
Estimation of Lévy Processes in Mathematical Finance:
A Comparative Study

1Sueishi, N. and 2Y. Nishiyama

1Graduate School of Economics, Kyoto University,
2 Kyoto Institute of Economic Research, Kyoto University,

E-Mail: nsueishi@e01.mbox.media.kyoto-u.ac.jp
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EXTENDED ABSTRACT

In the field of mathematical finance, the concern
with the applications of Lévy processes has been
growing for the last several years. The models are
aimed at incorporating stylized empirical facts. In
the classical Black-Scholes option pricing model,
the log return of asset is assumed to follow the
normal distribution. However, compared to the
normal distribution, the empirical density of log
returns typically has more mass near the origin, less
in the flanks, and more in the tail. Empirical works
also suggest the discontinuity of the sample path
of price processes. To account for these features,
several models based on Lévy processes have been
propounded in the literature. Prominent examples
include the Poisson jump model (Merton (1976)),
the variance gamma process (Madan and Seneta
(1990), Madan et al. (1998)), the normal inverse
Gaussian process (Barndorff-Nielsen (1998)), and
the CGMY process (Carr et al. (2002)).

Although relevant estimators of the parameters
are required for applications of these models,
the estimation of Lévy processes is challenging.
Since the law of Lévy processes is entirely
specified by the infinitely divisible distribution, it
suffices to estimate the parameters of corresponding
infinitely divisible distributions. However, they are
parametrized in terms of the characteristic function
and in general we cannot obtain the closed form
expression of density function. Thus, to obtain the
maximum likelihood estimate, one must rely on the
numerical method such as Fourier inversion, which
is computationally demanding.

Since the closed form expression of the character-
istic function is known, several estimation methods
based on the empirical characteristic function can
be applied to the estimation of Lévy processes.
The basic idea of this approach is to match the
theoretical characteristic function with its empirical
counterpart. This type of approach was originally

proposed by Press (1972) for the estimation of
stable distributions. Press (1972) introduced
Minimum Distance estimation and Minimum rth-
Mean Distance estimation. Feurverger and
McDunnough (1981) proposed generalized method
of moments (GMM) type estimator. Carrasco and
Florens (2000) extended the GMM procedure to
the case of a continuum of moment conditions
(CGMM). Kunitomo and Owada (2004) recently
introduced the maximum empirical likelihood
estimator (MELE).

This paper has two aims. Firstly, we propose an
efficient and computationally convenient estimation
method. We use the framework of Sueishi
(2005), which discusses the estimation of stable
distributions. We rely on the quasi-likelihood
approach. We construct the quasi-likelihood
function via the characteristic function. The
estimator is characterized as the root of the quasi-
likelihood equation. Secondly we compare the
finite sample performances of recently proposed
estimation methods. Although various estimation
methods have been proposed, there have been
little study on the comparison of the estimation
performance of each method. We employ the
CGMM and the MELE as our competitors. A
Monte Carlo study is implemented for two well-
known Lévy processes: the variance gamma process
and the normal inverse Gaussian process. We
conduct simulations using different sample sizes and
settings. Simulation results show that the QLE
outperforms other estimators in many situations,
though computational burden is much smaller than
the other estimators. Especially, in the case of the
normal inverse Gaussian process, the QLE performs
on par with the maximum likelihood estimator in
moderate sample size.
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1 INTRODUCTION

We consider the estimation problem of discretely
observed Lévy processes. We first recall the basic
properties of Lévy processes. A Lévy process
X = {Xt : t ≥ 0} is a cadlag stochastic
process with stationary independent increments.
The Lévy Khintchine theorem uniquely determines
the characteristic function for Levy processes and
infinitely divisible distributions. The characteristic
function of the one-dimensional Lévy process X is
given by

φ(u, t; „) ≡ E[exp {iuXt}]
= exp

n
t
“
iγu − 1

2
σ2u2

+

Z ∞

−∞

h
eiux−1−iux1{|x|<1}

i
ν(dx)

”o
,

where γ ∈ R, σ2 ≥ 0, and ν is a measure on R\{0}
verifying ∫ ∞

−∞
(1 ∧ x2)ν(dx) < ∞.

The measure ν is called the Lévy measure and the
triplet (γ, σ2, ν) is called the characteristic triplet
of X . If the Lévy measure is zero, then the
process reduces to the Brownian motion with drift.
For a detailed discussion of the properties of Lévy
processes, see Sato (1999).

Let us denote the price of financial asset by St. In
the class of exponential-Lévy models, the price St is
represented as

St = S0 exp{Xt},
where Xt is a Lévy process. Assume that we
observe the price process at equidistant time grid
ti = 1, 2, . . . , n. The log return Yi is defined as

Yi ≡ log
Sti

Sti−1
= Xti − Xti−1.

Thus, this model is based on the assumption that
the log returns are independently and identically
distributed infinitely divisible random variables.
The characteristic function of Yi is given by

φθ(u) = exp
{

iγu − 1
2
σ2u2

+
∫ ∞

−∞

[
eiuy− 1 − iuy1{|y|<1}

]
ν(dy)

}
.

The outline of this paper is as follows. In Section
2 we introduce several estimation methods based
on the empirical characteristic function. Section 3
describes our estimation procedure. The results of a
Monte Carlo comparison are reported in Section 4.
Section 5 concludes.

2 ESTIMATION METHODS

In this section we describe how to estimate the
parameters of Lévy processes by the alternative
methods using characteristic function. Let
Y1, Y2, . . . , Yn be independently and identically
distributed infinitely divisible random variables
with parameter θ. In the following sections, we
denote the characteristic function of Y by φθ(u),
and its real and imaginary part by φR

θ (u) and
φI

θ(u), respectively. Then we obtain the following
condition:

E[h(u, Yi; θ0)] = 0, ∀u ∈ R

where

h(u, Yi; θ) = exp(iuYi) − φθ(u).

and θ0 is the vector of true parameter values.

Since there is a one-to-one correspondence between
the characteristic function and the density function,
they have the same information. This fact suggests
that estimation based on the empirical characteristic
function should be as efficient as the maximum
likelihood estimation.

2.1 CGMM

The key observation underlying the estimation based
on the empirical characteristic function is that there
exist an infinite number of moment conditions.
Feuerverger and McDunnough (1981) proposed to
choose finite grid u = (u1, . . . , uk)′ and to use 2k
moment condistions:

E[hθ(Y )] = 0,

where

hθ(Yi) =
(
hR

θ (Yi)′,hI
θ(Yi)

)′
, (1)

and

hR
θ (Yi)=

“
cos(u1Yi)−φR

θ (u1), ..., cos(ukYi)−φR
θ (uk)

”′
,

hI
θ(Yi)=

“
sin(u1Yi)−φI

θ(u1), ..., sin(ukYi)−φI
θ(uk)

”′
.

The GMM estimator is obtain by

θ̂n = argmin
θ

[ĥn(θ)]′Wn[ĥn(θ)], (2)

where ĥn(θ) = 1
n

∑n
i=1 hθ(Yi) and Wn is a

weighting matrix. The expression (2) with optimal
weighting matrix is equivalent to

θ̂n = argmin
θ

∥∥∥K−1/2
n ĥn(θ)

∥∥∥ , (3)
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where Kn is the consistent estimator of the
covariance matrix, and ‖ · ‖ is the Euclidean norm.

Carrasco and Florens (2000) extended the GMM
to the case of a continuum of moment conditions
(CGMM). Let π be a probability density function.
We introduce the new norm which takes into account
the continuum set of moment conditions into the
GMM framework. The norm is defined by

‖f‖2 =
∫

f(u)f(u)π(u)du,

where f̄ denotes the complex conjugate of f .

Now we consider how to obtain the CGMM
estimator by the analogy of (3). Intuitively, the
CGMM estimator is obtained by minimizing the
following objective function:∥∥K−1hn(u, θ)

∥∥ ,

where hn(u, θ) = 1
n

∑n
i=1 h(u, Yi; θ), and K is the

covariance operator such that

Kf(u) =
∫

k(u, v)f(v)π(v)dv,

with k(u, v) = E[h(u, Y ; θ)h(v, Y ; θ)]. The
covariance operator K is consistently estimated by
the operator Kn with kernel

kn(u, v) =
1
n

n∑
i=1

h(u, Yi; θ̃n)h(v, Yi; θ̃n),

where θ̃n is a preliminary consistent estimator of
θ. The problem is that since the inverse of K
is not bounded (see Carrasco and Florens (2000)
for detail), the operator K−1 is not continuous.
Therefore, K−1f is not stable against small changes
in f . To guarantee the stability, Carrasco and
Florens (2000) replace K−1

n by the Tikhonov
approximation:

(Kαn
n )−1 =

(
K2

n + αnI
)−1

Kn,

where I is the identical operator and αn is a
regularization parameter which goes to zero as n
goes to infinity. As a consequence, the CGMM
estimator is given by

θ̂n = argmin
θ

∥∥∥(Kαn
n )−1/2

hn(u, θ)
∥∥∥ . (4)

Carrasco et al. (2004) shows that solving (4) is
equivalent to solving

min
θ

v(θ)
′ [

αnIn + C2
]−1

v(θ),

where C is a n × n matrix with (i, j) element
cij , In is the n × n identity matrix, v(θ) =
(v1(θ), . . . , vn(θ))′ with

vi(θ) =
∫

hn(u, θ)h(u, Yi; θ̃n)π(u)du,

cij =
1
n

∫
h(u, Yi; θ̃n)h(u, Yj ; θ̃n)π(u)du.

Although Carrasco et al. (2004) give a convergence
rate of αn, the asymptotic result does not indicate
how to choose αn in practice.

2.2 Empirical Likelihood Method

Kunitomo and Owada (2004) propose the estimation
method for Lévy processes based on the empirical
likelihood approach. They extended Qin and
Lawless (1994) to the case where the number of
restrictions grows with the sample size.

Define the empirical likelihood function by

L(Fθ) =
n∏

i=1

dFθ(Yi) =
n∏

i=1

pi, (5)

where Fθ is the distribution function of Y . Without
restrictions, (5) is maximized by the empirical
distribution function Fn(y) = 1

n

∑n
i=1 I(Yi < y).

The empirical likelihood ratio is defined as

R(F ) =
L(Fθ)
L(Fn)

=
n∏

i=1

npi. (6)

The maximum empirical likelihood estimator
(MELE) is defined as the maximizer of (6) subject
to the following restrictions:

pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

pihθ(Yi) = 0,

where hθ(Yi) is defined by (1). The maximum can
be found by Lagrange multiplier method. Write

Ln(θ) =
n∑

i=1

log npi − µ

[
n∑

i=1

pi − 1

]

− nη′
[

n∑
i=1

pihθ(Yi)

]
,

where µ and η are Lagrange multipliers. Taking
derivatives with respect to pi and setting to zero, we
have

∂Ln(θ)
∂pi

=
1
pi

− µ − nη′hθ(Yi) = 0.
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Thus we obtain µ = n and

pi =
1
n

1
1 + η(θ)′hθ(Yi)

, (7)

where η(θ) is the solution of
∑n

i=1 pihθ(Yi) = 0.
Substituting (7) into (6) yields the log likelihood
ratio:

ln(θ) = log
n∏

i=1

npi

= −
n∑

i=1

log [1 + η(θ)′hθ(Yi)] .

The MELE is obtained by maximizing ln(θ).
Kunitomo and Owada (2004) prove that under some
regularity conditions the asymptotic covariance
matrix of MELE can attains Cramer-Rao lower
bound as the number of grid points goes to infinity
(k → ∞) with sample size.

3 QUASI-LIKELIHOOD ESTIMATOR

Although the evaluation of the density function of
Lévy processes is cumbersome, their score function
is analytically tractable. In this section, we show the
way to approximate the score function S(Y ; θ). To
obtain the quasi-score function S∗(Y ; θ), we adopt
the orthogonal projection of the score function onto
the real valued basis functions, G = {g(ui, y), i =
1, 2, . . . }, in Hilbert Space. The important
examples include GH = {sinuiy, cosuiy} and
GE = {exp uiy}. The key insight is that linear
combination of the elements of G can approximate
square integrable function arbitrarily well. For detail
see for example Brant (1984).

Now we consider the approximation method
of the score function. Define the vector
valued function g(Y ) by g(Y ) = g(u, Y ) =
(g(u1, Y ), . . . , g(uk, Y ))′. Let E∗[S(Y ; θ)|g(Y )]
denote the orthogonal projection of S(Y ; θ)
onto g(Y ). Including a constant term in the
approximation, we obtain the following quasi-score
function:

S∗(Y ; θ) =E∗[S(Y ; θ)|1,g(X)]
=E[S(Y ; θ)]

+ λ(θ)′Σ(θ)−1[g(Y ) − γ(θ)], (8)

where λ(θ) = Cov[g(X),S(Y ; θ)], γ(θ) =
E[g(Y )] and Σ(θ) = Var[g(Y )].

The above expression involves unknown true score
function S(Y ; θ). However, under mild regularity
conditions, we have

Cov[S(Y ; θ),g(X)] =
∂E[g(Y )]

∂θ′ .

In addition, we have E[S(Y ; θ)] = 0 by definition
of the score function. Therefore, (8) is reduced to

S∗(Y ; θ)=
[
∂γ(θ)
∂θ′

]′
Σ(θ)−1[g(Y )−γ(θ)]. (9)

Note that the elements of (9) are represented in
closed form as the function of γ(θ).

In the case of G = {cosuiy, sin uiy}, we have

‚(„) = (φR
θ (u1), . . . , φ

R
θ (uk), φI

θ(u1), . . . , φ
I
θ(uk)),

and the elements of Σ(θ) are given by

Cov[cos(uiY ), cos(ujY )]

=
1
2
[φR

θ (ui+uj)+φR
θ (ui−uj)]−φR

θ (ui)φR
θ (uj),

Cov[cos(uiY ), sin(ujY )]

=
1
2
[φI

θ(ui+uj)−φI
θ(ui−uj)]−φR

θ (ui)φI
θ(uj),

Cov[sin(uiY ), sin(ujY )]

=
1
2
[−φR

θ (ui+uj)+φR
θ (ui−uj)]−φI

θ(ui)φI
θ(uj).

The quasi-likelihood estimator (QLE) can be
obtained as the root of the quasi-likelihood equation:

1
n

n∑
i=1

S∗(Yi; θ)

=
[
∂γ(θ)
∂θ′

]′
Σ(θ)−1

[
1
n

n∑
i=1

g(Yi) − γ(θ)

]

= 0. (10)

Sueishi (2005) argues that the asymptotic variance
of the QLE can be made arbitrarily close to the
Cramer-Rao bound by selecting sufficiently large
numbers of grid points.

4 MONTE CARLO

In this section we carry out a Monte Carlo exper-
iment to investigate the finite sample performance
of our QLE. We compare the QLE with the CGMM
estimator and the MELE. We choose two different
DGPs: the variance gamma process and the normal
inverse Gaussian process. For each estimator
we report the mean (MEAN), the standard error
(STD), and the root mean squared error (RMSE).
In the experiment of the normal inverse Gaussian
process, we also compared all estimators with the
maximum likelihood estimator (MLE) to evaluate
the efficiency.

The QLE is obtained as the root of the quasi-
likelihood equation (10), where g is given by
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(cos u1Y, . . . , cosuYk, sin u1Y, . . . , sin ukY ). We
use the same grid u when we estimate parameters
by the QLE and the MELE. To obtain the CGMM
estimator, we use two-step procedure. The
preliminary estimator of the CGMM is given by

θ̃n = argmin
θ

‖hn(u; θ)‖2

= argmin
θ

∫
hn(u; θ)hn(u; θ)π(u)du.

Since numerical integrations are computationally
burdensome, we replace them by the inner product
of the vector on equally-spaced grid with intervals
0.1. We select the uniform density on [−4, 4] as the
density function π. The regularization parameter αn

is chosen to be 0.001.

4.1 Variance Gamma

The variance gamma (VG) process is introduced in
the symmetric case by Madan and Seneta (1990).
Madan et al. (1998) discuss the general asymmetric
case. The VG process is the time-changed Brownian
motion with drift. Let γ(t; 1, ν) be the gamma
process with mean rate 1 and variance rate ν. Then
VG process with parameter θ, ν and σ can be defined
as

Xt = θγ(t; 1, ν) + σWγ(t;1,ν),

where Wt is a standard Brownian motion. The
characteristic function of the VG process Xt is given
by

φ(u, t; θ) =
(

1
1 − iuθν + (σ2ν/2)u2

)t/ν

.

Now we assume that the asset price process is given
by

St = S0 exp {µt + Xt} ,

where µ is a drift paramter. Then the log
return Yi = log(Sti/Sti−1) has the following
characteristic function:

φθ(u) = exp(iµu)
(

1
1 − iuθν + (σ2ν/2)u2

)1/ν

.

Table 1 reports the simulation results of 1000
iterations with 200 observations. The true value of
the parameter θ = (θ, ν, σ, µ)′ is (1, 1, 1, 1)′. The
QLE and the MELE are calculated using two types
of grids: the coarse grid u = (0.5, 2.5, 4.5)′ and
the fine grid u = (0.5, 1.5, 2.5, 3.5, 4.5)′. Table
1 shows that the QLE performs poorly when the

Table 1. Variance Gamma

MEAN STD RMSE
QLE (coarse grid)

θ 1.0492 0.2251 0.2305
ν 1.0064 0.2477 0.2478
σ 0.9094 0.2443 0.2606
µ 0.9541 0.1815 0.1872

QLE (fine grid)
θ 1.0218 0.1810 0.1824
ν 1.0044 0.2323 0.2323
σ 0.9740 0.1338 0.1364
µ 0.9754 0.1318 0.1340

CGMM
θ 0.9839 0.1735 0.1743
ν 1.0313 0.2640 0.2659
σ 0.9643 0.1433 0.1477
µ 0.9844 0.1292 0.1301

MELE (coarse grid)
θ 1.0314 0.2045 0.2070
ν 1.0147 0.2451 0.2456
σ 0.9524 0.2037 0.2091
µ 0.9726 0.1638 0.1661

MELE (fine grid)
θ 1.0272 0.2017 0.2035
ν 0.9918 0.2427 0.2428
σ 0.9718 0.1388 0.1417
µ 0.9683 0.1630 0.1660

coarse grid is used. Compared with the other
estimators, the QLE shows severe bias in σ. The
MELE outperforms the QLE. In contrast, if the fine
grid is used, the QLE performs slightly better than
the MELE and is comparable to the CGMM, though
the QLE hardly requires the computational effort.
Although we do not show the results in the table,
we also calculate the CGMM using the standard
normal density, which makes little difference in the
estimation results.

4.2 Normal Inverse Gaussian

The normal inverse Gaussian (NIG) process is
introduced by Barndorff-Nielsen (1995) as a model
for financial data. The NIG process can also be
represented as the time-changed Brownian motion.
Let I(t; a, b) be an inverse Gaussian process with
parameters a, b. Then

Xt = βδ2I(t, 1, δ
√

α2 − β2)+δW
I(t,1,δ

√
α2−β2)

follows the NIG process with parameters α, β
and δ. Bandorff-Nielsen (1995) shows that the
characteristic function of the NIG distribution is
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given by

φθ(u)=exp
(
−δ

(√
α2−(β+iu)2−

√
α2−β2

))
,

where 0 ≤ |β| ≤ α and δ > 0. The parameters can
be interpreted as follows: α determines the shape, β
the skewness. δ is the scale parameter. It is well
known that the NIG distribution has closed form
density function given by

f(y; θ) =
δα

π
exp

(
δ
√

α2 − β2 + βy
)

× K1(α
√

δ2 + y2)√
δ2 + y2

,

where K1(·) is the modified Bessel function of the
third kind and index 1.

The experiments are conducted for 400 and 1000
observations. The true value of the parameter θ =
(α, β, δ)′ is (6,−4, 1)′. Since the density function
is known in closed form for the NIG distribution,
we can obtain the MLE. We use the MLE as the
efficiency benchmark. We define the efficiency of
estimators by the ratio of sample variance of the
MLE to that of each estimator.

Table 2 shows the simulation results of 1000
iteration of 400 observations. The generation of
random numbers is based on the algorithm of
Rydberg (1997). The grid of the QLE and MELE
is chosen to be u = (1, 2, 3)′. From Table 2 we see
that the QLE dominates the CGMM and the MELE.
The MELE of α has a large bias and the estimate of
δ is quite inefficient. On the other hand, the QLE is
highly efficient even in moderate sample size.

Table 3 reports results using 1000 observations.
Since the CGMM estimator requires considerable
computational time for large sample size, we repeat
simulations only 100 times. From Table 3 we see
that all three estimators improve the efficiency when
sample size becomes large. In particular, the QLE
is comparable to the MLE even though only three
grid points are used to construct the quasi-score
function. The bias of MELE almost disappears
and the efficiency of δ improves remarkably. The
CGMM estimates of β and δ are very accurate,
though the standard error of α is relatively large.

5 CONCLUSION

In this paper, we propose the estimation method
of Lévy processes based on the quasi-likelihood
approach. We construct the closed form quasi-
score function via the characteristic function. The

Table 2. Normal Inverse Gaussian (n=400)

MEAN STD RMSE Efficiency
QLE

α 6.1626 0.5198 0.5446 0.9521
β -4.0821 0.5586 0.5646 0.8847
δ 1.0230 0.1686 0.1702 0.7873

CGMM
α 6.2531 0.5748 0.6280 0.7786
β -4.1134 0.6081 0.6187 0.7465
δ 1.0308 0.1715 0.1743 0.7609

MELE
α 6.3139 0.6048 0.6808 0.7033
β -4.0663 0.5621 0.5660 0.8737
δ 1.0308 0.2151 0.2249 0.4837

MLE
α 6.1511 0.5072 0.5292 —
β -4.0763 0.5254 0.5309 —
δ 1.0192 0.1496 0.1508 —

Table 3. Normal Inverse Gaussian (n=1000)

MEAN STD RMSE Efficiency
QLE

α 6.0477 0.3011 0.3049 0.9638
β -4.0240 0.3255 0.3264 0.9695
δ 1.0068 0.0972 0.0974 0.9593

CGMM
α 6.0689 0.3321 0.3392 0.7923
β -4.0356 0.3299 0.3318 0.9438
δ 1.0130 0.0950 0.0958 1.0042

MELE
α 6.0809 0.3001 0.3108 0.9702
β -4.0340 0.3435 0.3452 0.8706
δ 1.0133 0.1052 0.1060 0.8189

MLE
α 6.0541 0.2956 0.3005 —
β -4.0377 0.3205 0.3227 —
δ 1.0032 0.0952 0.0953 —
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QLE is characterized as the root of the quasi-
likelihood equation. We carry out a Monte Carlo
experiment to examine the performance of our
estimator in finite samples. We employ the CGMM
estimator and the MELE as competitors. The QLE
outperforms the competing methods not only in
terms of computational time but also in terms of
efficiency. Although asymptotic result shows that
the QLE and the MELE are asymptotically efficient,
it does not give information about how many grid
points we should choose in practice. Monte Carlo
results suggest that only five points will suffice
for practical purpose. The CGMM estimator does
not perform remarkably well. A possible cause
is that we choose the density function π and the
regularization parameter α arbitrarily. If π and α
are properly chosen, it may be possible to improve
the efficiency of the CGMM estimator.
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