
A Cascade Approach to Continuous Rainfall Data 
Generation at Point Locations 

1Sivakumar, B. and 2A. Sharma 

1University of California, Davis,  2University of New South Wales,  E-Mail: sbellie@ucdavis.edu 

Keywords: High-resolution rainfall; Data transformation; Scale-invariance; Random cascade; 
Moment scaling function; Log-Poisson distribution; Sydney

 
 

EXTENDED ABSTRACT 
 
High-resolution rainfall data sequences serve as 
inputs for a range of applications in planning, 
design and management of small (mostly urban) 
water resources systems. These applications 
include continuous flow simulation, rain water 
tank design, and the evaluation of alternate policies 
for assessment of environmental impacts. 
However, high-resolution rainfall data are often 
not available, since their measurements are costly 
and time-consuming. The lack of such data is, 
therefore, becoming an important issue. 
 
As direct measurements of high-resolution rainfall 
data are hardly possible in practice (especially in 
developing and under-developed countries), a 
potential alternative may be to try to derive such 
data from the available low-resolution (daily) ones, 
through a data transformation procedure. Research 
on this (rainfall disaggregation) topic has been an 
important activity in hydrology and water 
resources over the last two decades. A host of 
methods have come into the fore as a consequence. 
Among these, the scaling-based methods seem to 
have received noticeable attention, essentially for 
their underlying concept that: the properties of the 
rainfall process at different scales not only are 
related to each other (a fundamental requirement 
for data transformation between such scales) but 
also are independent of the scale of observation (a 
desirable property, for data transformation over a 
wide range of scales). 
 
In view of this, an attempt is made in the present 
study to test the utility and suitability of a random 
cascade scaling-based approach for transformation 
of rainfall data observed in Sydney, Australia. 
More specifically, disaggregation of rainfall data 
from daily scale to finer resolutions is attempted. 
Four different successively doubled resolutions 
(daily, 12-hr, 6-hr, and 3-hr) are considered. The 
analysis involves two systematic steps: (1) 
identification of the presence of scaling behavior 
in the rainfall process; and (2) generation of 

synthetic data possessing same/similar scaling 
properties of the observed rainfall data. 
 
The scaling identification is attempted for two 
different types of data sets, towards cross-
verification and confirmation of presence of 
scaling: (1) rainfall data at the four individual 
scales; and (2) distribution of rainfall amounts (i.e. 
weights) between the successively doubled scales. 
The statistical moment scaling function method is 
employed for this purpose. While this is essentially 
a multi-scaling method, it has a particular 
advantage that it can distinguish between mono-
scaling and multi-fractal behaviors. For synthetic 
data generation, a log-Poisson distribution for the 
weights (rainfall not used in this step) is assumed, 
and the scaling behavior (moment scaling 
function) of the observed weights is considered as 
the “reference” property. 
 
The results indicate the presence of multi-scaling 
behaviors in all the time series analyzed (i.e. 
rainfall data as well as weights), as convex 
moment scaling function curves are observed. The 
synthetic data generated using the log-Poisson 
distribution is found to exhibit a scaling behavior 
that matches very well with that for the observed 
weights. However, the results also indicate that 
fitting the scaling function alone does not 
necessarily mean fitting the data. The use of log-
Poisson distribution for synthetic data generation 
is found to possess an important limitation in that 
it does not generate zero values, which are a 
common occurrence in high-resolution data. The 
use of a scaling-based method in itself needs to be 
cautiously pursued since: such methods are useful  
only for distinguishing between mono- and multi-
scaling behaviors, but not between scaling and 
non-scaling. 
 
In light of the present results, future research will 
focus on comparison of the scaling-based approach 
with those based on parametric alternating renewal 
processes, non-parametric fragments, and 
nonlinear deterministic chaos. 
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1. INTRODUCTION 
 
The importance of high-resolution rainfall data is 
increasingly realized, especially in the design and 
management of small (mostly urban) water 
resources systems, since such data serve as inputs 
for a range of applications, including continuous 
flow simulation, and design and management of 
drainage networks. However, measurements of 
high-resolution data are costly and time-
consuming and, therefore, hardly a competitive 
alternative in practice, more so in developing and 
under-developed countries. An alternative way is 
to try to obtain data at high resolutions from the 
commonly available low-resolution (e.g. daily) 
ones, through a data transformation procedure. 
 
The last two decades have witnessed a number of 
studies investigating the possibility of 
transformation of rainfall data from one scale to 
another. Hershenhorn and Woolhiser (1987) 
developed a stochastic model to disaggregate daily 
rainfall into a number of individual storms in a 
day. Each storm’s starting time, duration and 
amount were simulated using rainfall on the day 
and on the preceding and following days. 
However, the generation of internal storm structure 
was not addressed. Arnold and Williams (1989) 
proposed a simple stochastic model to generate 
half-hourly rainfall intensity from daily rainfall. 
The model assumed that the daily rainfall fell in 
only one event. Cowpertwait et al. (1996) 
developed a stochastic disaggregation model for 
rainfall observed in the UK, which allowed 
historical or generated hourly data to be 
disaggregated into totals for shorter time intervals. 
They also observed the necessity of carrying out 
some smoothing of the disaggregated totals to 
obtain realistic storm profiles. Connolly et al. 
(1998) developed a model that allows 
disaggregation of daily rainfall into multiple 
events on a day and the simulation of time-varying 
intensity within each event. Bo et al. (1994) used 
the Bartlett-Lewis Rectangular Pulses (BLRP) 
model (e.g. Rodriguez-Iturbe et al., 1987) to 
disaggregate daily rainfall into hourly values. They 
argued that the successful result was due to a 
scaling behavior of the power spectrum. Another 
approach was proposed by Glasbey et al. (1995), 
who modified the BLRP model to simulate hourly 
data consistent with observed daily totals. 
 
Perica and Foufoula-Georgiou (1996) performed 
scaling-based disaggregation for spatial rainfall. 
They developed a disaggregation model based on 
the empirically-observed scaling of probability 
distributions of rainfall fluctuations and correlation 
between the scaling parameters and the convective 
available potential energy. Olsson (1998) 

employed a cascade scheme (e.g. Gupta and 
Waymire, 1993) to model the temporal small-scale 
structure of rainfall. The main difference between 
this model and most other previous cascade 
models is the exact conservation of rainfall volume 
between successive cascade levels.  This is termed 
a microcanonical property as opposed to canonical 
cascades where the volume is only on average 
conserved (e.g. Mandelbrot, 1974; Schertzer and 
Lovejoy, 1987). Another consequence of this 
cascade structure is that the weights are not 
mutually independent, but have a correlation of –1. 
However, the pairs of weights associated with 
different branchings are assumed to be mutually 
independent. Olsson and Berndtsson (1998) 
employed this model to disaggregate the daily 
seasonal rainfall series of 3 years observed in 
Sweden to 45-min resolution. The disaggregated 
data was shown to very well reproduce many 
fundamental characteristics of the observed 45-min 
data, e.g. division between rainy and dry periods, 
the event structure, and the scaling behavior. 
Menabde and Sivapalan (2000) employed a new 
type of a bounded random cascade model for 
temporal downscaling of individual rainfall events 
in Melbourne, Australia. The study was based on 
observation of a simple scaling property of the 
annual maximum (mean storm) rainfall intensity 
over the storm duration. In a similar scaling 
context, Sivakumar et al. (2001) developed a new 
rainfall disaggregation model using a chaotic 
dynamic approach, as the distributions of rainfall 
between different scales (i.e. weights) were found 
to exhibit nonlinear deterministic dynamic 
behaviors. 
 
Examples of still other studies of interest from the 
viewpoint of continuous rainfall data generation 
are the ones that employ conditional simulation 
under assumptions of Markovian dependence, as is 
the logic used in the DRIP simulation model (e.g. 
Lambert and Kuczera, 1998; Heneker et al., 2001). 
 
It is encouraging that the studies conducted thus 
far on the transformation of rainfall data from one 
scale to another nearly unanimously support such a 
possibility. Particularly the scaling-based studies 
that employed multi-fractal random cascade 
schemes seem to be useful to improve our 
understanding of the rainfall phenomenon and the 
possibility of rainfall disaggregation and, 
therefore, can have a prospect of tremendous 
practical significance. The purpose of the present 
study is to test the utility and suitability of a 
random cascade scaling-based approach for 
temporal transformation of rainfall data observed 
in Sydney, Australia. More specifically, 
transformation of daily rainfall data to finer-
resolution ones is attempted. 
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The investigation is carried out systematically in 
two steps: 
• identification of the presence of scaling in the 

observed rainfall (both in rainfall amounts at 
individual scales and in their distributions 
between successive scales); and 

• generation of synthetic data possessing 
same/similar scale-invariant properties of the 
observed rainfall (weights) 

 
2. SCALING AND CASCADES 
 
Transformation of rainfall data from one scale to 
another generally involves a fundamental 
assumption that the properties associated with the 
rainfall process at these scales are related to each 
other. In addition, if the properties of the process 
are assumed to be independent of the scale of 
observation, then the process is said to exhibit 
“scaling” or “scale-invariance.” The nature of such 
a scaling relationship is, in general, dependent 
upon the behavior of the process at the different 
scales under consideration, or across such scales to 
be more precise. For example, the scaling 
relationship may be either ‘stochastic’ (e.g. 
Schertzer and Lovejoy, 1987) or ‘deterministic 
chaotic’ (e.g. Sivakumar et al., 2001), even though 
most of the studies thus far investigating scaling in 
rainfall have assumed a stochastic relationship. 
While this type of distinction can indeed be made, 
the type of scaling relationship is generally viewed 
in the context of ‘dimensionality.’ More 
specifically, if the process can be characterized by 
a single “fractal” dimension, then it is said to 
exhibit “mono-scaling;” if more than one fractal 
dimension (or a dimension function) are needed to 
characterize the process, then the process is said to 
exhibit “multi-scaling.” For purpose of simplicity 
and generality, this type of classification is adopted 
in the present study, regardless of the nature of the 
underlying dynamics (stochastic or chaotic). Also, 
the methods used for scaling identification and 
synthetic data generation, presented later, are 
based on the assumption of a “random” cascade. 
 
Figure 1 depicts a typical framework of a random 
cascade model for rainfall (or any other) process.  
Assuming transformation (disaggregation) in time, 
for example, the rainfall amount (X) observed at 
the coarsest-resolution (e.g. daily) is distributed 
into rainfall amounts (Yi) corresponding to a finer 
resolution (e.g. 12 hours), where i is equal to the 
number of intervals to which X needs to be 
distributed (or “broken down”).  Obviously, this 
distribution follows allocation of certain weights to 
each interval, which are denoted by Wi. Once Yi’s 
are obtained, they are distributed, in a similar 
manner, to rainfall amounts (Zi) corresponding to a 
subsequent finer resolution (e.g. 6 hours), with 

(usually) a different set of weights, consistent with 
the “random” assumption. This procedure is 
repeated until the rainfall amounts corresponding 
to the desired (finest) resolution (e.g. 5 minutes) 
are obtained. The number of intervals, i,  to which 
rainfall amounts X’s (or Y’s or Z’s and so on) need 
to be distributed may be fixed or varied, depending 
upon the desired resolution. In this study, the 
number of intervals are simply doubled at 
successive levels, i.e. rainfall amount (X) at a 
given coarser resolution is broken down into two 
parts to obtain amounts (Y1 and Y2) at the 
successive finer resolution. 

X

x

X

Y1 Y2

Z1

W1 * X W2 * X

W3 * Y1
W4 * Y1 W5 * Y2 W6 * Y2

The Cascade

Z2 Z3 Z4

 
Figure 1. Generic Framework of a Random 
Cascade Model: X represents the aggregate  value, 
Yi (and Zi) are the disaggregated values, and Wi are 
the weights of distribution of X (and Yi). 
 
 
3. METHODOLOGY 
 
The methodology for high-resolution rainfall data 
generation herein involves two steps: (1) 
identification of scaling behavior in the rainfall 
process (both in rainfall amounts and their 
distributions between successive scales); and (2) 
generation of synthetic data possessing similar 
scaling properties to the observed ‘process.’ 
Several (mono-scaling and multi-scaling) methods 
are available for scaling identification. Among 
these, the statistical moment scaling function 
method (e.g. Frisch and Parisi, 1985; Over and 
Gupta, 1994) is used herein. While this method is 
essentially considered as a multi-scaling method, it 
has also a particular advantage in that it can 
distinguish between mono-scaling and multi-
scaling behaviors. In the second step of synthetic 
data generation, the distribution of weights are 
assumed as log-Poisson, and the moment scaling 
function is considered as the “reference” scaling 
property [see also Onof and Townend (2004)]. The 
procedures involved in these scaling identification 
and synthetic data generation methods are 
presented next. 
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3.1. Scaling Identification: Statistical 
Moment Scaling Function Method 

 
In the statistical moment scaling function method, 
the time series, Xt, t = 1, 2, …, N, is divided into 
non-overlapping intervals of a certain time 
resolution. The ratio of the maximum scale of the 
field to this interval is termed the “scale ratio,” λ. 
Thus, λ is inversely proportional to the size of the 
scale examined. For different scale ratios, λ, the 
average threshold, ε(λ, i), in each interval, i, is 
computed and raised to power q, and subsequently 
summed to obtain the statistical moment, M(λ, q): 
  ∑=

i

qiqM ),(),( λελ   (1) 

For a scaling field, the moment, M(λ,q), relates to 
the scale ratio, λ, as follows: 

)(),( qqM τλλ =   (2) 
where τ(q) may be regarded as a characteristic 
function of the fractal behavior, and is given by the 
slope of the log M(λ, q) vs. log λ plot. If τ(q) 
versus q is a straight line, the time series is mono-
scaling. If τ(q) versus q is a convex function, then 
the time series is multi-scaling (e.g. Frisch and 
Parisi, 1985; Svensson et al., 1996). 
 
3.2. Synthetic Data Generation: Log-

Poisson Distribution 
 
For synthetic data generation, at each subdivision 
(or level) of the cascade model, the total intensity 
(i.e. rainfall value) at the coarser resolution is 
multiplied by two random numbers to obtain the 
intensities at the finer resolution. The distribution 
of the random numbers W assumed is log-Poisson 
[following the encouraging results reported by 
Onof and Townend (2004) for UK rainfall data]. 
More specifically, the distribution is given as: 

W = AβN    (3) 
where P{N = m} = cm e-c / m!   
This apparently leaves three parameters to be 
identified: A, β and c. However, the conservation 
of the mean intensity entails that the mean of W 
must be equal to 1. This leads to: 

A = exp[c(1-β)]   (4) 
which leaves two parameters to be identified: β 
and c. The random cascade is designed to 
reproduce the observed properties of the (multi-
scaling of the (rainfall) time series, expressed in 
terms of moments: 

ln{E[I(Δt)q]} = -τ(q)ln(Δt) + ρ(q) (5) 
with τ(q), the moment scaling function, as the 
structure function (i.e. a convex function, if multi-
scaling behavior holds). 
 

The calibration then involves fitting the structure 
function derived from the data to a theoretical form 

τ(q) = c[q(1 - β) + (βq  - 1)] / ln 2 (6) 
This fitting is carried out by using the least-squares 
method. This means that, if τobs(qi) is the observed 
structure function and τθ(qi) is the theoretical one 
given by the formula above, then the parameters 
are found with the following minimization 
program: 

O = Σi=1,n [τobs(qi) - τθ(qi)]2  (7) 
subject to:  

β, c ≥ 0 
where n is the number of values of q used in the 
fitting, and qi are these values of q.  
 
4. DATA, ANALYSIS AND RESULTS 
 
4.1. Data 
 
In this study, rainfall data observed at the Sydney 
Observatory Hill, Sydney, Australia, are studied. 
Rainfall data are available at 6-min intervals. As a 
preliminary attempt herein to study the utility and 
suitability of the scaling-based approach, rainfall 
data of only four successively doubled resolutions 
between daily and 3-hr (i.e., daily, 12-hr, 6-hr, and 
3-hr) are considered. The presence of scaling in 
rainfall is investigated both for the rainfall data at 
the individual scales and for the distributions 
(weights) of rainfall between them, in order to 
cross-verify and confirm the results. For the 
synthetic data generation, however, only the results 
from the distributions of weights are used, 
consistent with the log-Poisson assumption above. 
 
4.2. Rainfall Scaling Behavior 
 
In the statistical moment scaling function method, 
for each  rainfall series or weight distributions at 
each level of the cascade model, as appropriate, the 
non-overlapping intervals (or box-sizes) used are: 
1, 2, 4, …, N/4, N/2, and N. Consequently, the 
scale ratios, λ, are: N, N/2, N/4, …, 4, 2, and 1. For 
each λ, the qth statistical moment is calculated 
according to Eq. (1). The q values considered are 
between 0.0 and 5.0, in steps of 0.5. 
 
Figure 2, for instance, shows the time series [(a)] 
and the moment scaling results [(b) and (c)] for the 
daily rainfall data. As can be seen [Figure 2(b)], 
the log-log relationship between M(λ, q) as a 
function of λ exhibits large linear scaling regions 
for all values of q [except for higher q’s that cause 
divergence of moments], allowing fairly accurate 
estimation of the slopes, τ(q). The [-]τ(q) versus q 
function [Figure 2(c)] is a convex curvature, rather 
than a straight line. This is an indication of the 
presence of multi-scaling behavior in the daily 
rainfall series. Similar multi-scaling behavior is 
observed also for the 12-hr, 6-hr, and 3-hr rainfall 
series [figures not shown]. 
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Figure 2. Sample Time Series [(a)] and Moment 
Scaling Results [(b) and (c)] for Daily Rainfall 

Figure 3, for instance, shows the time series [(a)] 
and moment scaling results [(b) and (c)] for the 
weights between daily and 12-hr scales. The 
relationship between [-]τ(q) and q [(c)] exhibits a 
convex curvature, indicating the presence of multi-
scaling behavior. Similar behavior is observed also 
for the weights between 12-hr and 6-hr scales and 
between 6-hr and 3-hr scales [figures not shown]. 

The presence of multi-scaling behavior in all of the 
time series analyzed, and especially in the 
distributions of weights, indicates the possibility of 
obtaining rainfall data at a finer resolution (e.g. 12-
hr) from those at a coarser resolution (e.g. daily). 
With these results, synthetic data that possess the 
scaling property (moment scaling function) of the 
observed weights are generated next. 
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Figure 3. Sample Time Series [(a)] and Moment 
Scaling Results [(b) and (c)] for Weights Between 
Daily and 12-hr Rainfall Series   
 
4.3. Synthetic Rainfall Data Generation 
 
Fitting the theoretical scaling function [Eq. (6)] to 
that of the observed weights for the distribution 
between 24-hr and 12-hr [Figures 3(c)] yields: β = 
0.5, c = 1.5. Substituting these values in Eq. (4) 
gives A = 2.117. With this, synthetic weights are 
generated according to [Eq. (3)]: W = 2.117 * 
(0.5)n, where n are the random numbers. In a 
similar manner, weights are generated also for the 
two other cases: between 12-hr and 6-hr scales, 
and between 6-hr and 3-hr scales. For brevity, only 
the results obtained for the case between daily and 
12-hr scales are presented. However, it is also 
found that the observations made below for this 
case are also applicable to the other two cases.   
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Figure 4. Observed versus Modeled Data Between Daily and 12-hr Scales: (from top to bottom) Moment 
Scaling Function, Weight Distribution, and Time Series (at 12-hr)
 
Figure 4(a) and (b) presents the moment scaling 
functions for the observed and the generated 
weights, respectively, for the daily to 12-hr scales. 
The functions match very well, qualitatively and 
quantitatively. This seems to indicate the utility of 
the log-Poisson distribution approach for 
synthetic data generation, with the moment 
scaling function as a characteristic. While these 
results are encouraging, one must also recognize 
that matching the scaling function alone may not 
be sufficient to “replicate” the “observed” data.  
 
To verify this, comparisons are also made using 
direct time series plots of weight distributions 
[Figure 4(c) and (d)] and of rainfall data at the 12-

hr scale [Figure 4(e) and (f)]. While the 
synthetically generated data seems to possess the 
“random” distributions present in the observed 
data, including the “peaks” and  “dips”, a closer 
look at the plots tells a different story. Some 
conspicuous observations to this end are as 
follows: The observed weights have a maximum 
value equal to 2, a minimum value equal to 0, and 
over 30% of values as zeros. On the other hand, 
the modeled weights have a maximum value of 
2.117, a minimum value of 0.002 (and obviously 
no zeros at all). This situation is essentially due to 
the log-Poisson distribution used. It is obvious 
that these discrepancies also eventually influence 
the rainfall values [Figure 4(e) and (f)]. 
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5. CONCLUSIONS
 
This study tested the utility of a random cascade 
scaling-based approach for rainfall 
disaggregation. The methodology involved 
identification of scaling behavior in rainfall, 
followed by synthetic generation of data 
consistent with this scaling behavior. Application 
of the approach to rainfall observed in Sydney 
indicates its potential, but the results also suggest 
caution, because: (1) fitting the scaling function 
alone does not necessarily mean fitting the data; 
and (2) certain existing methods for synthetic data 
generation (e.g. log-Poisson distribution) may not 
suit the observed data, especially in generating 
zeros. Two other limitations that exist in the use 
of scaling identification methods also need 
attention: (1) most methods (e.g. statistical 
moment scaling) are useful only for 
distinguishing between mono- and multi-scaling, 
but not between scaling and non-scaling; and (2) 
since the methods generally require 2n number of 
data, some of the available data may go unused. 
Future research will address these issues. 
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