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EXTENDED ABSTRACT 
 
A quantity of miscible contaminant gas is 
released into the atmospheric boundary layer 
and the objective is to describe the evolution of 
contaminant concentration values within the 
cloud. Although turbulent convective motions 
will spread the contaminant cloud over 
distances of tens of meters the only mixing 
between host and contaminant fluid, and hence 
reduction of concentration values, takes place 
through molecular diffusion over length scales 
of about a millimeter. The normal way to 
observe the state of concentration values is 
through the probability density function (PDF) 
p(2;x,t) defined as 

{ }p t d t d( ; , ) ( , ) ,θ θ θ θ θx x= ≤ < +prob Γ  (1) 
where ∋(x,t) is the concentration, in units of 
mass per unit volume, at the position located 
by vector x at time t. p(2;x,t) is very difficult to 
theoretically predict or to measure for a cloud 
even in a well controlled laboratory flow. The 
approach to be taken here is to invert some 
relatively few lower-ordered moments, defined 
as, 

μ θ θ θn
nt m t p t d( , ) ( ( , )) ( ; , ) ,x x x= −∫ ∞

10      (2) 
where, 

m t p t dn
n( , ) ( ; , ) ,x x= ∫∞ θ θ θ0               (3) 

to approximate the PDF. 
   
A rather simple prescription has been put 
forward for the distributed moments of (2). For 
example the second, distributed, central, 
moment is 

μ β α2
2

1 1 1( , ) ( ) ( , )( ( ) ( , ) ( , )),x x 0 xt t m t t m t m t= −
                    (4) 

where ∀(t) and ∃(t) are functions of time that 
depend on the flow and initial release 
configuration. This prescription of distributed 
moments has received considerable validation 
over a range of steady laboratory flows and 
release conditions. However there is 
insufficient experimental information available 

to directly validate that simple prescription in 
experiments. 
 
In yet another, related, proposal it was 
suggested that all of the normalized higher 
moments Kn n

n= −μ μ2
2/ could be simply 

expressed as polynomic functions of the 
skewness K3 .  For example, kurtosis K4 is 

K aK b4 3
2= + ,                        (5) 

where a and b are order one constants. A very 
important feature of this proposal is that 
measured values at isolated points throughout 
the entire concentration field collapse onto a 
single curve such as that given by (5). There 
has been experimental validation of (5) over a 
remarkably wide range of experiments 
including steady contaminant release from 
elevated sources in the atmospheric boundary 
layer covering a variety of stability classes and 
also in gas clouds of various densities in the 
laboratory even in the presence of crenellated 
and un-crenellated fences. The expression 
given in (5) has also been confirmed with 
laboratory measurements on a plume in grid-
turbulence. Over all of these diverse 
experimental configurations the constants that 
appear in (5) are essentially confined to the 
narrow range of 1 < a < 3 and 1 < b < 3. 
 
The aim is to use well controlled laboratory 
data from a plume in grid turbulence to 
validate the expressions for K5 and K6 . It is 
shown that the parameters that are necessary 
for the former proposal for the simple 
prescription for distributed moments can be 
approximately extracted from the latter 
proposal for the normalized moments. A 
framework is provided for the approximate 
representation of p(2;x,t). The validation of the 
proposed normalized higher moments now 
implies the validation of the simple distributed 
moment proposal upon which the PDF is 
constructed. That is one can use some isolated 
fixed point data in field measurements to 
indirectly confirm the appropriateness of this 
procedure to approximate the PDF. 
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1. INTRODUCTION 
 
Mole and Clarke (1995) suggested that higher 
normalized moments, found throughout an 
entire contaminant concentration field, should 
collapse onto simple polynomic functions of 
skewness. The first few of these are: 

K aK b4 3
2= +  

K cK dK5 3
3

3= +              (6) 

K eK fK g6 3
4

3
2= + +  

where [a,...g] are constants. The remarkable 
collapse of field data (Lewis et al 1997) and of 
data from laboratory experiments on dense 
clouds (Chatwin and Robinson 1997) for 
kurtosis as a quadratic function of skewness 
given in (6) is very encouraging. That data was 
acquired in difficult circumstances both with 
respect to amount of stationary record and 
temporal and spatial resolution concerns. The 
fact that all of the data from isolated fixed 
point measurements can be used on one graph 
is very helpful with respect to the inevitable 
measurement error.  
 
It is essential that the expressions given in (6) 
be tested with well-controlled and resolved 
laboratory measurements. Data from 
experiments on plumes in grid turbulence 
undertaken by Sawford and Tivendale (1992) 
will be used to confirm the relationships given 
in (6). 
   
The motivation for the expressions given in (6) 
by Mole and Clarke (1995) was the very 
simple expressions for distributed moments put 
forward in Chatwin and Sullivan (1990) and 
modified in Sawford and Sullivan (1995). This 
simple prescription of distributed moments has 
received considerable validation in steady 
laboratory flows. The six lowest order central 
moments of that prescription are: 
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where ( )r Cn n
n

=
−

αλ 0

1
, λ2 1= , and  

C t m t( , ) ( , )x x= 1 . The β(t) and λn t( ) are 
functions of t only for a contaminant cloud and 

distance downstream x only for a continuous 
source such as a plume. C0 is the maximum 
value of mean concentration m1(0,t) for a cloud 
(or that value on the cross-section of a steady 
release at distance x downstream). The 
distributed moments for a cloud are given in 
(7) in terms of the mean concentration C(x,t), 
the function, β(t), and one function rn(t) for 
each moment. A solution procedure for the 
functions α(t) and β (t) for clouds is provided in 
Labropulu and Sullivan (1995) and that 
procedure has received some limited 
experimental validation when extended to 
generate λ3(t) and hence the third distributed 
central moment. 
 
In Schopflocher and Sullivan (2005) a 
relationship was established between the 
kurtosis given in (6) and the expression for 
distributed moments given in (7). By extension 
(Smith 2005) the approximation  
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1
3
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1
5

3

8
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where a, c and e are the constants that appear in 
(6), can be established. That is, using isolated 
fixed point measurements to find a, c and e 
from (6) one can then use the approximation 
given in (8) to generate the distributed 
moments μn  for n > 3 from (7). 
 
The procedure outlined thus far, to generate 
low-ordered moments which can then be used 
to approximate the PDF p(θ;x,t), represents a 
significant simplification. The main thrust in 
this paper will be to assess the validity of (6) 
and (8) using well-controlled and resolved 
experimental data.  
 
2. EXPERIMENTAL VALIDATION 
 
The experiments of Sawford and Tivendale 
(1992) were conducted in a suction wind tunnel 
with mean wind speed U = 5 ms-1. A grid with 
mesh spacing M = 0.0254 m was used to 
produce a turbulent flow with Reynolds 
number R = UM/μ ≅ 8500 where μ is the 
kinematic viscosity. A heated, 0.213 mm 
diameter, wire was stretched across the flow at 
12.2 M downstream of the grid and produced a 
line-source of heat. Temperatures were 
measured with a cold wire anemometer at 
sampling positions across the plume at 
locations from 2 mm to 2.6 m downstream of 
the heated wire source. A full detailed 
discussion of the experiments is provided in 
the original paper by Sawford and Tivendale 
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(1992) and some analysis in Sawford and 
Sullivan (1995). 
 
The mean concentration profiles C(x,y) , where 
x and y are downstream and cross-stream co-
ordinates respectively, were observed to be 
very well approximated by a Gaussian function 
at each sampling distance downstream. The 
distributed first four moments were shown to 
be well described by the expressions given in 
(7) in Sawford and Sullivan (1995) and also in  
Sullivan (2004), and the values of α, β, λ3E and  
λ4E  are shown in Table 1. A thorough analysis 
of the quadratic function relating kurtosis and 
skewness given in (6) to the moment  
expressions given in (7) is provided in 
Schopflocher and Sullivan (2005). 
Representative fits from the data are shown in 

Figure 1 (a.....m) and the values of the 
parameters that appear in (6) from these least 
square fits are given in Table 2. In the 
experiments between 2 and 5 repeat 
measurement sets were made at each 
downstream sampling station and average 
values over individual fits are shown in the 
tables. The variation of parameter values over 
these replications was small. Distances at less 
than 10mm downstream of the heated wire 
were excluded because of resolution problems 
(see Sullivan 2004) and also data from 
positions greater than 2σ from the plume 
center-line, where σ is the cross-stream plume 
spatial variance, were excluded for reasons of 
poor signal to noise ratio (see Schopflocher and 
Sullivan 2002).  

 
Table 1. Estimates for the λn values for the data using (8). The α, β, λ3E and  λ4E 

      were obtained from Sawford and Sullivan (1995). 
 

X(mm) α β λ3E λ4E λ4 λ5 λ6 
10 1.29 0.79 1.04 1.09 1.11 1.18 1.25 
15 1.39 0.83 1.05 1.10 1.12 1.20 1.26 
20 1.47 0.85 1.06 1.12 1.14 1.21 1.28 
30 1.57 0.85 1.07 1.12 1.15 1.23 1.31 
50 1.76 0.84 1.07 1.14 1.16 1.24 1.30 
70 1.84 0.82 1.08 1.15 1.18 1.27 1.37 

100 1.94 0.80 1.08 1.16 1.17 1.26 1.34 
150 1.95 0.79 1.08 1.15 1.18 1.28 1.37 
200 1.98 0.77 1.08 1.17 1.20 1.32 1.44 
300 1.91 0.80 1.09 1.18 1.21 1.33 1.42 
700 1.82 0.72 1.08 1.17 1.20 1.39 1.57 
1600 1.79 0.62 1.06 1.14 1.22 1.38 1.55 
2600 1.56 0.68 1.06 1.13 1.21 1.37 1.50 

 
Table 2. Parameter estimates for the normalized fourth, fifth and sixth moments in (6). 

 
X(mm) K4 K5 K6 

 a b c d e f g 
10 1.14 2.02 1.51 3.68 2.15 5.39 7.13 
15 1.16 1.87 1.51 3.51 2.11 5.55 6.93 
20 116 1.84 1.51 3.55 2.13 5.51 7.36 
30 1.17 1.84 1.55 3.56 2.25 4.87 9.17 
50 1.17 1.88 1.54 4.23 2.15 8.56 6.77 
70 1.20 1.82 1.66 3.11 2.59 1.52 16.9 

100 1.19 1.98 1.59 4.78 2.34 9.02 9.49 
150 1.22 1.97 1.71 4.28 2.66 6.31 14.5 
200 1.25 2.07 1.85 4.45 3.20 4.33 19.9 
300 1.25 2.18 1.84 5.41 2.88 14.0 6.68 
700 1.29 1.98 2.37 3.84 5.25 -3.54 26.0 
1600 1.44 2.10 2.63 2.76 5.66 -3.66 22.7 
2600 1.43 2.22 2.53 4.54 4.94 8.58 11.5 
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              (m) 
 
Figure 1. Graphs showing the least squares fit (solid line) of (6) to the data. The dashed line is the 
theoretical lower bound K4 = K3

2 + 1 for all P.D.F.s. 
 
 
In Figures 1a...m the data are shown to be well 
represented by least-square curves from (6) for 
each of the downstream stations. The parameters 
shown in Table 2 exhibit a slight, systematic, 
trend as one goes downstream and this trend is 
consistent with the explanation given in 
Schopflocher and Sullivan (2005). It is of interest 
to note the relatively small range of values for the 
parameters over all of the experimental locations 
and particularly those that appear in (8). That is 
1.14 ≤ a ≤ 1.44, 1.51 ≤ c ≤ 2.63 and 2.11 ≤ e ≤ 
5.66. Mole and Clarke (1995) (their Figure 4) 
found, in a least square fit of all of the data from 
both stable and convective conditions using a 
steady release from an elevated source in the 
atmospheric boundary layer, the values of c = 
2.15 and d = -2.38. In those experiments the 
largest values of K5 and K3 were approximately 
10,000 and 20 respectively. 
 
In Table 1 the values of λ4, λ5, and λ6 estimated 
from (8) and using the average values of the 
parameters a, c and e shown in Table 2 are 
presented. It would appear in Table 1 that the λ 
values vary in a systematic way, however, the 
overall variation of approximately 1.04 ≤ λ  ≤ 
1.09, 1.11 ≤ λ ≤ 1.22, 1.18 ≤ λ ≤ 1.39, 1.25 ≤ λ 
≤1.57 is reasonably small. A comparison can be 
made between the averaged measured values of 
λ4E        from Sawford and Sullivan (1995) shown 
in Table 1 and the values calculated from the 
approximation given in (8) using λ3E and the 
estimated value for a. The comparison is quite  
reasonable and particularly so when account is 
taken of the variation of measured values shown 
in Figure 3 of that paper and increasingly so as 
one proceeds downstream. 
 
3. CONCLUDING REMARKS 
 
The main purpose of this paper was to test the 
Mole and Clarke (1995) relationships given in (6) 
with well controlled and well resolved laboratory 
data. Clearly the curves presented in Figure 1, for 
each measuring station downstream, support their  
 

proposal. Indeed, all of the data shown on 
Figures 1 a...m could be shown on one graph 
with small amount of variation of data points 
about a best-fit curve. The very  slight trend in 
the parameter values  as one proceeds 
downstream could be attributable to the close 
proximity of the measuring stations to the source 
and hence not a general feature of most sampling 
conditions. Thus a remarkable simplification is 
achieved in that moments higher than the third 
are determined from the third and second central 
moments and the constant values that apply to the 
entire concentration field. Further, these 
constants can be estimated from isolated, fixed 
point measurements.  
 
In addition, it would appear that the 
approximation given by (8), that was derived 
from connecting the expression for normalized 
moments in (6) to the Chatwin and Sullivan 
(1990) expression for distributed moments in (7), 
provides a reasonable result. That is the 
comparison of the λ4E values with the  λ4 values 
in Table 1 is acceptable. This is very important in 
that the simple expression for distributed 
moments given in (7) would be extraordinarily 
difficult to validate directly in steady 
environmental emissions or even for laboratory 
measurements on contaminant clouds. The 
implication is that the validation of (6), using 
isolated fixed point measurements, is an indirect 
validation of (7) for distributed moments. 
 
The underlying reason for these seemingly 
general and simple results given in (6), (7) and 
(8) is suggested in the fine-scale texture of the 
contaminant concentration field. When 
contaminant is released from a finite source, 
turbulent convective motions stretch out the 
contaminant into sheets and strands of the 
conduction cut-off length scale. This texture was 
exploited in Schopflocher and Sullivan (2005) 
where the PDF was represented as a mixture 
density function-the five-parameter, double-Beta 
density function. The dependence of moments  
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higher than the third on the lower ordered 
moments led Lewis and Chatwin (1996) to 
successfully represent atmospheric data with a 
three-parameter mixture PDF consisting of an 
exponential and a Generalized Pareto density 
function. The approach to developing a strategy 
with which to exploit the moment relationships 
discussed here to arrive at a probability density 
function will be left to another paper.  
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