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EXTENDED ABSTRACT 

Environmental modelling often requires 
knowledge of the values of certain climatic 
variables at locations where no such information 
is available. When this is the case, one must rely 
on interpolated values derived from climatic data 
recorded at surrounding locations. The accuracy 
of the interpolated field, however, can often be 
critically dependent on the inclusion of additional 
predictor variables in the data models used to 
calculate the interpolated values. This is the case 
with precipitation, for example, as it is often 
influenced by the underlying topography. When 
interpolating precipitation data it is therefore 
desirable to include predictors such as elevation 
and topographic slope and aspect, in addition to 
those quantifying the data point locations, to 
achieve accurate precipitation surfaces. 
Furthermore, studies have shown that 
interpolation accuracy is improved by allowing 
for a spatially varying dependence on these 
topographic variables. Additional predictors will 
also be appropriate when analysing temporal 
trends in climatic data. Interpolation procedures 
that incorporate additional predictors in a spatially 
varying way can also be useful tools for analysing 
how the effects of certain predictors vary across 
the spatial extent of the region under 
consideration.  

While it may be desirable to include several 
additional predictor variables in a data model, 
there are practical constraints that limit the 
feasibility of such an approach. A common 
problem that arises when analysing multivariate 
data is that interpolation methods are limited by 
the fact that estimating a d-variate function with 
no constraints on its structure, apart from 
smoothness, requires data sets of impractical size 
for larger values of d; a fact referred to as the 
curse of dimension. Consequently, interpolation 
based on higher dimensional data can be 
numerically expensive or completely impractical.  

In many cases the interpolated surface required 
for application is two- or three-dimensional.  This 

being the case, unconstrained interpolation based on 
higher dimensional data can produce more elaborate 
dependencies on the predictor variables than actually 
needed. It is therefore natural to employ a data 
fitting method that allows the incorporation of 
multiple predictors but bypasses the curse of 
dimension by identifying only the underlying two- 
or three-dimensional (spatial) dependencies. 
 
Additive regression spline models may be thought of 
as extensions of linear regression models that 
incorporate spatially varying dependences on the 
predictor variables. Additive regression splines may 
also be thought of as special cases of tensor-product 
smoothing splines. As such, they enable robust 
spatio-temporal analysis of climatic data that depend 
on many variables, in a spatially varying way. 
Additive regression spline models also bypass the 
usual technical difficulties associated with 
interpolation of higher dimensional data sets.  

In this paper we discuss the application of additive 
regression spline models in the analysis of climatic 
data that depend on many variables in a spatially 
varying way. We illustrate their use in two 
applications. The first uses additional predictor 
variables related to topographic slope and aspect to 
analyse the topographic modulation of Swiss daily 
rainfall. Spatial patterns of the direction and extent 
of orographic modulation are presented along with 
an analysis of the short-range correlation structure 
within the data. The second application uses 
polynomial functions of time as additional 
predictors to analyse spatio-temporal trends in 
Australian pan evaporation data collected between 
1970 and 2003. Unlike other methods employed in 
the literature to analyse temporal trends in climatic 
variables, the methods presented here allow use of 
data from all stations, not just the serially complete 
ones.  Estimates of the spatially disaggregated linear 
trend in annual pan evaporation arising from the 
first-order and fourth-order temporal models are 
presented. 
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1. INTRODUCTION 
 

Spatio-temporal analysis of climatic data using 
interpolation methods is important for a number 
of applications in environmental sciences.  For 
example, such interpolatory methods play a 
pivotal role in the assessment of the impacts of 
climate on agriculture, ecology, hydrology and 
tourism. Furthermore, because physically based 
models present forecasts in the form of gridded 
surfaces at resolutions ranging from tens to 
hundreds of kilometres, methods for interpolating 
climatic data have an important part to play in the 
calibration and validation of such models. Spatio-
temporal interpolation methods are also becoming 
increasingly important in climate change research. 
Such interpolation methods are required to 
establish spatial patterns in trends of climatic 
variables so that the impacts of potential climate 
changes can be assessed. In this paper we discuss 
such a method and illustrate its use with two case 
studies. 

2. ADDITIVE REGRESSION SPLINES 
 
Suppose that we have n dependent data values zi 
(i=1,…,n) recorded at spatial locations with 
longitude xi and latitude yi, and that we have K 
additional predictor variables at the corresponding 
locations denoted by pij, j=1,…,K. The (bivariate) 
additive regression spline model is given by 
(Sharples and Hutchinson, 2004) 
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where i ranges from 1 to n. Heuristically, we may 
think of the additive regression spline model as a 
linear regression model in which the constant 
regression parameters have been replaced by the 
bivariate functions f0,…, fK. These functions will 
be referred to as the additive components of the 
model. Note that, although we restrict attention in 
this paper to bivariate additive regression spline 
models, additive regression spline models in 
which the additive components are univariate, 
trivariate or higher dimensional functions are also 
possible. 

The random error term εi in (1) includes both 
errors in the measurement of the dependent 
variable zi as well as errors due to the failings of 
the model. The errors are assumed to be 
realisations of a zero mean normal random 
variable with constant unknown variance σ2 and 
positive spatial correlation specified by a single 
unknown parameter a. It is assumed that the 

variance matrix of the random error terms may be 
written  

2( )T
aE Vσ=ε ε , 

 

where E denotes expectation, ε=(ε1,…, εn)T and Va is 
the n n×  positive definite correlation matrix 
depending on the pair-wise horizontal separations of 
the n data points and the unknown scale parameter 
a. 

The unknown functions f0, f1,…, fK are then 
estimated by the suitably smooth bivariate functions 
g0, g1,…,gK  that minimise  
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nz z=z is the vector of dependent data 

values and 1ˆ ˆ ˆ( ,..., )T
nz z=z is the vector of fitted 
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J2( g ) is a measure of roughness defined in terms of 
the second-order partial derivatives of the function 
g.  

The non-negative smoothing parameters ρ1,…, ρK 
determine a balance between how well the fitted 
additive regression spline model reproduces the 
dependent data values and the smoothness of the 
additive component functions. In practice the 
smoothing parameters are determined by appealing 
to standard methods such as minimising the 
generalised cross validation (GCV) or maximising 
the generalised maximum likelihood (GML). For 
more information on smoothing parameter selection 
see Wahba, 1985; 1990, Gu and Wahba, 1991. 

As stated above, additive regression spline models 
can be viewed as special cases of tensor-product 
smoothing splines (Gu and Wahba, 1993a; 1993b). 
However, unlike tensor-product splines, additive 
regression splines can be implemented via a 
relatively simple extension of the methods used to 
derive standard thin-plate smoothing splines. This 
can be done without appeal to the underpinning 
reproducing kernel structure that is usually 
associated with tensor-product splines (Sharples and 
Hutchinson, 2004). 

3. SPATIO-TEMPORAL ANALYSIS OF 
CLIMATIC DATA 

 

In this section we provide examples of the 
application of additive regression splines to climatic 
data. In particular, we illustrate their use in the 
analysis of daily precipitation data collected over the 
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Swiss Alps and in the analysis of trends in 
Australian annual pan evaporation data. 

3.1. Topographic enhancement of 
precipitation 

 

The spatial distribution of rainfall over a region is 
often strongly related to the shape of the 
underlying topography (Spreen, 1947; Barry, 
1992; Smith, 1979). Precipitation patterns can be 
affected by topography through a variety of 
processes. The most obvious examples are the wet 
regions found on the windward side and the 
corresponding dry, rain-shadow regions in the lee 
of mountain ranges that are subject to dominant 
prevailing winds. Other processes facilitating the 
topographic enhancement of precipitation include 
the formation of orographic wave clouds and 
induced atmospheric instability resulting from 
uplift and condensation (Smith, 1979).  

The slope of the topography and its orientation 
with respect to the direction of dominant 
prevailing winds are important factors in 
determining where and by how much rainfall is 
enhanced. The effects of these features of the 
topography are also likely to be spatially variable. 
To properly account for features in the spatial 
distribution of rainfall such as rain-shadows, it 
therefore makes sense to include variables 
quantifying topographic slope and aspect in 
spatial interpolation methods, in addition to those 
quantifying spatial location. Moreover, it is 
desirable to allow for spatially varying 
dependencies on these variables over the region of 
interest. 

To incorporate the effects of topographic slope 
and aspect into interpolation procedures we use 
the two horizontal components p and q, of the unit 
normal to an appropriately scaled digital elevation 
model (DEM). If the scaled DEM is characterised 
as the graph of the function h(x,y) then the 
horizontal components of the unit normal are 
given by 
    

2 2

( , )( , ) ,
1 ( , ) 1 ( , )

yx h x yh x yp q
h x y h x y

−−= =
+ ∇ + ∇

  

 
where hx and hy are the partial derivatives of the 
scaled DEM elevation h(x,y) with respect to x and 
y respectively, and ( , )x yh h h∇ =  is the gradient 
vector field of the scaled DEM. Equivalently, 
 

        cos sin , sin sinp qα θ α θ= − = −   

where α is the topographic aspect angle and θ is 
the angle of steepest slope. The variables p and q, 

unlike topographic slope and aspect themselves, are 
continuous functions of horizontal location x, y. 
They are small for mild slopes, where topographic 
interaction with rain bearing atmospheric flows 
should be slight, and largest for steep regions where 
topography can have a significant influence on 
atmospheric flows. The use of both p and q permits 
the direction of interaction to be determined directly 
from the precipitation data without reference to the 
prevailing wind field (Hutchinson 1998b). 

The bivariate additive regression spline model, 
incorporating the additional predictor variables p 
and q is given by  

1
2

0 ( ) ( ) ( )i i i p i i q i ir f p f q f ε= + + +x x x        (3) 

 

with i=1,…, n. Here ri denotes the precipitation total 
recorded at the i-th data location xi = (xi, yi). The 
square root transformation is applied to the 
precipitation totals to remove the natural skewness 
in rainfall data and to reduce interpolation error 
(Hutchinson, 1998a). 

The method of maximising GML is used to 
determine the appropriate degree of smoothing of 
the functions f0, fp and fq as well as the appropriate 
values of the two parameters σ2 and a defining the 
random error (Wahba, 1985; Wang, 1998). We 
estimate the short-range correlation structure with 
three different candidate model: Exponential, 
Markov and Gaussian. Using sij = a-1 ||xi – xj|| to 
denote the scaled separation of pairs of data points, 
the three models are given by 
 

                                 
2

[ ] exp( )

[ ] (1 )exp( )

[ ] exp( )

a ij ij

a ij ij ij

a ij ij

V s

V s s

V s

= −

= + −

= −

  

The additive regression model (3) has been applied 
to daily precipitation totals collected over 
Switzerland on 8 May 1986. These data were used 
as the basis for the Spatial Interpolation Comparison 
1997 (Dubois, 1998).  The model (3) was fitted to a 
subset of 367 data points, whose locations are shown 
in figure 1 along with a 10 km resolution DEM of 
the region. 

Of particular interest is the inferred effective wind 
field associated with the model (3). This two-
dimensional vector field is defined as 
 

( )( , ) ( , ), ( , )p qx y f x y f x y=w             (4) 
 

and describes both the direction and magnitude of 
the orographic enhancement of the daily rainfall 

Exponential:
Markov: 

Gaussian: 
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totals. The fitted inferred effective wind field can 
be seen in figure 2. 
 

 

Figure 1. Locations of the 367 rain gauges overlaid on 
a 10km resolution DEM of the Swiss Alps 

 
Figure 2 indicates clear topographic forcing in 
relation to the dominant synoptic conditions. The 
day’s rainfall was associated with an extensive 
low-pressure system centred on Ireland. There is 
orographic enhancement on the southern face of the 
Alps, indicating channelling up the Po Valley and 
orographic enhancement on the north-western faces 
of both the Jura Mountains and the Alps, with 
channelling up and beyond the Rhone and Inn 
River Valleys (refer to figure 1 for the location of 
these subregions). This is in broad agreement with 
the precipitation climatology produced by Frei and 
Schär (1998). 

 
 

Figure 2.  Inferred effective wind field w(x,y), overlaid 
on an 8km resolution DEM. 

 

Figure 3 shows the fitted exponential, Markov and 
Gaussian models of the short-range correlation. 
All three models indicate substantial short-range 
correlation out to a separation of approximately 3-
4 km.  
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Figure 3. Fitted short-range error correlation models. 

 

3.2. Spatio-temporal trends in Australian pan 
evaporation 

Understanding the terrestrial water balance is 
important for a variety of applications including 
those encountered in agriculture, hydrology and 
ecology. Perceived changes in the terrestrial 
moisture balance, whether they are caused by 
anthropogenic influences or arise as a consequence 
of the natural variability of climatic systems, have 
the potential to affect the way we manage 
environmental systems, the way we formulate policy 
and the way we implement climate change 
mitigation and adaptation strategies.  

An important component of the terrestrial moisture 
balance is the evaporative demand of the 
atmosphere. In practice the evaporative demand of 
the atmosphere, known as potential evaporation, is 
taken to be proportional to the amount of water that 
evaporates from a standardised class-A pan. 
Analyses of pan evaporation records across the 
globe suggest an overall decrease in pan evaporation 
over the last few decades. This apparent global 
decrease in pan evaporation does not seem to 
support the common belief that global warming will 
cause terrestrial evapotranspiration to increase. 
Reconciling this so-called ‘pan evaporation paradox’ 
has been the subject of several recent papers 
(Peterson et al., 1995; Chattopadhyay and Hulme, 
1997; Brutsaert and Parlange, 1998; Thomas, 2000; 
Golubev et al., 2001; Roderick and Farquhar, 2002, 
2004; Linacre, 2004; Liu et al., 2004; Hobbins et al., 
2004). 

To properly understand the driving factors behind 
changes in pan evaporation and the implications of 
these changes, robust analyses are required to 
effectively filter out the noise in the pan evaporation 
data and establish clear spatial patterns in pan 
evaporation trends. Moreover, since relatively few 
pan evaporation stations have complete records, the 
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analytical methods employed must also be able to 
deal with the fragmentary records of most pan 
evaporation stations. Additive regression spline 
models appear to be good candidates for meeting 
these requirements. 
 

The pan evaporation data used in these analyses 
were obtained from the Australian Bureau of 
Meteorology (BoM). The BoM maintains a 
standardised class A pan network that provides 
reasonable coverage over most of the Australian 
continent. We used data from the years 1970 to 
2003 since before 1970 the pan evaporation 
network was not considered reliable enough for 
analysis. A single datum consisted of the twelve 
monthly pan evaporation measurements taken at a 
particular station over a single year. For those years 
when a particular station didn’t have any missing 
monthly pan evaporation measurements, annual 
pan evaporation totals were ascribed to the station 
by summing the twelve monthly data values. 
 
 In some instances pans were not fitted with bird 
screens to guard against animal predation until after 
1970. The study conducted by van Dijk (1985) 
indicated that the presence of bird screens had the 
effect of reducing pan evaporation totals by 4-8% 
over the four different stations used in the study, 
with an average reduction of 7%. Hence rather than 
trying to account for homogeneity problems 
associated with installation of bird screens, pan 
evaporation totals recorded at stations not equipped 
with a bird screen were omitted from the analyses.  
 
Over the period of 1970-2003, data from 450 pan 
evaporation stations were analysed. These analyses 
were based upon 6306 annual pan evaporation 
totals. The locations of the 450 stations can be seen 
in figure 4, while the number of active stations for 
each of the years 1970-2003 can be seen in figure 
5. 
 

To estimate spatial patterns in pan evaporation 
trends we use additive regression spline models 
incorporating temporal polynomials as additional 
predictors. In particular, we employ the Legendre 
polynomials, the first three of which are 
(Abramowitz and Stegun, 1972):  
 

21
0 1 2 2( ) 1, ( ) , ( ) (3 1)P x P x x P x x= = = −  

with –1 ≤ x ≤ 1. Legendre polynomials are used 
instead of the standard polynomial basis functions 
because they are orthogonal with respect to the 
L2-inner product (Kreyszig, 1978). This fact 
means that the temporal predictors defined by the 
Legendre polynomials are approximately 
independent. This ensures that models using these 

predictors are stable in the sense that dependencies 
on lower order temporal predictors are minimally 
affected by the inclusion of higher order temporal 
predictors in the model. 

 
Figure 4. Locations of class A pan evaporation stations 
used in this study. 
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Figure 5. Number of active pan evaporation stations for 
each of the years 1970-2003. 

 

To estimate the spatially disaggregated linear trend 
in pan evaporation, we consider the additive 
regression spline model 

        pan
0 1 1( , ) ( ) ( , )i i i i i i iE f x y P t f x y ε= + +         (5) 

with i=1,…, n. Here ti is a transformed temporal 
coordinate. If we use Ti to denote the year (1970-
2003), then the transformed temporal coordinate is 
given by  
                  (2 3973) / 33 [ 1,1]i it T= − ∈ − . 

Considering the sparsity of the pan evaporation data 
network, we make the assumption of no spatial 
correlation in the errors, i.e. we take the covariance 
matrix Va = I, the identity matrix. The appropriate 
degree of smoothing of the functions f0 and f1 and 
the appropriate value of the variance σ2 are 
determined by minimising the GCV. 
Fitting the additive regression spline model given by 
(5) to annual pan evaporation data and taking the 
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time derivative (with respect to the years) yields a 
spatially varying linear temporal trend estimate 
given by 2f1(x,y)/33 mm a-1. The graph of this 
function can be seen in figure 6. The results 
confirm a decrease in annual pan evaporation for 
most parts of the continent but interestingly, 
suggest that the region encompassing most of 
Queensland, western New South Wales and 
northwest South Australia has experienced an 
increase in annual pan evaporation. Calculating 
the average of the trend surface in figure 6, we 
obtain an estimate for the continental trend in 
annual pan evaporation of –1.78 mm a-1.  
 

 
Figure 6. Estimated linear trend in annual pan 
evaporation. Contours show values in units of mm a-1. 

 

Estimation of higher order polynomial trends can 
be accomplished in a similar fashion after adding 
the appropriate higher order temporal Legendre 
polynomials to the set of additional predictors. 
The GCVs arising from the ensuing spline were 
seen to stabilise when the temporal variability was 
modelled using Legendre polynomials up to order 
four. This indicates that the most appropriate 
additive regression spline model incorporates 
temporal effects up to fourth-order: 

4

0
1

( , ) ( ) ( , )pan
i i i j i j i i i

j
E f x y P t f x y ε

=

= + +∑ ,     (6) 

with i=1,…, n. This assertion could also be 
confirmed by an analysis of deviance. The 
appropriate degree of smoothing of the functions 
f0, f1,…, f4  and the appropriate value of the 
variance σ2 are again determined by minimising 
the GCV. 

The time derivative of the model (6) is now a 
trivariate function that varies with respect to space 
and time. The function f1, present in the model 
(6), also provides an estimate of the spatially 
varying linear trend component of pan 
evaporation. This function, as estimated from the 

annual pan evaporation data, is displayed in figure 7.  

The similarity in the spatial structure of the 
functions shown in figure 6 and figure 7 attests to 
the robustness of the methods employed. The 
magnitudes of the trends in figure 7, however, are 
smaller than those in figure 6 since the higher order 
components in the model (6) account for some of the 
temporal variability. Taking the average of the trend 
surface in figure 7, we obtain another estimate for 
the continental linear trend in pan evaporation of –
1.81 mm a-1, which is practically identical to the 
average obtained from the surface in figure 6. 
 

 

 
Figure 7.  Linear component of the trend in annual pan 
evaporation as estimated by the fourth order temporal 
model. Contours show values in units of mm a-1. 

4. CONCLUSIONS 

Additive regression spline models appear to be a 
practical option for analysing spatially varying 
effects of several predictors on observed climatic 
data. They are attractive from the point of view of 
overcoming curse of dimension problems associated 
with the analysis of noisy multivariate data. 
Moreover, their implementation involves a 
straightforward extension of existing standard thin-
plate spline methodology. 

The results presented in section 3.1 suggest that 
additive regression spline models, with short-range 
error correlation, are a promising option for 
elucidating multiple topographic dependencies of 
precipitation data. The models can be considered to 
separate physical processes, as embodied in the 
topographic variables p and q, from the spatial 
variation of the effects of these processes, as 
embodied in the functions fp and fq. The topographic 
variables can be replaced by known functions of 
these variables if these functions are known to be 
closer to the controlling process. Inclusion of short-
range correlation in the models significantly reduced 
overall model complexity, enabling robust 
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calibration of the precipitation model from limited 
data 

Additive regression spline models also facilitate 
robust analyses of the spatio-temporal variability 
of climatic data, as illustrated in section 3.2. They 
permit analysis of spatio-temporal trends based on 
data from all stations, no matter how short their 
records, and thus make use of many more stations 
than just the serially complete ones that are 
usually the focus of climatic trend analyses. 

The additive regression spline models permit 
spatial disaggregation of the overall trends in 
climatic data. Obtaining a clear picture of the 
spatial patterns in climatic trends helps us 
understand the connections between various 
climatic factors and forcing agents. It can also 
provide insight into the effects of anthropogenic 
climate change. 
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