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EXTENDED ABSTRACT 
 
Marquees are temporary light structures that are 
connected to the ground by tensile anchors to resist 
forces imposed by wind acting on the structure.  
Failures of such structures are not rare and have 
resulted in deaths and tens of thousands of dollars 
of damage.  Consequently, an accurate estimation 
of the ultimate pullout capacity of ground anchors 
is essential; however, current methods for estimat-
ing the ultimate pullout capacity of marquee 
ground anchors are inaccurate.  This is attributed 
to the fact that the models used by current methods 
were originally developed to estimate the axial ca-
pacity of a single pile rather than small size an-
chors.  The aim of this paper is to develop a more 
accurate model for predicting the pullout capacity 
of marquee ground anchors based on the neuro-
fuzzy technique.  The type of neurofuzzy networks 
used are the B-spline networks that are trained 
with the adaptive spline modelling of observation 
data (ASMOD) algorithm.  A series of 119 in situ 
anchor pullout tests, conducted at six different lo-
cations in the Adelaide Region, South Australia, 
are used for the neurofuzzy model calibration and 
validation. Statistical analyses that compare the ac-
tual measured pullout capacity with those pre-
dicted by the neurofuzzy model and three existing 
pile capacity prediction methods are conducted 
and discussed.        
 
1 INTRODUCTION 
 
Temporary light structures, such as marquees, are 
almost exclusively connected to the ground using 
small anchors that resist uplift forces imposed pre-
dominantly by wind acting on the structure.  The 
anchors are often installed vertically to transmit 
the tensile forces from the structure to the sur-

rounding soil.  The shear strength of the surround-
ing soil resists these tensile forces, hence, provides 
structural stability.  Traditionally, these anchors 
are made of steel rods, less than one metre in 
length, and have different diameters and shapes.  
The mechanics of ground anchor behaviour is not 
well understood (Su and Fragaszy 1988) and avail-
able methods for predicting the pullout capacity of 
ground anchors are inaccurate.   Consequently, 
failures of marquees and other light structures are 
not rare.  As an example of such a failure, in Ka-
punda, South Australia, an inflatable children’s 
amusement failed, resulting in the death of a young 
girl (The Advertiser 2001).  The inflatable amuse-
ment was restrained by ground anchors, and, as a 
result of a significant wind event, the anchors 
failed causing the structure to be lifted 10 metres 
into the air, carrying the child with it (DAIS 2001).  
In addition, Australian industry sources indicate 
that when marquees fail, they often need to be re-
paired or replaced, incurring costs of, sometimes, 
tens of thousands of dollars (Griggs 2002).    
 
In this paper, an attempt is made to develop a more 
accurate anchor pullout capacity prediction model 
using the neurofuzzy technique.  The neurofuzzy 
technique used utilises the B-spline networks that 
are trained with the adaptive spline modelling of 
observation data (ASMOD) algorithm.  B-spline 
neurofuzzy networks have been already used suc-
cessfully by the authors in the field of geotechnical 
engineering (Shahin et al. 2003a; Shahin et al. 
2003b). B-spline neurofuzzy networks can perform 
input/output data mappings with the additional 
benefit of being able to translate the model in-
put/output relationships into a set of fuzzy rules 
that describe the model in a transparent fashion.  In 
this work, a series of 119 in situ anchor pullout 
tests that were conducted at six different locations 
within Adelaide, South Australia, is used to de-

66

mailto:shahin@uow.edu.au


velop and verify the neurofuzzy model.  The sites 
selected for conducting the pullout load tests were 
chosen so as to cover a variety of soil types and 
geotechnical conditions.  Undisturbed soil samples 
were taken from sites investigated and laboratory 
tests were carried out on the samples obtained to 
quantify the geotechnical properties of the soil at 
each site.  The soil parameters used for developing 
the neurofuzzy model were derived from a number 
of cone penetration tests (CPTs) that were con-
ducted at each site.  The study focuses on axial 
loading of rough anchors installed vertically, as 
these are most commonly used in practice.  Three 
anchor types of different embedment depths, 
shapes and cross-sectional areas are examined.  
The actual measured pullout loads from in situ 
pullout tests are compared with those obtained us-
ing the neurofuzzy model as well as three existing 
methods of pile capacity that use the direct cone 
penetration test (CPT) data.  Statistical analyses to 
evaluate and rank the performance of the neuro-
fuzzy model and the CPT methods used are con-
ducted and their results are discussed.  Details of 
the field tests and measured data are discussed 
briefly in Section 3, and in more detail by Shahin 
and Jaksa (2003).  
 
2 B-SPLINE NEUROFUZZY NETWORKS 
 
B-spline neurofuzzy networks use the fuzzy logic 
system to store knowledge acquired from a set of 
input variables (x1, x2, …, xn) and the correspond-
ing output variable (y) in a set of linguistic fuzzy 
rules that can be easily interpreted, such as: IF (x1 
is high AND x2 is low) THEN (y is high), c = 0.9, 
where (c = 0.9) is the rule confidence, which indi-
cates the degree to which the above rule has con-
tributed to the output.  The concept of fuzzy logic 
was first introduced by Zadeh (1965).  As part of 
any fuzzy logic system, two main components (i.e. 
fuzzy sets and fuzzy rules) need to be determined.  
In order to determine the fuzzy sets, linguistic 
terms (e.g. small, medium and large) can be inter-
preted mathematically in the form of membership 
functions and model variables are fuzzified to be 
partial members of these membership functions in 
the interval grade (0,1).  This means that, for a 
fuzzy set A, an input variable x is fuzzified to be a 
partial member of the fuzzy set A by transforming 
it into a degree of membership of function uA(x) of 
interval (0,1).  B-spline basis functions are piece-
wise polynomials of order k that can be used as 
one form of membership function.  For each input 
variable, the fuzzy sets overlap and cover the nec-
essary range of variation for that variable in the 
process called fuzzification.  It should be noted that 
the model output of a fuzzy set is also fuzzy and, 
in order to obtain a real-valued output, defuzzifica-
tion is needed.  The mean of maxima and centre of 

gravity are the most popular defuzzification algo-
rithms (Brown and Harris 1994). 
 
A typical structure of a neurofuzzy network con-
tains three layers: an input layer; a single hidden 
layer; and an output layer (Brown and Harris 
1994).  The input layer normalises the input space 
in a p-dimensional lattice (Figure 1).  Each cell of 
the lattice represents similar regions of the input 
space.  The hidden layer consists of basis func-
tions, such as B-spline functions, which are de-
fined on the normalised input space.  The size, 
shape and overlap of the basis functions determine 
the structure and complexity of the network.  The 
output layer sums the weighted outputs from the 
basis functions to produce the network output us-
ing the following equation: 
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where y = model output; ai = output from the pth 
basis function; and wi = connection weight associ-
ated with ai.  This output is compared with the ac-
tual measured output and a connection error (the 
mean squared error, MSE, is usually used) is cal-
culated.  Using this error and implementing a 
learning rule, the neurofuzzy network adjusts its 
weights and determines its fuzzy parameters (i.e. 
fuzzy sets and rules).   
 

 
Figure 1. Typical structure of a neurofuzzy net-
work (Brown and Harris 1995) 
 
One major disadvantage of B-spline neurofuzzy 
networks is the so-called curse of dimensionality, 
in which the number of fuzzy rules is exponen-
tially dependent on the dimension of the input 
space.  This results in a large number of fuzzy 
rules and consequently impractical model repre-
sentation.  The analysis of variance (ANOVA) rep-
resentation is one useful approach to overcome this 
problem (Brown and Harris 1995).  ANOVA de-
composes an n-dimensional function into a linear 
combination of a number of separate functions, as 
follows (Brown and Harris 1995): 
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where f0 represents a constant (the function bias); 
and the other terms represent the univariate, 
bivariate and high-order subfunctions.  In many 
situations, the majority of high-order terms are 
zero or negligible, resulting in a limited number of 
subfunctions (often called subnetworks) of much 
lower dimensions that approximate the network 
input/output mapping.  It should be noted that each 
subnetwork in the ANOVA description represents 
a neurofuzzy system of its own and the overall 
model output is produced by summing outputs of 
all subnetworks.  
 
The adaptive spline modelling of observation data 
(ASMOD) proposed by Kavli (1993) is an algo-
rithm that can be used to automatically obtain the 
optimal structure of B-spline neurofuzzy networks 
and select model inputs that have the most signifi-
cant impact on outputs.  The algorithm starts with 
a simple model (e.g. only one variable with two 
membership functions) and iteratively refines the 
model structure during training so as to gradually 
increase model capability until some stopping cri-
terion is met.  Possible refinements include adding 
or deleting input variables, forming multi-variate 
subnetworks using ANOVA, and increasing the 
number and dimension of an individual subnet-
work.  For every refinement, the impact of net-
work pruning is evaluated and the network that has 
the simplest structure with the best performance is 
chosen.  One common stopping criterion is the 
Bayesian Information Criterion (BIC) given by 
Brown and Harris (1994), as follows: 
 

)ln()ln( LpMSELK +=  (3) 
 
where K = performance measure; p = size of cur-
rent model; MSE = mean square error; and L = 
number of data pairs used to train the model.  The 
measure, given in Equation 3, balances model 
complexity, the number of training data, and 
model error.  It should be noted that the BIC stop-
ping criterion requires the data to be divided into 
two sets; a training set to build the model and an 
independent validation set to test the predictive 
ability of the model in real-world situations. 
 
3 DEVELOPMENT OF NEUROFUZZY 

MODEL 
 
In this work, the neurofuzzy model is developed 
using the software package NEUFRAME Version 
4.0 (Neusciences 2000).  A series of 119 in situ 
pullout tests on rough mild steel anchors, given by 
Shahin and Jaksa (2003), are used to calibrate and 

validate the neurofuzzy model.  The tests were car-
ried out on sites of different soil types and geo-
technical conditions.  The anchors used have dif-
ferent shapes (i.e. circular, hexagonal and star 
dropper) and were embedded vertically on the 
ground at various embedment lengths (i.e. 400, 
600 and 800 mm).  The anchors were also installed 
into the ground statically by means of a steady 
penetration provided by an hydraulic ram associ-
ated with a drilling rig or dynamically using a 
sledge hammer.  Details of the tests conducted and 
the data derived from the tests are given by Shahin 
and Jaksa (2003).  The factors affecting pullout 
capacity of marquee ground anchors (i.e. anchor 
equivalent diameter, Deq, embedment length, L, av-
erage cone tip resistance over anchor length, cq , 

average sleeve friction over anchor length, sf , and 
installation technique, InsTech) are presented to 
the neurofuzzy model as potential model input 
variables.  The ultimate pullout capacity, Qu, is the 
single model output variable.  The ASMOD algo-
rithm, described previously, is used to optimise 
automatically model architecture and selects the 
input variables that have the most significant im-
pact on model outputs.  As mentioned earlier, the 
ASMOD algorithm also uses stopping criteria (e.g. 
BIC) that require the data to be divided into two 
sets; training and validation.  In this work, 80% 
(i.e. 96 case records) of the available data are used 
for training and 20% (i.e. 23 case records) are used 
for validation.  Once training has been successfully 
accomplished, the performance of the model is 
tested and the results are given.  It was found that 
the neurofuzzy model performs well in both the 
training and validation sets with coefficients of 
correlation of 0.83 and 0.89 for the training and 
testing set, respectively.  This implies that B-spline 
neurofuzzy networks are able to predict reasonably 
well the pullout capacity of marquee ground an-
chors. 
 
A schematic view of the neurofuzzy model is 
given in Figure 2.  It can be seen that the model 
uses only 4 out of 5 potential input variables as the 
most significant inputs.  The chosen inputs are the 
anchor equivalent diameter, Deq, embedment 
length, L, average sleeve friction, sf , and installa-
tion technique, InsTech.  It can also be seen that 
the model has four 1D subnetworks.  In each of the 
subnetworks obtained, triangular membership 
functions of order 2 are used for all input vari-
ables, as shown in Figure 3.  It can be seen from 
this figure that the membership functions of Deq, L, 
InsTech and Qu are presented over a two-valued 
linguistic universe (i.e. small and large for Deq, 
shallow and deep for L, static and dynamic 
for InsTech, and light and heavy for Qu).  On the 
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other hand, the membership function of the sleeve 
friction, sf , is presented over a three-valued lin-
guistic universe (i.e. light, medium and heavy).  As 
a result, three subnetworks containing two rules 
are obtained, while only one subnetwork contains 
three rules, resulting in a model with 9 fuzzy rules, 
as listed in Table 1.  It should be noted that the 
number between brackets in Table 1 represents the 
rule confidence described earlier.  The fuzzy rules 
in Table 1 are a valuable source of information 
from which knowledge can be extracted that gov-
erns the relationships between pullout capacity and 
the factors affecting it.  The knowledge that can be 

erived from Table 1 is as follows: d
 
− Small anchor diameters and shallow embed-

ment lengths are most likely to result in light 
pullout capacity (Rules 1 and 3) and Large 
anchor diameters and deep embedment lengths 
are most likely to result in heavy pullout ca-
pacity (Rules 2 and 4); 

− Light sleeve friction results in light pullout 
capacity (Rule 5) and Heavy sleeve friction re-
sults in heavy pullout capacity (Rule 7).  On 
the other hand, Medium sleeve friction is 
equally likely to result in light or heavy pull-
out capacity (Rule 6); and 

− Static or dynamic installation techniques are 
equally likely to result in light or heavy pull-
out out capacity.  However, static installation 
is more likely to result in heavier pullout ca-
pacity than dynamic installation (Rules 8 and 
9). 

 

Qu

InsTech 

f
-

s

L 

Deq 

Subnetworks  
Figure 2.  Schematic representation of the neuro-
fuzzy model 
 
It should be noted that the range of applicability of 
the previous fuzzy rules is constrained by the qual-
ity and range of data used in the Neurofuzzy model 
calibration phase.  Consequently, it is unlikely that 
the fuzzy rules obtained provide a general repre-
sentation of the relationship between anchor pull-
out capacity and the factors affecting it.  However, 
in general, the fuzzy rules are in agreement with 
what one would expect based on the underlying 
physical understanding of anchors subjected to 
tension.  Interestingly, the rule pertaining to static 
versus dynamic installation is also as one might 
expect, as the process of dynamically installing 
anchors is more likely to reduce adhesion along 

the shaft of the anchor and, hence, reduce pullout 
capacity. 
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Figure 3. Membership functions of input variables 
used by the neurofuzzy model 
 
Table 1.  Fuzzy Rules Extracted by the Neuro-
fuzzy Model  

 

Sub-
net- 
work 
No. 

Rule 
No. 

Rule 

1 IF “Anchor diameter” is Small  
THEN “Pullout capacity” is Light (0.52)  
OR “Pullout capacity” is Heavy (0.48) 

1 

2 IF “Anchor diameter” is Large  
THEN “Pullout capacity” is Light (0.33)  
OR “Pullout capacity” is Heavy (0.67)  

3 IF “Embedment length” is Shallow  
THEN “Pullout capacity” is Light (0.64)  
OR “Pullout capacity” is Heavy (0.36) 

2 

4 IF “Embedment length” is Deep  
THEN “Pullout capacity” is Light (0.12)  
OR “Pullout capacity” is Heavy (0.88)  

5 IF “Sleeve friction” is Light  
THEN “Pullout capacity” is Light (1.00)  

6 IF “Sleeve friction” is Medium  
THEN “Pullout capacity” is Light (0.43)   
OR “Pullout capacity” is Heavy (0.57)  

3 

7 IF “Sleeve friction” is Heavy  
THEN “Pullout capacity” is Heavy (1.00)  

8 IF “Installation technique” is Static  
THEN “Pullout capacity” is Light (0.41)  
OR “Pullout capacity” is Heavy (0.59)  

4 

9 IF “Installation technique” is Dynamic 
 THEN “Pullout capacity” is Light (0.54)  
OR “Pullout capacity” is Heavy (0.46)  

4 COMPARISON OF NEUROFUZZY 
MODEL WITH CURRENT PILE 
CAPACITY PREDICTION METHODS 

 
In order to examine the accuracy of the neurofuzzy 
model, it is compared with three pile capacity pre-
diction methods currently used in practice.  The 
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methods considered use available data from cone 
penetration tests (CPTs) and include: Penpile 
(Clisby et al. 1978); De Ruiter and Beringen 
(1979); and LCPC (Bustamante and Gianeselli 
1982).  It should be noted that these methods are 
normally used to estimate the axial capacity of 
piles loaded in compression.  Whilst marquee an-
chors are generally much smaller in diameter than 
piles, these methods should, nonetheless, be appli-
cable to marquee anchors subjected to tensile 
forces.  Furthermore, no other methods are avail-
able, other than empirical, that enable the pullout 
capacity of marquee anchors to be determined. 
 
The ultimate pile/anchor load capacity, Qu, is com-
posed of the pile/anchor base resistance, Qb, and 
the pile/anchor shaft skin friction, Qs.  For pullout 
load, the base resistance, Qb, can be assumed to be 
zero, as it is negligible for piles/anchors in tension, 
and thus the ultimate load capacity, Qu, is equal to 
the shaft skin friction, Qs, which can be calculated 
as follows: 
 

LCfQQ pavesu ==  (4) 
 
where  fave = average unit skin friction; Cp = 
pile/anchor cross-section perimeter; and L = 
pile/anchor embedment length.  Several methods 
are available in the literature for calculating the 
average unit skin friction, fave , from measurement 
of cone tip resistance, qc, or sleeve friction, fs.  In 
the present work, the applicability of three differ-
ent CPT pile capacity methods are assessed in rela-
tion to the anchor field testing data, as mentioned 
above.  Details of the average unit skin frictions, 
fave, calculated by each method are given elsewhere 
(Abu-Farsakh and Titi 2004).  
 
To evaluate and rank the performance of the neu-
rofuzzy model and the three CPT methods used, 
the rank index (RI) proposed by Abu-Farsakh and 
Titi (2004) is used.  The rank index is the summa-
tion of four ranks (RI = R1+R2+R3+R4) deter-
mined from different statistical criteria and accord-
ing to this rank index, the performance of a pile 
capacity method is better for lower RI.  The rank 
criteria used (i.e. R1, R2, R3, and R4) are described 
in detail by Abu-Farsakh and Titi (2004), which 
include: (1) the equation of the best fit of predicted 
pullout load, Qp, versus measured pullout load, Qm, 
with the corresponding coefficient of correlation, 
r; (2) the arithmetic mean, µ, and the correspond-
ing standard deviation, σ, of Qp /Qm; (3) the 50% 
and 90% cumulative probabilities (P50 and P90) of 
Qp /Qm; and  (4) the ±20% accuracy level obtained 
from the lognormal distribution and histogram of 

Qp /Qm.  For each of the methods used in the pre-
sent work, the abovementioned rank criteria are 
determined and their results are given in Table 2.   
The first criterion is determined by carrying out a 
regression analysis to obtain the best fit line of 
Qp /Qm of the available 119 anchor tests for each 
pullout capacity prediction method and the rela-
tionship of the best fit line of Qfit /Qm and the corre-
sponding coefficient of correlation, r, are calcu-
lated.  According to this criterion, better 
performance is obtained from the method that has 
Qfit /Qm closer to one with r nearer to one.  The re-
sults of this criterion are shown in Table 2 (col-
umns 2, 3, and 4), for each of the methods used.  It 
can be seen that the neurofuzzy model is given R1 
= 1 and thus ranks number one.  The neurofuzzy 
model has Qfit /Qm = 0.95 with r = 0.84, which 
means that, according to the first criterion, the neu-
rofuzzy model tends to under-predict the measured 
pullout capacity by an average of 5%.  It can also 
be seen that the method of  De Ruiter and Berin-
gen comes last as it ranks number four.  This sug-
gests that, according to the first criterion, this 
method tends to over-predict the measured pullout 
capacity by an average of 53% as it has Qfit /Qm = 
1.53 with r = 0.48.  It can also be seen that the 
Penpile method and the LCPC method rank second 
and third and they tend to under-predict the meas-
ured pullout capacity by average values of 29 and 
43%, respectively. 
  
The second criterion is obtained by calculating the 
arithmetic mean value, µ, and the corresponding 
standard deviation, σ, of Qp /Qm of the 119 anchor 
tests for each pullout capacity prediction method.  
According to this criterion, the performance is bet-
ter for the method that has µ (Qp /Qm ) closer to 1 
with σ (Qp /Qm) nearer to zero.  The results of this 
criterion are given in Table 2 (columns 5, 6, and 7) 
for each of the methods used.  It can be seen that, 
again, the neurofuzzy model ranks first with µ = 
1.05 and σ  = 0.34, which means that, according to 
the second criterion, the neurofuzzy model tends to 
over-predict the measured pullout capacity by an 
average of 5%.  On the other hand, the method of 
De Ruiter and Beringen again ranks last with µ = 
1.46 and σ  =1.43, which suggests that, according 
to the second criterion, this method tends to over-
predict the measured pullout capacity by an aver-
age of 46%.  It can also be seen that the LCPC 
method and the Penpile method rank second and 
third and they tend to under-predict the measured 
pullout capacity by average values of 23% and 
26%, respectively.  
 
The third criterion is determined by sorting, in an 
ascending order (1, 2, 3, …, i, …, n), the ratios                       
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Table 2. Performance Evaluation of the Neurofuzzy Model and the CPT Methods used 
Best fit calculations Arithmetic  

calculations 
Cumulative  
probability 

±20% Accuracy Overall rank  
Method* 
 Qfit/Qm r R1 Μ σ R2 at 

P50 
at 
P90 

R3 Log 
normal 

Histo-
gram 

R4 
 

RI Final 
rank 

1 0.95 0.84 1 1.05 0.34 1 0.98 1.38 1 47.74 67.23 1 4 1 
2 0.71 0.77 2 0.74 0.26 3 0.69 1.03 2 26.98 32.77 2 9 2 
3 0.57 0.40 3 0.77 0.50 2 0.60 1.50 4 18.14 12.61 4 13 3 
4 1.53 0.48 4 1.46 1.43 4 1.36 3.18 3 19.50 1.68 3 14 4 

                       * 1 = Neurofuzzy, 2 = Penpile, 3 = LCPC, 4 = De Ruiter & Beringen. 
                        r = correlation coefficient, µ = mean, σ = standard deviation, P50 = cumulative probability at 50%, P90  = cumulative probability at 90%,  
                        RI = Rank Index. 
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Figure 4. Histogram and lognormal distribution curves of Qp/Qmof the pullout capacity methods 
 
Qp/Qm  of the 119 anchor tests for each of the pile 
pullout capacity prediction methods used versus 
the cumulative probability (P) that can be calcu-
lated as follows (Long and Wysockey 1999): 
 

)1( +
=

n
iP  (5) 

 
where i = order number given for the considered 
ratio; n = number of anchors.  The 50% and 90% 
cumulative probabilities (i.e. P50 and P90 of Qp/Qm ) 
are then obtained and used to measure the ten-
dency of each method to over-predict or under-
predict the measured pullout capacity.  Based on 
this criterion, the closer the values of  P50 and P90 
are to unity, the better the performance of the 
method.  The results of this criterion, for each of 

the prediction methods used, are given in Table 2 
(columns 8, 9, and 10).  It can be seen that the 
neurofuzzy model again ranks first with P50 = 0.98 
and P90  = 1.38, which means that, according to 
the third criterion, the neurofuzzy model tends to 
under-predict the measured pullout capacity by an 
average of 2%.  On the other hand, the LCPC 
method ranks last with P50 = 0.60 and P90 = 1.50, 
which suggests that, according to the third crite-
rion, this method tends to under-predict the meas-
ured pullout capacity by an average of 40%.  It 
can also be seen that the Penpile method ranks 
second and tends to under-predict the measured 
pullout capacity by an average of 31%, whereas 
the method of De Ruiter and Beringen ranks third 
and tends to over-predict the measured pullout 
capacity by an average of 36%. 
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The fourth criterion is determined by plotting the 
histogram and lognormal distribution curves of 
Qp/Qm for the 119 anchor tests of each pullout ca-
pacity prediction method and the probability of 
predicting the pullout capacity within ±20% accu-
racy is obtained by calculating the area under-
neath the curves within mpm QQQ 2.18.0 ≤≤ .  
Based on this criterion, the higher the probability 
of  ±20% accuracy the better the performance of 
the method used.  The histogram and lognormal 
distribution curves of the methods used are shown 
in Figure 4 and the corresponding probabilities 
and rank of the 20% accuracy are given in Table 2 
(columns 11, 12, and 13).  It can be seen from 
Table 2 that the neurofuzzy model again ranks 
first with the highest lognormal distribution and 
histogram probability values of 47.74 and 
67.23%, respectively.  On the other hand, the 
LCPC method ranks last for this criterion with the 
lowest lognormal distribution and histogram 
probability values of 18.14 and 12.61%, respec-
tively.  It can also be seen that the  Penpile 
method, and the method of De Ruiter and Berin-
gen, rank second and third, respectively.  Finally, 
the results of the overall rank for the pullout ca-
pacity prediction methods used are shown in Ta-
ble 2 (columns 14 and 15).  It can be seen that,  
according to the evaluation criteria used in this 
work, the neurofuzzy model outperforms other 
methods and ranks number one.       
 
5 CONCLUSIONS 
 
The results of this study indicated that the B-
spline neurofuzzy model was able to predict well 
the pullout capacity of marquee ground anchors 
and significantly outperforms the three traditional 
pile capacity prediction methods examined.  The 
results of the rank index used as a basis for com-
parison of the investigated pile capacity predic-
tion methods indicated that the performance of the 
neurofuzzy model ranked number one over the 
investigated methods followed by the Penpile 
method  (Clisby et al. 1978) and the LCPC 
method  (Bustamante and Gianeselli 1982).  On 
the other hand, the rank index also showed that 
the method of De Ruiter and Bringen (1979) 
ranked last.     
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