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ABSTRACT

Matrix population models are a useful tool to analyse
plant and animal demography. They have a relatively
simple structure and provide a straightforward tool to
assess life history.

One problem however is determining the stage classes
that individuals can be divided into. Assigning
discrete stage classes to a continuous variable (e.g.
age or density), that does not always have natural
divisions, is difficult. For Australian native plants,
Tiver and Andrew (1997) have defined a set of nine
stage classes, from juvenile, through to senescent.

Our present data is simply in terms of physical
measurements such as height and canopy size, with
no possible means of estimating age and without stage
classification being undertaken. The task presented in
this paper is to implement a methodology for taking
this raw data (in particular the canopy size) and
splitting it into classes.

Vandermeer (1978), with modifications by Moloney
(1986), developed a numerical approach to assign
individuals to classes. This is done by minimising
two possible sources of error. If the stage classes
are too wide, much information will be lost because
individuals will be growing within each stage class
and secondly if the classes are too narrow then this
can lead to problems with parameter estimation, since
each new class requires a new set of parameters to
specify its mortality, fecundity and state transition
rates.

We apply the Vandermeer-Moloney algorithm to data
on candidate speciesPtilotus obovatus(cotton bush)
andAcacia aneura(mulga) for a very lightly grazed
grazed site at Yerilla Station in the arid shrublands of
Western Australia.

We obtain not only a stage distribution, but since our
data set contains values over a number of years, we
have also estimated transition probabilities from stage
to stage. These include transitions from a stage to a
lower stage, reflecting regression through grazing or
environmental effects.

Once the stage classes and transition matrices have
been found we can then use them to examine the
impact on the population given a range of grazing and
rainfall scenarios.

The motivation for this work followed on from the
research that resulted in the paper by McArthur,
Boland and Tiver (2006), where it became apparent
that not all our plant species had stage classes assigned
to them, nor could they be easily defined. For
this reason the Vandermeer-Moloney algorithm was
investigated so a numerical approach could be used,
to split a sample of plants into stage classes.

374

mailto:Kathrine.rosenberg@unisa.edu.au�


1 INTRODUCTION

Matrix population models are a useful tool to analyse
plant and animal demography. They have a relatively
simple structure and provide a straightforward tool to
assess life history.

One problem however is determining the stage classes
into which to divide the individuals into. Assigning
discrete stage classes to a continuous variable (e.g.
age or density), that does not always have natural
divisions, is difficult. For Australian native plants,
Tiver and Andrew (1997) have defined a set of nine
stage classes, from juvenile, through to senescent.

Vandermeer (1978), with modifications by Moloney
(1986), developed a numerical approach to assign
individuals to classes. This is done by minimising
two possible sources of error. If the stage classes
are too wide, much information will be lost because
individuals will be growing within each stage class
and secondly if the classes are too narrow then this
can lead to problems with parameter estimation, since
each new class requires a new set of parameters to
specify its mortality, fecundity and state transition
rates.

We apply the Vandermeer-Moloney algorithm to data
on candidate speciesPtilotus obovatus(cotton bush)
andAcacia aneura(mulga) for a very lightly grazed
site.

We obtain not only a stage distribution, but since our
data set contains values over a number of years, we
have also estimated transition probabilities from stage
to stage. These include transitions from a stage to a
lower stage, reflecting regression through grazing or
environmental effects.

2 SITE DESCRIPTION

We have data that was collected yearly from 1986
until 1990 as part of a study conducted by the
Department of Agriculture Western Australia. The
experimental site was on Yerilla Station, 150 km
north of Kalgoorlie, in the arid shrublands of Western
Australia (mean annual rainfall of 238 mm). The
area pre-1986 had not been stocked with sheep for 15
years, for further details see Fletcher (1995).

As outlined by Fletcher (1995) the plant community
consisted of mulga (Acacia aneura) and bowgada
(Acacia ramulosa) with a shrub understorey of cotton
bush (Ptilotus obovatus), flannel bush (Solanum
lasiophyllum) and a range of poverty bushes
(Eremophila forrestii, E. georgei, E. glandulifera,
E. latrobei) which in places formed dense thickets.
The ground storey was comprised of the perennial
grasses woolly butt wanderrie (Eragrostis eriopoda)

and broad leafed wanderrie (Monachather poradoxa).
Annual herbs and grasses appeared in response to
rainfall events.

The trial area was subdivided into seven paddocks
which provided for five stocking rates of goats, one
with sheep, and an area with all grazing excluded.
We will be considering a paddock which was very
lightly grazed (about 1 goat per 20 ha) in order to
categorise the shrub populations under close to natural
conditions.

2.1 Plant species

Of the species at Yerilla Station our focus will be on
two species, the mulga and cotton bush.

Mulga (Acacia aneura) is a small tree or large shrub
ranging in height from 2 to 8 m, often multi-stemmed
with a spreading crown. It is suited to a range of
soils including clay but needs good drainage. Mulga
is a very common and a significant component of arid
zone vegetation, it is found over a wide area of all
Australian mainland states except Victoria. The mulga
has a varied response to palatability and grazing, at
Yerilla, mulga has low palatability.

Cotton bush (Ptilotus obovatus) is a dense, greyish
shrub growing to around 60 cm high. It has multiple
stems which originate at ground level. Cotton bush
occurs naturally in arid inland areas of all Australian
mainland states. It is a palatable species and decreases
in both density and plant size under heavy grazing.

3 MATRIX POPULATION MODELS

Matrix population models provide the means of
estimating growth rates and other measures associated
with the viability of the population, such as extinction.
The first step in formulating a matrix population
model is to determine what the stage or age classes
should be. In some cases this division may be natural,
but often this is not the case and the investigator has
to choose these classes.

The Leslie matrix model was developed by P.H.
Leslie and uses mortality and fecundity rates to give
a projection of an organism’s population distribution
based on the initial population distribution of age
groups (Bruce and Shernock 2002). However, this
formulation was extended to stages by Lefkovitch
(1965). The Lefkovitch model is necessary because
of the longevity of many Australian native plants,
particularly those of the semi-arid and arid lands,
which are the areas we are focussing upon.

We have data from a number of studies wherein the
stage classes were estimated by the data collectors
(or investigators), with the stage specifications
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determined according to the work of Tiver and
Andrew (1997). They have defined a set of nine stage
classes, from juvenile, through to senescent. However,
data cannot always be put in these stage classes. The
present data that will be used is in terms of canopy
size, with no possible means of estimating age and
without stage classification being undertaken. The
task then was thus to implement a methodology for
taking this raw data and splitting it into stages. The
methodology we used was developed by Vandermeer
(1978) and extended by Moloney (1986).

3.1 Determining stage classes

We have taken the liberty of delineating the
Vandermeer-Moloney algorithm as given in Caswell
(2001) in order to completely define the methodology
for the ease of the readers. It considers sample popu-
lations which may have different underlying transition
probabilities at different census periods or within
different subpopulations. We consider a simplified
version that does not consider subpopulations, see
Caswell (2001).

Vandermeer (1978) initially developed this algorithm
to minimise two kinds of errors. The first is the
distribution error (DE), whereby if the stage classes
are too wide then much information will be lost
because individuals will be growing within each stage
class. The second error is the sampling error (SE),
if the classes are too narrow then this can lead to
problems with parameter estimation, since each new
class requires a new set of parameters to specify its
mortality, fecundity and state transition rates. The
Moloney (1986) extension to this model accounts
for the differences in transition probabilities among
census periods.

4 VANDERMEER-MOLONEY ALGORITHM

Assume the censuses are taken at timest = 1, · · · , T .
Let mi(t) be the size of individuali at timet, where
i = 1, · · · I andI is the total number of individuals.
Let the growth increment of individuali from time t
to timet + 1 be given by

di(t) = mi(t + 1)−mi(t).

Define a size interval

Ω = [Mmin,Mmax]

with a midpoint Mmid = (Mmin + Mmax)/2.
We want to evaluate the sampling error (SE) and
distribution error (DE) given by the size of the interval
Ω. To do this we start by defining two indicator
variables

si(t) =
{

1 if mi(t) ∈ Ω
0 otherwise

ri(t) =
{

1 if si(t) = 1 andmi(t + 1) ∈ Ω
0 otherwise

for eachi ∈ I. The variablesi(t) indicates whether
individual i starts inΩ, andri(t) indicates whether
individual i remain inΩ. We use these to estimate the
probabilityP that an individual stays inΩ, such that

P̂ =
∑

t

∑
i ri(t)∑

t

∑
i si(t)

,

and then let̂Q = 1− P̂ , which is the probability of an
individual leavingΩ. If there was no DE,̂P would be
independent of where in the intervalΩ the individual
started. So, assume that everyone starts atMmid, and
define the new size of the individual at timet + 1 as

m∗
i (t + 1) = Mmid + di(t)

and the new indicator variable

r∗i (t) =
{

1 if si(t) = 1 andm∗
i (t + 1) ∈ Ω

0 otherwise.

Then we calculate new estimateŝPmid(t) and
Q̂mid(t), where

P̂mid(t) =
∑

i r∗i (t)∑
i si(t)

andQ̂mid(t) = 1 − P̂mid(t). The estimatêPmid(t)
is the probability of staying in the intervalΩ between
census periodt andt + 1.

Moloney measures DE by the mean squared
proportional deviation of̂Pmid(t) from the expected
value P̂ of staying in the interval and̂Qmid from
the expected valuêQ of leaving the interval. This is
calculated as

DE =
1

T − 1

∑
t

1
2




(
P̂mid(t)− P̂

P̂

)2

+

(
Q̂mid(t)− Q̂

Q̂

)2

 . (1)

The DE will approach a value of zero asMmax −
Mmin approaches zero since there will be little or
no difference betweenm∗ and m. If DE was
the only criteria used in choosing the category
size we would always choose the smallest category
possible. However, this is clearly inappropriate as the
sample sizes used in estimating transition probabilities
decline as category sizes are smaller, hence the
estimates forP and Q will become increasingly
inaccurate. The error introduced by this inaccuracy
will be referred to as the SE.

To calculate SE we use a resampling method.
Consider the individuals that start out inΩ; those
individuals withsi(t) = 1. Draw a random sample
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of the same number of individuals, with replacement,
from this set. Definem†

ik(t + 1) as the size of the
ith individual in thekth random sample at timet + 1.
Calculate the probabilities of staying inΩ in samplek
as

P̂ †k (t) =
∑

i r†ik(t)∑
i si(t)

and Q̂†k(t) = 1 − P̂ †k (t). The larger the sample
size in Ω, the more tightly the resampled estimates
should cluster around the original estimates, we use
K = 200. Moloney measures SE by the mean
squared proportional deviation of the resampled and
the original expected values, such that

SE =
1

K(T − 1)

T−1∑
t=1

K∑

k=1

1
2




(
P̂ †k (t)− P̂

P̂

)2

+

(
Q̂†

k(t)− Q̂

Q̂

)2

 . (2)

Given the above calculations of DE and SE in
equations (1) and (2) Maloney suggests choosing
category sizes according to the following algorithm.
First fix the lower bound of the first category (at zero,
or the smallest size that makes sense) and find the
upper bound that minimisesSE +DE. Fix that as the
new lower bound of the second category and find the
upper bound that minimisesSE + DE for the second
category. Repeat until you reach the maximum size.

In the following subsections we will apply this
algorithm to both the cotton bush and mulga.

4.1 Application of the algorithm to cotton bush

In determining the stage classes for cotton bush, data
from the lightly grazed paddock at Yerilla Station was
used. The census periods were taken yearly from
1986 to 1990 corresponding tot = 1, 2, 3, 4 and5,
prior to this period the paddock was not grazed for
15 years. Within the paddock 91 individuals were
recorded and measured at each census period, giving
i = 1, 2, · · · 96.

Initially, for the first iteration of the Vandermeer-
Moloney algorithm, we setMmin = 0, the resulting
output is shown in the first graph of Figure1. It can
be observed that the smallest value of SE+DE occurs
when the upper boundary is 15. Therefore, with
the second iterationMmin = 15, and the resulting
SE+DE is displayed in the second graph of Figure1,
where the next upper boundary is calculated to be 40.

As the Vandermeer-Moloney algorithm is repeated,
the final stage classes are

(0-15] (15-40] (40-55] (55-80] >80

Figure 1. First two iterations of the V-M algorithm
(Cotton Bush)

These stage classes can then be used to find the
resulting transition matrices, giving the probability of
transition from stage to stage. This is done through
empirical estimation, where for example, if 20 plant
species started in stage I and 10 moved to Stage II in a
given time period then the transition probability from
stage I to stage II would be 0.5. The transition matrix
given below is read from row to column, a row may
not add to one due to rounding errors.

I II III IV V

I
II
III
IV
V




0.67 0.20 0.14 0 0
0.03 0.75 0.22 0 0
0 0.15 0.41 0.43 0
0 0 0.36 0.5 0.14
0 0 0.17 0.08 0.75




From the transition matrix it can be seen that
cotton bush can sometimes move either backwards or
forwards more than one stage in a given time period,
as would happen due to grazing or dry seasonal
conditions.

4.2 Application of the algorithm to mulga

At Yerilla Station, the mulga plants were measured
yearly from 1986 to 1990. We used the canopy size
to determine the stage classes, which ranged from
5 cm to 210 cm in diameter. Using the parameters
I = 1, 2, · · · 156, t = 1, 2, 3 · · · , 5, K = 200
and an initialMmin = 0 the first iteration of the
Vandermeer-Moloney algorithm is shown in the first
graph of Figure2, where SE+DE is plotted against
Mmax (the upper stage boundary). It can be seen that
the minimum SE+DE occurs whenMmax = 20. This
will be used asMmin in the next iteration.
The second plot in Figure2 shows SE+DE, when
Mmin = 20, it can be seen that the next upper
boundary will be 35.

As the Vandermeer-Moloney algorithm is repeated,
the final stage classes are

(0-20] (20-35] (35-60] (60-75] (75-90]
(90-105 ] (105-115] (115-135] (135-160] >160
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Figure 2. First two iterations of the V-M algorithm
(Mulga)

These stage classes (I, II, III, · · · , IX, X) can then
be used to find the resulting transition matrix (a matrix
row may not add to one due to rounding errors)




0.79 0.03 0.17 0 0 0 0 0 0 0
0.04 0.58 0.38 0 0 0 0 0 0 0
0 0.01 0.78 0.22 0 0 0 0 0 0
0 0 0.07 0.59 0.34 0 0 0 0 0
0 0 0 0.03 0.61 0.36 0 0 0 0
0 0 0 0 0 0.50 0.50 0 0 0
0 0 0 0 0 0.13 0.43 0.43 0 0
0 0 0 0 0 0 0.08 0.62 0.31 0
0 0 0 0 0 0 0 0.05 0.68 0.26
0 0 0 0 0 0 0 0 0 1




4.3 Discussion of results and notes of caution

Two features of the resulting stages in the chosen
species should be emphasised. One is that there is
a significantly lower number of discernable stages
in the cotton bush, but this is to be expected since
cotton bush is a smaller shrub. The stages for cotton
bush are similar to those that would be used if expert
knowledge alone was being used.

The other feature is that the number of stages we
found for mulga is 10, although this may seem high
the number of breakdowns seem reasonable and are
not dissimilar to the stage class definition of 9 given
in Tiver and Andrew (1997). Moloney’s original paper
demonstrated some small variation in the number of
classes with different samples and our work may well
have demonstrated a similar situation.

By using the Vandermeer-Moloney algorithm we now
have the capabilities to work with the model by
McArthur, Boland and Tiver (2006), such that we
will use the transition matrix to see the effects of
grazing on Australian native plants, in particular arid
rangeland species across Australia. Without this
numerical approach our data could not be grouped into
classes, and the transitions impossible to calculate. In
addition applications can be used to examine a range
of grazing management and climate scenarios such as
those in Watson, McKeon and Wilcox (2004).

Caswell (2001) does mention that some caution

should be used when applying the Vandermeer-
Moloney algorithm. These are given by the following
three reasons

1. The algorithm considers only if an individual
remains or leaves the categoryΩ, it does not
consider where the individual goes.

2. Temporal variation in the vital rates, if it does
exist, appears as variability in̂Pmid(t) and
P̂ †k (t), but not in P̂ . Thus temporal variance
contributes to both SE and DE, although it is
neither distribution error or sampling error.

3. Defining size class boundaries progressively
from smallest to largest is not guaranteed to
minimise SE+DE over all possible choices of
category sizes.

We have taken the above three points into considera-
tion, and although valid we do not think that they are
enough to outweigh the reasons of why we are using
the algorithm in the first place. It is unclear at this time
how restrictive these points are and whether they lead
to significant inaccuracies, but it is an area for further
research.

5 CONCLUSIONS

The motivation for this work is the incorporation
of the resulting transition probabilities from stage
to stage in a dynamical population matrix model
of the type delineated in McArthur, Boland and
Tiver (2006). The goal of the modelling is to
investigate management options to ensure the long-
term survivability of plant species in the rangeland
areas of Australia. The raw data needs to be
transformed so that it is expressible in this form for
the model to operate.

The application of the Vandermeer-Moloney algo-
rithm allows stage classes of either plants or animals
to be determined via a numerical approach. This
algorithm is particularly useful when there is no
natural division into stages.

Another benefit to the Vandermeer-Moloney algo-
rithm is its accountability to handle different census
periods having different transition matrices. Our data
from Yerilla Station having this structure consisted of
5 census periods, so the algorithm suited our purposes.

Once the stage classes and transition matrices have
been found we can then use them to examine the
viability of the population using theory from matrix
population models.
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