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EXTENDED ABSTRACT  We describe the results of RL approaches to  
microworld applications of progressively 
increasing complexity, as determined by the state-
action space dimension. These include  discrete 
space-time (grid-world) models of modified Chess 
and Checkers, and a military campaign-level game 
with concurrent moves, called “TD-Island”. We 
also detail complexity reduction through 
hierarchical decomposition in a continuous space 
model of an operational level air-combat model as 
is shown in figure 1. 
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Figure 1: Hierarchical decomposition of a 
complex operational air-game. 

We describe models and algorithms to support 
interactive decision making for operational 
national and military strategic courses of action.  

Abstract representations or ‘microworlds’ have 
been used throughout military history to aid in 
conceptualization and reasoning of terrain, force 
disposition and movements. With the introduction 
of digitized systems into military headquarters the 
capacity to degrade decision-making has become a 
concern with these representations. Maps with 
overlays are a centerpiece of most military 
headquarters and may attain an authority which 
exceeds their competency, as humans forget their 
limitations both as a model of the physical 
environment, and as a means to convey command 
intent (Miller 2005). The design of microworlds 
may help to alleviate human-system integration 
problems, by providing detail where and when it is 
appropriate and recognizable abstractions where it 
is not. Ultimately, Lambert and Scholz (2005 p.29) 
view “the division of labor between people and 
machines should be developed to leave human 
decision making unfettered by machine 
interference when it is likely to prove heroic, and 
enhance human decision making with automated 
decision aids, or possibly override it with 
automated decision making, when it is likely to be 
hazardous.” Cognisant of these issues, we state a 
formalism for microworlds initially to manage 
representation complexity for machine learning. 
This formalism is based on multi-agent stochastic 
games, abstractions and homomorphism.   

Given this  decomposition, current hierarchical RL 
approaches are not sufficient in an adversarial 
context as game-theoretic notions such as mixed or 
randomised strategies, to keep the opponent 
“second-guessing” are absent. We briefly describe 
a new approach to hierarchical learning.  This 
combines both the “win-or-learn-fast” algorithm 
which learns mixed strategies and the MAXQ 
algorithm developed to learn through the structure 
of the hierarchy.  

According to Kaelbling et al (1996), 
“Reinforcement learning (RL) is the problem faced 
by an agent that must learn behaviour through trial 
and error interactions with a dynamic 
environment.” As RL is frustrated by the curse of 
dimensionality, we have pursued methods to 
exploit temporal abstraction and hierarchical 
organisation. As noted by Barto and Mahadevan 
2003 (p. 23), “Although the proposed ideas for 
hierarchical RL appear promising, to date there has 
been insufficient experience in experimentally 
testing the effectiveness of these ideas on large 
applications.”  

Finally, we compare the performance of human 
guessed parameter importance with that of 
machine learned importance in a modified game of 
Checkers with hidden-pieces. Our results show 
that in new or novel domains, such as the hidden 
Checkers game,  machine-learned parameters fare 
better in play, as the algorithms can gain 
experience faster than humans.  
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1. INTRODUCTION 

During Carnegie Mellon University's Robotics 
Institute 25th anniversary, Raj Reddy said, "the 
biggest barrier is (developing) computers that learn 
with experience and exhibit goal-directed 
behaviour. If you can't build a system that can 
learn with experience, you might as well forget 
everything else". This involves developing agents 
characterized by the ability to: 

• learn from their own experience and the 
experience of human commanders, 

• accumulate learning over long time periods on 
various microworld models and use what is 
learned to cope with new situations, 

• decompose problems and formulate their own 
representations, recognising relevant events 
among the huge amounts of data in their 
"experience", 

• exhibit adaptive, goal directed behaviour and 
prioritise multiple, conflicting and time 
varying goals, 

• interact with humans and other agents using 
language and context to decipher and respond 
to complex actions, events and language.  

Extant agent-based modelling and simulation 
environments for military appreciation appear to 
occupy extreme ends of the modelling spectrum. 
At one end, Agent-Based Distillations (ABD) 
provide weakly expressive though highly 
computable (many games per second execution) 
models using attraction-repulsion rules to represent 
intent in simple automata (Horne and Johnson 
2003). At the other end of the spectrum, large scale 
systems such as the Joint Synthetic Armed Forces 
(JSAF) and Joint Tactical Level Simulation (JTLS) 
require days to months and many staff to set up for 
a single simulation run (Matthews and Davies 
2001). We propose a microworld-based 
representation, which falls between these extremes 
in that it may be used to achieve statistically-
significant results yet also allows for decision 
interaction.  

2. INTERACTIVE MICROWORLDS 

Microworlds have been used throughout military 
history to represent terrain, force disposition and 
movements. Typically such models were built as 
miniatures on the ground as depicted in figure 2 or 
on a board grid, but these days are more usually 
computer-based.  

 
Figure 2. Example of a Microworld. 

Creating a microworld for strategic decisions is 
primarily a cognitive engineering task. A 
microworld (e.g. like a map with overlaid 
information) is a form of symbolic language that 
should represent the necessary objects and 
dynamics, but not fall into the trap of becoming as 
complex as the environment it seeks to express 
(Friman and Brehmer 1999). It should also avoid 
the potential pitfalls of interaction, including the 
human desire for “more”, when more is not 
necessarily better. Omedei et al (2004) have shown 
that humans under certain conditions display 
weakness in self-regulation of their own cognitive 
load. Believing for example, that “more detailed 
information is better”, individuals can become 
information overloaded, fail to realise that they are 
overloaded and mission effectiveness suffers. 
Similarly, a belief that “more reliable information 
is better”, individuals can be informed or observe 
that some sources are only partially reliable, fail to 
pay sufficient attention to the reliable information 
from those sources and mission effectiveness 
suffers. Cognisant of these issues, we seek a 
formalism which will allow the embodiment of an 
austere, adaptable and agreed representation. 
Though there is a formal definition of agreement in 
a mathematical sense based on homomorphism as 
we describe below, in practice, humans are the 
purveyors of authority for agreed models.  

2.1. Microworld Formalism  

We use the formalisation of multi-agent stochastic 
games (Fundenberg and Tirole 1995) as our 
generalised scientific model for microworlds. A 
multi-agent stochastic game may be formalised as 
a tuple RTASN ,,,, N

AA

 where  is the number of 
agents,  the states of the microworld, S

NAA ×××= ...21

iA
 concurrent actions, where 

 is the set of actions available to agent , is 
the stochastic state transition function for each 
action, [ ]1,0×: →× SAST , and 

i T
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Chess and Checkers Variant Microworlds 

We initially focused on variants of abstract games 
in discrete time and space such as Chess and 
Checkers. We deliberately introduced asymmetries 
into the games and conducted sensitivity analysis 
through Monte-Carlo simulation at various ply 
depths up to seven. The six asymmetries were 
either materiel, where one side commences with a 
materiel deficit, planning, with differing ply search 
depths, tempo, in which one side was allowed to 
make a double move at some frequency, stochastic 
dynamics where pieces are taken probabilistically 
and finally hidden pieces, where one side 
possessed pieces that could be moved, though the 
opponent could only indirectly infer the piece 
location (Smet et al 2005).   

In multi-agent stochastic games each agent must 
choose actions in accordance with the actions of 
other agents. This makes the environment 
essentially non-stationary. In attempting to apply 
learning methods to complex games, researchers 
have developed a number of algorithms that 
combine game-theoretic concepts with 
reinforcement learning algorithms, such as the 
Nash-Q algorithm (Hu and Wellman 2003).  

Abstractions, Homomorphism and Models 

To make learning feasible we need to reduce the 
complexity of problems to manageable 
proportions. A challenge is to abstract the huge 
state-space generated by multi-agent MDPs. To do 
this, we plan to exploit any structure and 
constraints in the problem to decompose the MDP.  

Models can be thought of as abstractions that 
generally reduce the complexity and scope of an 
environment to allow us to focus on specific 
problems.  A good or homomorphic model may be 
thought of as a many-to-one mapping that 
preserves operations of interest as shown in figure 
3. If the environment transitions from 
environmental states to  under environmental 
dynamics, then we have an accurate model if the 
model state  transitions to  under a model 
dynamic and states  map onto m ,  map 
onto  and environmental dynamics map onto 
the model dynamics. 

1 2

 

The TDLeaf algorithm is suitable for learning 
value functions in these games (Baxter et al, 1998). 
TDLeaf takes the principal value of a minimax tree 
(at some depth) as the sample used to update a 
parameterised value function through on-line 
temporal differences. Independently discovered by 
Beal and Smith in 1997, TDLeaf has been applied 
to classical games such as Backgammon, Chess, 
Checkers and Othello with impressive results 
(Schaeffer, 2000).  

For each asymmetric variant, we learned a simple 
evaluation function, based on materiel and 
mobility balance. The combined cycle of 
evaluation function learning and Monte Carlo 
simulation allowed us to draw general conclusions 
about the relative importance of materiel, planning, 
tempo, stochastic dynamics and partial 
observability of pieces (Smet et al 2005) and will 
be described further in section 4.  

Our approach to playing alternate-move partially-
observable games combined some aspects of 
information theory and value-function based 
reinforcement learning. During the game, we 
stored not only a belief of the distribution of our 
opponent’s pieces, but conditioned on one of these 
states, a distribution of the possible positions of 
our pieces (a belief of our opponent’s belief). This 
enabled the use of ‘entropy-balance,’ the balance 
between relative uncertainty of opposition states as 
one of the basis functions in the evaluation 
function (Calbert and Kwok 2004). Simulation 
results from this are described in section 4.  

Figure 3: Homomorphic models 

The purpose of a microworld is to represent an 
agreed model of a situation. The following models 
are constructed on the basis of our observations of 
military planning and general strategic thought.  TD-Island Microworld 

TD-Island stands for ‘Temporal Difference Island’, 
indicating the use of learning to control elements 
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in an island-based game. Space and time are 
discrete in our model. Each of 12 discrete spatial 
states is either of type land or sea (figure 4).  

 

 
Figure 4: TD-Island microworld. 

Elements in the game include jetfighters, army 
brigades and logistics supplies totaling twenty per 
side. Unlike Chess, two or more pieces may 
occupy the same spatial state. Further from Chess, 
in TD-Island, there is concurrency of action in that 
all elements may move at each time step. This 
induces an action-space explosion with around one 
million move options per turn (compared with 
Chess with thirty six moves per turn). This makes 
centralized control difficult, particularly as the 
number of elements may be large. The TD-Island 
agent uses domain symmetries and heuristics to 
prune the action-space, inducing the homomorphic 
model.  

Some symmetries in the TD-Island game are 
simple to recognise. For example, if considering 
the set of all possible concurrent actions of 
jetfighters, striking targets is the set of all possible 
permutations of jetfighters assigned to these 
targets. One can eliminate this complexity by 
considering only a single permutation. By 
considering this single permutation, one “breaks” 
the game symmetry, reducing the overall 
concurrent action space dimension which induces a 
homomorphic model (Calbert 2004).   

The approach to state-space reduction in the TD-
Island game is similar to that found in Chess based 
reinforcement learning studies, such as the 
KnightCap game (Baxter et al 1998). A number of 
features or basis functions are chosen and the 
importance of these basis functions forms the set 
of parameters to be learned. The history of Chess 
has developed insights into the appropriate choice 
of basis functions (Furnkranz and Kubat 2001). 
Fortunately there are considerable insights into 
abstractions important in warfare, generating what 
is termed ‘operational art’. Such abstractions may 
include the level of simultaneity, protection of 
forces, force balance and maintenance of supply 
lines amongst others (US Joint Chiefs of Staff 
2001). Each of these factors may be encoded into a 

number of different basis functions, which form 
the heart of the value function approximation.   

2.3. Continuous Time-Space Example 

Tempest Seer  

This is a microworld for evaluating strategic 
decisions for air operations. Capabilities modelled 
include various fighters, air to air refuelling, 
surface to air missiles, ground based radars, as well 
as logistical aspects. Airports and storage depots 
are also included. The model looks at a maximum 
1000 km square of continuous space, with time 
advancing in discrete units. It is illustrated in 
figure 5. The Tempest Seer microworld will enable 
users to look at the potential outcomes of strategic 
decisions. Such decisions involve the assignment 
of aircraft and weapons to missions, selection of 
targets, defence of assets and patrolling of the air 
space. While these are high-level decisions, 
modelling the repercussions of such decisions 
accurately requires attention to detail. This 
microworld is therefore at a much lower level of 
abstraction than TD-Island. 

Jetfighter

Fuel Storage

Roads

Airport

Fuel Transporter

Radar

Figure 5: Tempest Seer microworld. 

Given the complexity of this microworld, it is 
natural to attempt to systematically decompose its 
structure into a hierarchically organized set of sub-
tasks. The hierarchy would be decomposed into 
higher-level strategic tasks such as attack and 
defend at the top, with lower level tactical level 
tasks near the bottom of the hierarchy, with 
primitive or atomic moves at the base. Such a 
hierarchy has been composed for the Tempest Seer 
game as shown in figure 1.  

Given this decomposition, one can apply the 
MAXQ-Q algorithm to learn game strategies 
(Dieterrich, 2002). One can think of the game 
being played through the execution of differing 
subroutines, these being nodes of the hierarchy as 
differing states are encountered. Each node can be 
considered as a stochastic game, focused on a 
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3. SUMMARY ISSUES particular aspect of play such as targeting, or at an 
elemental level taking-off or landing of aircraft. 

We have found the use of action and state 
symmetry, extended actions, time-sharing, deictic 
representations, and hierarchical task 
decompositions useful for improving the efficiency 
of learning in our agents. Action symmetries arise, 
for example, when actions have identical effects in 
the value or Q-function (Ravindran 2004, Calbert 
2004). Another form of action abstraction is to 
define actions extended in time. They have been 
variously referred to as options (Sutton et al 1999), 
sub-tasks, macro-operators, or extended actions. In 
multi-agent games the action space 

N21

iA
 describes concurrent actions, 

where  is the set of actions available to agent i. 

The number of concurrent actions is ∏=
i

iAA . 

We can reduce the problem by constraining the 
agents so that only one agent can act at each time-
step. State symmetry arises when behaviour over 
state sub-spaces is repetitive throughout the state 
space (Hengst 2002), or when there is some 
geometric symmetry that solves the problem in one 
domain and translates to others. Deictic 
representations only consider state regions 
important to the agent, for example, the agent’s 
direct field of view. Multi-level task 
decompositions use a task hierarchy to decompose 
the problem. Whether the task hierarchy is user 
specified as in MAXQ (Dietterich 2000) or 
machine discovered as in HEXQ (Hengst 2002), 
they have the potential to simultaneously abstract 
both actions and states. 

Though the idea of learning with hierarchical 
decomposition is appealing, in order to make the 
application practical, several conditions must 
apply. First, our human-designed hierarchy must 
be valid, in the sense that at the nodes of the 
hierarchy capture the richness of strategic 
development used by human players. Second, 
crucially, one must be able to abstract out 
irrelevant parts of the state representation, at 
differing parts of the hierarchy, in a process called 
structural abstraction. As an example, consider the 
“take-off” node. Provided all aircraft, including the 
enemies, are sufficiently far from the departing 
aircraft, we can ignore their states. The states of 
other aircraft can effectively be safely abstracted 
out, without altering the quality of strategic 
learning. Without such abstraction, hierarchical 
learning is in fact far more expensive than general 
“flat” learning (Dietterich, 2002). Finally, the 
current theory of hierarchical learning must be 
modified to include explicit adversarial reasoning, 
for example the randomisation of strategies to keep 
the opponent “second-guessing” so to speak.        

AAAA ×××= ...

We have completed research into incorporating 
adversarial reasoning into hierarchical learning 
through a vignette in which taxi’s compete for 
passengers, and are able to “steal” passengers. The 
hierarchical decomposition for this game is shown 
in figure 6.  

Root

Deliver

WaitWestEastSouthNorth

PutDownEvadeNavigate (t)StealPickUp

Get

 

Part of our approach to address achieving human 
agreement and trust in the representation has been 
a move from simple variants of Chess and 
Checkers to more general microworlds like TD 
Island and Tempest Seer. We advocate an open-
interface component approach to software 
development, allowing the representations to be 
dynamically adaptable as conditions and hence 
models need to change.  

4. RESULTS OF A MICROWORLD GAME 
Figure 6: Hierarchical decomposition for the 

competitive taxi problem.  We illustrate learning performance for a Checkers-
variant microworld. In this variant, each side is 
given one hidden piece. If this piece reaches the 
opposition baseline, it becomes a hidden king. 
After some experience in playing this game, we 
estimated the relative importance of standard 
pieces, hidden unkinged and hidden kinged pieces. 
We then machine learned our parameter values 
using the belief based TDLeaf algorithm described 
earlier.  

In an approach to combining hierarchy with game-
theory, one of the authors has combined MAXQ 
learning with the “win-or-learn fast” or WOLF 
algorithm (Bowling and Veloso, 2003) which 
adjusts the probabilities of executing a particular 
strategy according to whether you are doing well 
in the strategic play or losing.   
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Figure 7. Results for Checkers with hidden pieces. 

Figure 7 details the probability of wins, losses and 
draws for three competitions each of 5000 games. 
In the first competition, an agent with machine-
learned evaluation function weights was played 
against an agent with an evaluation function where 
all weights were set as uniformly important. In the 
second competition, an agent with machine-
learned evaluation function weights was played 
against an agent with a human-estimated 
evaluation function. Finally, an agent using human 
estimated weights played against an agent using 
uniform values. The agent with machine-estimated 
evaluation function weights wins most games. This 
result points towards our aim to construct adequate 
machine learned representations for new unique 
strategic situations.  

5. FUTURE WORK AND CONCLUSIONS 

We will continue to explore the theme of 
microworld and agent design and fuse our 
experience in games, partially-observable planning 
and extended actions. Though we have identified 
good models as homomorphic, there is little work 
describing realistic approaches to constructing 
these homomorphisms for microworlds or 
adversarial domains. 

We are also interested in capturing human intent 
and rewards as perceived by military players in 
microworld games. This may be viewed as an 
inverse MDP, where one determines rewards and 
value function given a policy, as opposed to 
determining a policy through predetermined 
rewards (Ng and Russell 2000). We believe that 
augmentation of human cognitive ability will 
provide an improvement in the ability for military 
commanders to achieve their intent.  
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