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EXTENDED ABSTRACT  
 
Soil salinity is a problem that affects millions of 
hectares of land across Australia. The costs 
associated with salinity have been increasing in 
agricultural production and infrastructure. To 
manage the effects of soil salinity, land owners, the 
government and catchment management groups 
need to know the extent and severity of soil 
salinity and how it changes over time. This paper 
investigates the use of artificial neural networks 
(ANN’s) to map dryland salinity. ANNs have been 
inspired by biological neural networks, and are 
popular tools in the application of classification, 
prediction and recognition based problems. They 
use a network of interconnected processing units to 
estimate the outputs. The most common type of 
ANN is the backpropagation neural network 
(BPNN), which uses layers of interconnected 
processing units and a supervised learning 
approach.  
 
The data used in this research comes from the 
Wimmera region of Victoria (see Figure 1), and 
includes airborne geophysical measurements and 
satellite imagery. The use of such data has been 
considered to be complete and accurate, and 
previous studies have indicated a relationship 
exists between these input variables and the 
presence of salinity. A large proportion of the 
study area was non-saline (98.5%). To help 
minimise network bias towards a particular class, 
non-saline and saline examples were randomly 
selected in equal numbers for experiments. 
 
 

The experimentation in this research examined the 
potential of neural networks to map dryland 
salinity. The experiments were divided into two 
sections: individual salinity set experiments using 
the three types of salinity separately (salinity due 
to local groundwater, regional groundwater and 
waterlogging), and combined salinity set 
experiments where the three salinity types were 
combined into one class. The results achieved in 
the combined salinity set experiments showed an 
overall accuracy of 78.4% when using the BPNN 
approach. The saline examples were correctly 
classified 83.1% of the time and non-saline 
examples were correctly classified with 73.7% 
accuracy. The results for the individual salinity set 
experiments demonstrated that the performance of 
the neural networks on salinity due to regional 
groundwater and waterlogging was reasonably 
successful with a percentage correct of 83.0% and 
76.0% respectively. The performance of the neural 
network on salinity due to local groundwater was 
less accurate with a percentage correct of 68.8%.  
 
 Overall the results achieved were promising and 
indicate the potential for further research in this 
area. Potential research areas include: (a) finding 
other cost-efficient inputs that influence salinity 
risk; (b) modifying relative data calculations to 
better identify significant readings and show the 
difference to nearby cells; (c) investigating the 
right balance of saline and non-saline examples to 
incorporate the large proportion of non-saline 
cases without causing imbalance to neural network 
training; and (d) investigating the application of 
expert neural networks. 

 
 

Figure 1. Map of Australia showing region under study 
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1. INTRODUCTION 
 
Since European settlement, significant 
environmental changes have occurred in Australia. 
Trees were cleared to promote agricultural 
practices and many of the deeper–rooted native 
grasses and shrubs were not able to withstand 
grazing by the introduced European livestock. The 
vegetation community that evolved following the 
changed land management regime was dominated 
by relatively shallow-rooted annual vegetation and 
was unable to use as much rainfall as the pre–
existing vegetation. This resulted in the water 
balance being altered as the unused water drained 
past the rootzone to the groundwater, causing 
watertables to rise. As watertables rise towards the 
earth’s surface, the salts carried within the 
groundwater also rise, causing non-salt tolerant 
plants to become stressed and in severe cases die. 
The extent of the soil salinity problem within 
Australia includes the degradation of millions of 
hectares of agricultural land and loss of flora 
affected by rising watertables (AusStats 2002). In 
addition, dryland salinity increases maintenance 
costs to infrastructure such as road and rail. Due to 
the devastating effects associated with this 
growing problem, steps have been taken to identify 
regions at risk of developing dryland salinity. 
 
Traditionally, soil salinity was mapped by airphoto 
interpretation or mapped in the field by either 
identifying salt tolerant vegetation, 
electromagnetic induction (EMI) surveys or soil 
sampling and analysis. Although accurate, these 
techniques are considered to be time consuming, 
expensive and difficult to implement at landscape 
scale. As a consequence, there is a growing interest 
in models that can produce accurate salinity maps 
or assessments of salinity risk areas at scales 
ranging from the individual paddock to landscape 
scale. 
 
Remotely sensed data offers a cost-efficient, 
complete and accurate means of obtaining 
information about the environment at a variety of 
scales. Data is commonly collected by sensors 
located on aircraft or satellite based platforms by 
active or passive sensors. Passive sensors record 
naturally occurring radiation that is reflected or 
emitted from the terrain. Active sensors such as 
microwave radar transmit electromagnetic energy 
and record the amount of radiant flux returning to 
the sensor (Jensen 1996).  
 
In this study, data from the Enhanced Thematic 
Mapper+ (ETM+) sensor carried on board the 
Landsat7 satellite is combined with airborne 
gamma radiometric data. The ETM+ sensor 

measures electromagnetic radiation (from 0.45μm 
to 12.5μm) reflected from the earth's surface, 
while the airborne gamma radiometric data 
provides a record of gamma radiation emitted from 
the top 0.5 m of the Earth's surface (around 85% of 
the signal comes from the top 0.3 m). This study 
focuses on the ability of a neural network to 
process remotely sensed data for mapping soil 
salinity. 
 
2. BACKPROPAGATION NEURAL 

NETWORKS 
 
The study of Artificial Neural Networks has been 
inspired by the biological neural system. The most 
commonly used ANN is the backpropagation 
neural network. A BPNN is a multi-layered non-
linear feed-forward network trained by the 
backpropagation learning algorithm. It is 
composed of a series of artificial neurons (see 
Figure 2).  
 

 
Figure 2. An artificial neuron. 
 
An artificial neuron generates an internal 
activation which is termed NET. NET is calculated 
by summing all of the input weight products as 
outlined in the following equation.  
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where: 
 
X1 .. Xn  are the inputs 
W1 ..Wn are the connection weights 
WB  is the bias weight. 
 
A bias acts exactly as a weight on a connection 
from a neuron whose activation is always one. 
After NET is calculated, an activation function F, 
commonly sigmoid or hyperbolic tangent, is 
applied to modify it thereby producing the signal 
OUT. 
 
The structure of the BPNN including the number 
of neurons used, their organisation into layers and 
the connections between them is referred to as its 
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architecture. The most common architecture is the 
fully interconnected multi-layered network which 
is outlined in Figure 3. It contains an input layer, 
one or more hidden layers and an output layer. 
 

 
Figure 3. A simple fully interconnected multi-
layered neural network. 
 
The BPNN is trained by being presented with 
numerous examples where each example consists 
of a set of inputs and their corresponding output(s). 
The “learning” that takes place in backpropagation 
neural networks occurs by the adjustment of the 
connection weights. Each presentation of an 
example results in a small change in the weights, 
which reduces the error on that example. This 
process is repeated thousands of times until the 
weights have been adjusted to represent a mapping 
between inputs and outputs to within a specified 
error. The network then has the potential to predict 
the output from a new set of inputs (Rumelhart et 
al. 1989). Backpropagation neural networks are 
capable of handling incomplete, noisy or partially 
incorrect data with a minimal reduction in 
performance and have been successfully applied to 
many areas of the business, industrial and 
scientific world (Smith et al. 2002). 
 
3. MAPPING SALINITY 
 
Research has previously been conducted into the 
problem of mapping salinity using remotely sensed 
data. Statistical methods were used in a study at 
Kakadu National Park, Australia to map soil 
salinity using Airborne Synthetic Aperture Radar 
(AirSAR) and Landsat TM satellite data (Bell et 
al. 2001). Variables used in this study included 
Electrical Conductivity (EC), percentage ground 
cover, vegetation height, species and leaf litter 
depth. The salinity map produced by this study 
classified salinity presence into 9 different classes, 
based on density of vegetation and salinity. The 
best level of accuracy on test data was 82%. The 
accuracy of this study was quite high, however 
several of the classes that contributed a small 
portion of the population were not classified 
accurately using this model. Hocking (2001) used 
fuzzy modeling to map dryland salinity in the 

Wimmera Plains, Australia. Data collected for this 
study included airborne gamma radiometrics, 
DEMs (Digital Elevation Models) and DEM 
derived data. Factors used included the slope of the 
land, elevation, potassium and thorium content. 
Rather than assessing soil salinity as either present 
or absent, output from this study estimated the 
probability of soil salinity occurring in each grid 
cell. The results from the fuzzy techniques were 
poor, with a correlation of 0.32 between the 
outputs of the fuzzy system to the expected result. 
Evans (1998) used Conditional Probabilistic 
Networks to examine if probabilistic relationships 
could be identified for mapping dryland salinity. 
The focus of this study was to demonstrate that the 
accuracy of mapping salinity could be increased by 
incorporating prior knowledge of relationships 
between attributes and salinity. Previous years’ 
attributes were combined with the assessed year to 
estimate salinity risk. The overall results of the 
study were poor, with many non-saline examples 
being classified as saline. 
 
Due to the difficulty in mapping soil salinity using 
statistical techniques, there has been growing 
interest in exploring a variety of other methods 
including Artificial Intelligence techniques. 
Research was conducted to investigate the use of 
decision trees for mapping salinity in the 
Wimmera region (Walklate 2002). The decision 
tree was developed using C4.5, a software package 
used for the generation of rule sets (Quinlan, 
1993). The data used was a combination of gamma 
radiometrics, satellite imagery and DEMs. The 
variables included potassium and thorium content, 
curvature, elevation and slope. For a localised area 
of the study space, the results were 91% on the 
testing set for the classification of salinity. 
However, when this study space was increased to a 
wider area, the accuracy was reduced to 63.7%. A 
study performed by Evans (1998) in Western 
Australia investigated the use of decision trees and 
neural networks for mapping dryland salinity. Data 
collected for this study included satellite imagery, 
DEMs, drainage models and ground truth data. 
The salinity maps produced using the decision tree 
approach appeared promising with a relatively low 
number of misclassifications. Neural networks 
were also used to determine whether the technique 
was a more effective method for the mapping of 
dryland salinity. The neural networks 
demonstrated similar results to the decision tree 
approach indicating the potential for these 
techniques in this problem domain. 
 
Artificial Neural Networks have been studied in 
other salinity-based problems including the 
prediction of groundwater activity (Clarke et al. 
2002), river salinity (Maier et al. 1998, Rajkumar 

Input 
Layer 

Hidden
Layer(s) 

Output 
Layer 

93



et al. 2001) and dryland salinity (Evans et al. 
2000). 
 
4. DATA 
 
The data used in this study was ETM+imagery 
from the Landsat7 satellite and airborne gamma 
radiometric data. Data was collected over a 34km 
x 17km area of the Western Wimmera region in 
Victoria, Australia (see Figure 1). The airborne 
gamma radiometric data was measured 
continuously along lines spaced either 200m or 
250m apart. Standard processing of this data 
produced an interpolated grid surface with 50m x 
50m cells. For the purposes of this study the data 
was resampled a second time to produce a grid 
surface with 20m x 20m cells. The variables used 
in the study are summarised in Table 1 below. 
 
Table 1. Variables available for this study. 

 

Variable 
 

Description 
 

aspect 
 

Direction of the downward slope 
(degrees). 

 

curvature 
 

Curvature of the Earth. 
 

elevation 
 

Elevation above sea level (metres). 
 

potassium 
 

Potassium (% by volume). 
 

slope 
 

Indicates the gradient from one cell 
to its neighbouring cells. 
Calculated as a percentage. 

 

soil 
 

Soil class. 
 

thorium 
 

Thorium (ppm). 
 

TWI 
 

Topographic Wetness Index. The 
natural log of the total area from 
which water would flow through a 
given cell, divided by the slope of 
that cell.  

 

target 
 

Expert on ground assessment of 
soil salinity based on the presence 
of salt tolerant vegetation or 
absence of salt sensitive 
vegetation. 

 
Training, testing and validation data sets were 
created to be used by the neural networks. The 
training, testing and validation data sets are three 
independent sets. The training set is used to train 
the neural network while the testing set is used to 
evaluate the performance of the neural network at 
regular intervals. When the neural network has 
been fully trained, the network is evaluated on the 
validation data set which has been totally unseen 
by the network during the entire training phase. A 

large proportion of the study area was non-saline 
(98.5%). To help minimise network bias towards a 
particular class, non-saline and saline examples 
were randomly selected in equal numbers for 
experiments.  
 
5. EXPERIMENTATION 
 
The experimentation conducted in this research 
examined the potential of neural networks to map 
dryland salinity. The experiments were divided 
into two sections: individual salinity set 
experiments and combined salinity set 
experiments.  
 
5.1. Individual Salinity Set Experiments 
 
Three types of salinity were recorded: salinity due 
to local groundwater, salinity due to regional 
groundwater and salinity due to waterlogging. 
Each type of salinity was in localised regions, with 
no overlap between regions. Preliminary 
experiments were conducted to classify each of 
these types of salinity separately. Three different 
data sets were created for each salinity type. 
 
The data was selected from a region of the study 
that had a specific type of salinity, with saline and 
non-saline examples selected in equal proportions. 
For each of the salinity types the data was divided 
equally into training, testing and validation sets. 
There were a total of 10,114 examples selected for 
the local groundwater experiments, with 
approximately 3,370 in each of training, testing, 
validation sets. The regional groundwater sets had 
a total of 3,076 examples and waterlogged a total 
of 3,174 examples 
 
Before being presented to a network for training, 
data was preprocessed to aid network performance. 
In addition to the original values for inputs, 
relative values were used for the following inputs: 
curvature, elevation, potassium, slope and thorium. 
Relative measurements were calculated based on 
readings of nearby cells. These were used to 
indicate changes of land characteristics such as 
elevation. The soil type was the only discrete 
input. A separate input was created for each of the 
8 soil types. Based on the distribution of inputs, 
appropriate scaling techniques were applied to the 
data. Non-linear scaling was applied to the slope. 
The other continuous inputs were scaled linearly. 
In total, 21 inputs were supplied to the network (7 
continuous, 6 continuous relative, and 8 discrete 
soil). The neural network architecture and 
parameters used in the individual salinity set 
experiments are outlined in Table 2. 
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Table 2. Neural network parameters and 
architecture 

Parameters Values 
No. of hidden layers 1 
Hidden layer neurons 2 – 18 
NN passes 100,000 – 400,000 
Learning rate 0.1 – 0.9 
Momentum 0.9 
Epoch size 10 
Initial weights ± 0.1 

 
Results and Discussion 
 
Table 3 shows the performance of the neural 
networks on the individual salinity sets. The 
results indicate that good classification accuracies 
can be achieved using this technique. However the 
neural network’s performance on the local 
groundwater data set is lower than the network’s 
performance on the other two data sets. This may 
indicate that different factors are required for the 
mapping of salinity due to local groundwater. It is 
also possible that the reduced performance on the 
local groundwater salinity data set is due to a more 
complex relationship existing between the input 
factors and this salinity type or that not all the 
areas affected by soil salinity were identified 
during the on–ground survey. Variations on the 
backpropagation neural network architecture may 
assist in improving this performance.  
 
Table 3. Training and testing performance on 
individual salinity set experiments 

 Training 
Accuracy 

Testing 
Accuracy 

Local groundwater 67.8% 68.8% 
Regional groundwater 89.0% 83.0% 
Waterlogged 78.8% 76.0% 

  
In order to analyse the results further, the 
performance on the saline and non-saline examples 
were examined. Figure 4 shows the percentage of 
saline examples which have been correctly 
classified for each of the three salinity types. 

Saline Accuracy

86.5 88.9 88.8

Local Groundwater Regional Groundwater Waterlogging

Salinity Set

%
 C
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re
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Figure 4. Percentage of correctly classified saline 
examples (testing set) 

Figure 5 shows the percentage of non-saline 
examples which have been correctly classified.  

Non-Sal ine Accur acy

51.5

76.7

62.2

Local  Gr oundwater Regional  Gr oundwater Water logging

Salinit y Set

 

Figure 5. Percentage of correctly classified non-
saline examples (testing set) 
 
Figure 4 shows that a high percentage correct is 
achieved on the examples for the three saline types 
with an average of 88.0%. The results for the 
correct classification of the non-saline examples 
were not as high with an average percentage 
correct of 63.4%. The values for the local 
groundwater data and the waterlogged data sets are 
51.5% and 62.2% respectively. It is possible that 
different neural network models including expert 
neural networks (McCullagh 2003) may assist in 
improving the performance on the non-saline 
examples. This has been identified as an area for 
future research. 
 
5.2. Combined Salinity Set Experiments 
 
A second series of experiments were conducted to 
evaluate the performance of a neural network 
when the three sources of salinity (local, regional, 
and waterlogged) were combined into a single 
class. Examples were classified as saline or non-
saline. Each of the three salinity classes were 
equally represented in the data sets. The training, 
testing, and validation sets each comprised 6,612 
examples: with 3,306 non-saline and 3,306 saline 
examples randomly selected (1,102 each due to 
local groundwater, regional groundwater and 
waterlogged salinity).  
 
The data was preprocessed and presented to the 
network as specified in the previous experiment 
(Section 5.1). 
 
Results and Discussion 
 
Table 4 shows the performance of the neural 
networks on the combined salinity sets. The best 
network used 16 hidden layer neurons, a learning 
rate of 0.4, momentum of 0.9 and an epoch size of 
5. 
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Table 4. Training, testing and validation 
performance on combined salinity set experiments 

Training 
Accuracy  

Testing 
Accuracy 

Validation 
Accuracy  

81.2% 79.1% 78.4% 
 
The performance of the networks on the saline and 
non-saline examples were investigated to further 
analyse the results. The results are presented in 
Figure 6. 

Accur acy of  Combined Sal ini ty Set 

84.0
74.3

83.1
73.7

Non-Sal ine Sal ine

Tar get
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Figure. 6. Testing and validation performance for 
saline and non-saline classes. 
 
Saline examples have been classified with an 
accuracy of 84.0% correct. Non-saline examples 
have not been classified as accurately, with 74.3% 
correctly classified. The distribution of the non-
saline examples that are used in the training set 
may be a possible cause. Only 3,306 examples 
have been selected to represent the 1,395,784 
examples from the dataset available for research. It 
is possible that the non-saline examples used for 
training the network may not accurately represent 
all the possible non-saline examples. Further 
research is required to investigate the data 
selection process. 
 
The results achieved by the neural networks in this 
research were compared to decision trees and the 
k-nearest neighbour classifier. These results are 
presented in Table 5. 
 
Table 5. Validation performance compared to 
other studies 

Technique % Correct 
Artificial Neural Networks  78.4% 
Decision Trees (Walklate 2002) 74.0% 
k- Nearest Neighbour (kNN) 67.1% 

 
The neural networks demonstrated a 16.8% 
improvement in performance over the kNN 
classifier. In this comparison the same data sets 
from the Wimmera region were used. The neural 
networks were also compared to a study conducted 
in the Western Wimmera (Walklate 2002). This 

study used decision trees to determine if rule 
induction was a suitable tool for estimating the 
presence of salinity. The results from the neural 
networks demonstrated a 5.9% improvement over 
the decision tree technique. It should be noted that 
the results presented in this research are 
preliminary in nature, however they do indicate the 
potential for further work in this area. 
 
6. CONCLUSION 
 
Remote sensing techniques have the potential to 
provide a cost effective technique to collect data 
that can be used to map soil salinity. Neural 
networks were used in this study to process remote 
sensing data and produce salinity maps, with 
promising results. It is believed that, with further 
research, the accuracy of this technique could be 
improved. Potential areas for further research 
include: (a) finding other cost-efficient inputs that 
influence salinity risk; (b) modifying relative data 
calculations to better identify significant readings 
and show the difference to nearby cells; (c) 
investigating the right balance of saline and non-
saline examples to incorporate the large proportion 
of non-saline cases without causing imbalance to 
neural network training; (d) investigating the 
application of expert neural networks; and (e) use 
sensitivity analysis to determine significant inputs. 
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