but overestimated the 
abundances of Scenedesmus in 1993. Both models 
had difficulties to predict timing and magnitudes 
of Scenedesmus in in Lake Wolderwijd for the 
three testing years with reasonable accuracy.  
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Fig 3: 5- days ahead prediction of Oscillatoria agardhii and Scenedesmus of Lake Veluwemeer (a-d) and 
Lake Wolderwijd (e-h) using RNN and HEA  tested with 3 years data tested for 1978 (no management), 1985 
(nutrient control) and 1993 (nutrient control and food web manipulation). 
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3.3. Successional patterns of Oscillatoria and 
Scenedesmus under different lake management 
conditions 

The hypothesis was that phosphate reduction and 
intensive flushing during winter may lead to the 
break-up of Oscillatoria bloom with clear-water, 
P-limited algal growth, reduced pH and therefore 
lowered P release from the sediments. This should 
trigger the shift towards a clear-water state with 
increased abundance of green-algae, Scenedesmus. 
The rule sets that were discovered by HEA for the 
two algae populations in the two lakes and used for 
the prediction results in Fig. 3 are documented in 
Table 3. The rule sets 1 and 2 in Table 3 that were  
discovered for the 5-days-ahead prediction of  
Oscillatoria in the two lakes are both largely  
determined  by chlorophyll a, Secchi depths, silica  
and water temperature. By contrast rule sets 3 and 
4 in Table 3 for Scenedesmus    are determined by 
chlorophyll a, PO4-P , silica, pH and water 
temperature .  These rule sets give evidence that 
Oscillatoria and Scenedesmus abundance are 
affected by chlorophyll-a and temperature as they 
are common in all the rule sets. This indicates the 
role of light-limiting factors in the succession 
between Oscillatoria and Scenedesmus. The 
available underwater light often limits growth of 
diatoms and green algae in eutrophic lakes when 
chlorophyll-a concentrations are high as a result of 
blue-green algae abundance in summer (Reynolds 
1984, Chorus & Bartram 1999). Blue-green algae 
tend to grow faster at low irradiance as was 
demonstrated by competition experiments for light 
between Oscillatoria and Scenedesmus under lab-
controlled conditions (Walsby 1992). Scenedesmus 
grow more rapidly and absorb more of the light 
entering the system, thus the average irradiance in 
the water column falls (Reynolds, 1984). 
Buoyancy, is another factor as Scenedesmus are 
non-bouyant while blue-green algae are able to 
gain bouyancy at low irradiance and lose it at high 
irradiance (Walsby, 1992). Another common 
variable discovered from the rule sets is pH. 
Sudden shifts in pH may alter phytoplankton 
assemblages which may explain Oscillatoria 
abundance before phosphate reduction and lake 
flushing was implemented (1978). It was 
suggested that the high levels of Ca2

+ and HCO3
- in 

the flushing water may contribute to pH reduction 
(Hosper 1997). The forecasts have shown that 

Scenedesmus were only abundant after this period.  
During the periods of increased Scenedesmus 
abundance (1985 and 1993), the rule sets 
discovered that Scenedesmus abundance can be 
explained with the additional variable phosphate. 
Similarly, the use of non supervised ANN has 
shown that the years 1985 and 1993 for both lakes 
corresponded to the periods of P-limitation with 
increasing abundance of green algae and diatoms 
as a result of flushing and phosphate reduction 
measures (Recknagel, Talib and van der Molen 
2005). It is interesting to note that the limitation of 
both algal groups by silica revealed the complex 
nature of shallow lake dynamics involving 
multispecies competition and succession. This is 
an indirect causal link as silica is important for the 
growth of diatoms. Although not forecasted in this 
model, our results indicate that forecasting of 
Oscillatoria and Scenedesmus are interrelated to 
the growth and competition from other algal 
groups including diatoms. Although previously, 
phosphorus reduction has been suggested as key-
factor for controlling the summer dominance of 
blue-green algal in the Lakes Veluwemeer and 
Wolderwijd (Reeders et al. 1998), results in this 
study have illustrated that a combination of 
ongoing phosphorus control and biomanipulation 
has achieved both, to further diminish Oscillatoria 
abundance and shift an increasing abundance of 
Scenedesmus. We suggest that the long-term 
successional patterns observed for Oscillatoria and 
Scenedesmus are related to a periodic shift 
between nutrients and light-limitation with 
decreasing trophic conditions. Complex dynamics 
involving competition and co-existence may form 
the basis for the long-term dynamics of the 
phytoplankton in Lake Veluwemeer and Lake 
Wolderwijd. This is typical for the transitions of 
lakes from hypertrophy to mesotrophic conditions 
as generalised by Reynolds (1984). Further work 
will involve studying the merged data sets from 
both lakes to discover improved HEA rules that 
relate to the successional dynamics between 
Oscillatoria and Scenedesmus in both lakes. 
Knowledge discovery will be made more robust by 
excluding chlorophyll-a from the inputs. To 
improve understanding of the phytoplankton 
successional dynamics, this modeling approach 
will also be attempted at the phytoplankton 
functional group level.  
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Table 3: Best rule sets for Oscillatoria and 
Scenedesmus for Lake Veluwemeer and Lake 
Wolderwijd. 

 

4. CONCLUSIONS 

The present study has demonstrated that distinct 
predictable patterns and complex explanatory rule-
sets have been revealed of Oscillatoria agardhii 
and Scenedesmus as they undergo competition and 
succession over temperature preferences and pH 
tolerance as well as long-term changes in 
phosphate and underwater light limitations. The 
rule sets discovered that interactions between the 
supplies of phosphate, nitrate, silica and the effects 
of temperature and pH can explain the competition 
leading to a shift in succession between 
Oscillatoria and Scenedesmus in Lake 
Veluwemeer and Wolderwijd over a long-term 
period. From the assessment of long-term patterns 
in both lakes it can be concluded that the ongoing 
control of nutrient regimes towards phosphorus 
limitation by means of seasonal lake flushing and 
wastewater treatment up streams of Lake 
Veluwemeer since the early 1980s has achieved 
phosphorus limitation, weakened the abundance of 
Oscillatoria but elevated abundances of 
Scenedesmus. The additional eutrophication 
control by food web manipulation in both lakes 
since the early 1990s may have contributed to this 
shift in algal succession. These findings consent 
with previous recommendations that the control of 
eutrophic lakes requires primarily efficient nutrient 
control that secondarily can be finetuned by 
biomanipulation (Benndorf 1995). Further research 
will complement this preliminary study. The next 
attempt is to apply this method for knowledge 
discovery at the phytoplankton functional group 
level. 
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