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EXTENDED ABSTRACT 
 
There is a growing need to use river water quality 
models for the development of river basin 
management plans. Substantial uncertainties exist 
in the identification of river water quality models 
which partially relates to parameter uncertainties 
and the information content of calibration data. 
The specific objectives of this study were to i) 
assess the parameter identification] of a river 
water quality model using the Parameter 
Estimation Program (PEST), and ii) evaluate the 
dependencies between available calibration data 
and model prediction using a cross-validation 
procedure.  
 
The investigation was conducted based on five 
extensive flow time related longitudinal surveys 
with 14 sampling locations along a 536 km free-
flowing reach of the German part of the Elbe 
River. The five surveys represent seasonal 
development of algal biomass and nutrient 
concentration under a wide range of boundary 
conditions like low flow conditions, high global 
radiation and nutrient limiting algal growth 
conditions. The nonlinear parameter estimator 
PEST was used for the multi-objective calibration 
of the deterministic river water quality model 
QSIM. Calibration runs were conducted using 
five different data sets and all their possible 
combinations. Cross-validation of the model was 
carried out using the remaining 4, 3, 2 and 1 data 
sets not included in the calibration process. 
  
To identify the ‘optimal’ parameters for the River 
Elbe, the river water quality model was calibrated 
using all five longitudinal surveys.  The results 
show good agreement between measured and 
simulated values for all variables (Chl a, NO3, O2, 
dissolved phosphorus (DP), dissolved Si). 
Considering the z-distribution of normalized 
residuals for all five output variables, we found a 
good approximation of the normal distribution 
(Figure 1).  This indicates that the multi-objective 
model calibration leads to a well-defined model 
for the Elbe River. Hence, we have confidence 
that the PEST multi-objective calibration 

procedure is able to identify an optima for all 
eight parameters used for model calibration.  
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Figure 1. Z-distribution of normalized residuals 
of five water quality variables using all five 
calibration data sets 
 

The Elbe case study also showed that calibration 
with a single survey data set leads to substantial 
errors if these parameters are applied to deviating 
boundary conditions. These uncertainties can be 
decreased with an increased calibration database. 
The overall performance of the validation 
improves only substantially when increasing the 
number of calibration data sets from one to two 
data sets.  
 
It can be concluded that the PEST optimization 
tool is very efficient using a comparably small 
number of optimization runs for model 
calibration. In the presented case study at least 
two longitudinal data sets of differing boundary 
conditions should be used for calibration of the 
primary production and nutrient modules of the 
QSIM model. The results of this study will help 
model users e.g. at environmental agencies to 
evaluate the uncertainties in river water quality 
models and to define appropriate data collections 
and monitoring schemes to achieve a sufficient 
accuracy of model predictions.  
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1. INTRODUCTION 
 
There is a growing need to use water quality 
models for the development of river basin 
management plans. Most of the widely used river 
water quality models (like QUAL2, WASP5, 
Mike 21, AQUASIM) use physically-based 
process descriptions of the hydrodynamics and 
more or less conceptual descriptions of matter 
transformation and primary production in river 
system. Due to the spatial and temporal 
variability, measurement errors, the simplicity of 
the model description or simply the lack of data, 
often parameter values will not be exactly known. 
Therefore, in most cases a model calibration will 
be necessary. Moreover uncertain model 
identification often is caused by small amounts 
and information content of calibration data.  
 
The time-consuming nature of manual trial- and 
error model calibration has led to the development 
of the more complex inverse modelling 
techniques for parameter estimation, where 
parameters are optimized while minimizing a 
suitable objective function that expresses the 
discrepancy between the output of a dynamic 
model and the measurement. Most commonly 
used automated calibration procedures are the 
shuffle complex evolution method (Duan et al., 
1992) and the Levenberg-Marquardt method 
(Olsthoorn, 1995; Doherty and Johnston, 2003). 
Omlin et al. (2001) used a systematic approach 
for model identification combining an analysis of 
the sensitivity of model results to single 
parameters with an analysis of the approximate 
linear dependency of sensitivity functions of 
parameter subsets.  
 
In the case of water quality models there is an 
important advantage compared to hydrological 
models that multiple criteria like different nutrient 
and biological variables can be used for model 
calibration. In the past only very few attempts 
were made to use multi-objective criteria for river 
water quality model identification (van Griensven 
& Bauwens, 2003, McIntyre et al. 2003). Omlin 
et al. (2001) used a multi-objective parameter 
estimation process for a sensitivity analysis of a 
water quality model of Lake Zürich. He also gave 
estimates of the uncertainties of model 
predictions. The same procedure was used with 
the River Water Quality Model Number 1 for a 
simple hypothetical case study (Reichert & 
Vanrolleghem, 2001). In the present study we 
used the parameter estimation software PEST 
which uses the Gauss-Marquardt-Levenberg 
method for the automatic model calibration 
(Doherty, 2000). When a continuous relationship 
exists between model parameters and model 

outputs, it is a very efficient method to identify 
the minimum in the objective function compared 
to other methods (Doherty and Johnson 2003).  
 
The calibration process is closely related to the 
estimation of parameter uncertainties and hence 
the corresponding model predictions.  As Beck 
(1991) pointed out a calibrated model 
incorporates acquired knowledge about the 
studied system. Therefore, calibration aims not 
only at finding parameter sets that will minimize a 
given objective function, which is itself not an 
easy task since the models are frequently non-
linear. It also aims at reducing the uncertainties in 
the parameter values as well. Because of limited 
calibration data, it is often hard to identify a 
sufficiently certain parameter set of a river water 
quality model. This is due to the non-uniqueness 
of the optimized parameters. Non-uniqueness 
leads to more than one set of parameters, each 
yielding minimum values for the objective 
function determined by local minima (Vrugt et al., 
2001). However, research into data requirements 
has led to the understanding that a larger amount 
of data or information will not necessarily 
improve the identification of the parameters 
(Kuczera, 1982). In most cases the simultaneous 
use of more than one signal can improve 
parameter identifiability (Gupta et al. 1998).  
 
The specific objectives of this study were to i) 
assess the parameter identification of a river water 
quality model using the PEST methodology and 
to ii) evaluate the dependencies between available 
calibration data and model prediction using a 
cross-validation procedure. The results of this 
study will help model users e.g. at environmental 
agencies to evaluate the uncertainties in river 
water quality models and to define appropriate 
data collections and monitoring schemes to 
achieve a sufficient accuracy of model 
predictions.  
 
2.  MATERIAL AND METHODS 
2.1 Case Study 
 
The River Elbe is one of the largest rivers in 
Central Europe with a length of 1091.5 km. Most 
water quality data used for this study were 
acquired during five longitudinal surveys of 
phytoplankton development and nutrient 
concentrations in autumn 1996, late summer 1997 
and 1998, in spring 1999 (Guhr et al., 2003) and 
July 2000 (Schöl et al.,2004 ). These surveys were 
carried out for the unregulated river reach from 
Schmilka at the German Czech border to Neu 
Darchau in the lower part of the river with a 
length of 536 km.  The five surveys represent 
seasonal
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Tabel 1. Start values of simulation runs, mean values at station Schmilka (km 3,9) 

Input variable Unit Oct. 1996 Aug. 1997 Sept. 1998 May 1999 July 2000 
Discharge m**3/s 225 151 127 300 140 
Chlorophyll a µg/l 8.6 37.2 17 63 45 
Share of diatoms  - 0.7 0.6 0.5 0.6 0.6 
Ammonium mgN/l 0.18 0.12 0.06 0.12 0.10 
Nitrate mgN/l 4.2 4.2 3.9 4.5 3.7 
SRP mgP/l 0.16 0.16 0.20 0.05 0.23 
Dissolved phosphorus mgP/l 0.17 0.16 0.22 0.06 0.25 
Silicon mgSi/l 5.4 2.9 3.0 2.4 3.2 
Oxygen mgO2/l 9.3 7.9 8.5 11.4 7.3 
Suspended particulate 
matter 

mg/l 20 20 25 20 18 

Water temperature °C 13.6 22.8 17.5 12.9 19.2 
Global radiation, daily 
sum  

J/cm**2 400 1500 1130 1700 1600 

 

development of algal biomass and nutrient 
concentration under a wide range of boundary 
conditions like low flow conditions (1996), high 
global radiation and nutrient limiting algal growth 
conditions (1999). Upper boundary conditions 
(start values) relevant to primary production and 
nutrient concentration development for the five 
measurement surveys, i.e. discharge, temperature 
and light, are given in Table 1.  Up to nine samples 
were taken for each cross section. In the river 
reach from Schmilka to Neu Darchau flow times 
varied according to the discharge between seven 
days for the survey in May 1999 and nine days for 
the survey in September 1998.  

 
2.2 Model and calibration tool 
 
For the Elbe River case study the widely used river 
water quality model QSIM, developed by the 
German Federal Institute of Hydrology, was 
applied (Kirchesch and Schöll, 1999; Schöl et al., 
1999). The model has a modular structure with 
main modules concerning hydraulic, physical, 
chemical, and biotic processes. Driving forces of 
the model are discharge at the upper boundary and 
main tributaries as well as meteorological 
conditions including global radiation, air 
temperature, cloudiness, and wind velocity. 
Phytoplankton growth is simulated after Monod 
and Michaelis-Menten? kinetics. Hydraulic 
calculations are based on  more than 3000 river 
cross sections. The duration of the longitudinal 
samplings corresponds well with the computed 
flow times for all five surveys.   
 
For model calibration the automatic Parameter 
Estimation Program (PEST) was used, which 

implements   the   Gauss–Levenberg–Marquardt 
method (Doherty, 2000). The optimization process 
is a “hill-climbing” technique in which from a 
starting point the steepest gradient of the objective 
function in the parameter space is calculated. 
(Doherty, 2004).Derivatives of observations with 
respect to parameters are calculated using finite 
differences. The objective function used is the 
weighted sum of squaresφ : 
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where iω  is the weight attached to the i’th 
observation, m the number of observations, and ri 
(the i’th residual) expresses the difference between 
the model outcome and the measured  river water 
quality variable. Weights are inversely 
proportional to the standard deviations of the 
observed values. The values for iω  are used as 
empirical weights with a goal to make the 
contributions of different model variables to  φ  
similar in size and, therefore, give all measured 
variables a similar influence on the estimates of the 
parameters. Table 2 gives the values of iω used for 
multi-objective calibration. After optimizing the  
 
Table 2.  Scales used as empirical weights for 
different variables  
Variable Value Coefficient 

of variation 
Unit 

Chl a  1 0,768 mg Chl a l-1 
O2 5 0,146 mg O l-1 
DP 500 0,615 mg P l-1 
DSi 10 0,633 mg Si l-1 
NO3 10 0,119 mg N l-1 
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parameters PEST calculates additional information 
on the 95% confidence limits for the adjustable 
parameters if the covariance matrix has been 
calculated. Furthermore based on the covariance 
matrix a correlation coefficient matrix is calculated 
and can be used to assess the dependencies 
between the parameters. As a by-product of the 
parameter estimation process, PEST calculates the 
composite scaled sensitivity of the parameter. The 
calculated uncertainty information of the 
parameters is determined on the same linearity 
assumption which was used to derive the equations 
for parameter improvement implemented in the 
optimization process. Various tests were made to 
tune the PEST optimization algorithm to the 
specific case study. Based on a sensitivity analysis 
in a first step most important kinetic parameters 
where included in the parameter estimation 
process. In a second step seven parameters were 
selected for the optimization process. Notice that 
due to dependencies between model parameters 
these parameters used for the automatic calibration 
process were not the seven most sensitive ones.  
 
2.3 Evaluating data information content  
 
The investigation of the water quality data 
information content was carried out for the 
parameter identification of the river water quality 
model. For this purpose calibration runs were 
conducted using data of five different data sets and 
all their possible combinations. This consists of a 
total of 30 data sets with different flow time 
related longitudinal data and water quality 
conditions. For each set, a single multi-objective 
optimization using the PEST program was 
conducted, where each optimization leads to up to 
about 200 model runs depending on the amount of 
calibration data. The 8 most sensitive kinetic 
model parameters were included in the model 
calibration. A common technique of validating a 
model is to use only a subset of all available data 
for calibration and test the model performance 
with the rest of the data. In this study the 
remaining 4, 3, 2 and 1 data sets not included in 
the calibration process were used for cross-
validation of the model.  In order to assess model 
performance precisely we used the index of 
agreement (Willmott, 1981) defined as:  
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where O  is the mean of the observed value, Oi is 
the observed and Pi is the simulated value. The 
index of agreement varies between 0.0 and 1.0 
with higher values indicating better agreement 

between the model and observations, similar to the 
coefficient of determination R². The index of 
agreement is also sensitive to extreme values,  
owning to the squared differences (Legates and  
McCabe, 1999).   The objective criteria were used 
both for the calibration and validation of the 
model. 
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Figure 1. Observed and simulated Chl a 
concentrations based on five calibration data sets 
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Figure 2. Residuals of Chl a concentrations based 
on five calibration data sets 
 
 
3. RESULTS 
 
To identify the ‘optimal’ parameters for the Elbe 
River, the river water quality model was calibrated 
using all five longitudinal surveys.  The results 
show good agreement between measured and 
simulated values for all variables (Chl a, NO3, O2, 
dissolved phosphorus (DP), dissolved Si). The 
simulated and observed values of Chl a, which 
represents algal biomass, are shown as an example 
in Figure 1 and 2. The results indicate that the 
model is able to simulate algal growth for a wide 
range of boundary conditions with the same model 
parameters. In the case of very high Chl a 
concentration, model residuals tended to increase, 
contradicting the assumption of homogenous error 
variance. Considering the Z-distribution of 
normalized residuals for all five output variables 
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we found a good approximation of the normal 
distribution (Figure 3). Z is defined as the 
difference between the value and the mean divided 
by the standard deviation of the residuals of a 
given variable.  This indicates that the multi-
objective model calibration leads to a well defined 
model for the Elbe River. Hence, we have 
confidence that the PEST multi-objective 
calibration procedure is able to identify a 
reasonable optimum for all eight parameters used 
for model calibration. 
 
The empirical cumulative distribution function 
(cdf) for the Index of Agreement (IA) for different 
numbers of data sets was constructed. Figure 4 
shows the results for the calibration and Figure 5 
for the corresponding validation of the remaining 
data sets. Each cdf indicates a chance of obtaining 
a statistic of the magnitude if a data set of that 
number of longitudinal surveys is selected at 
random and used for calibration. The IA cdfs shift 
to the right as we increase the number of 
longitudinal surveys used for calibration. This 
finding is also true for the corresponding 
validation data sets. The shift to the right indicates 
improvement of model performance with 
increasing number of longitudinal data sets 
(compare Yapo et al. 1996). The calibration cdfs 
only shift significantly to the right when increasing 
the number of data sets from one to two, showing 
that only small improvements of model 
performance can be achieved when using more 
than two calibration data sets.   
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Figure 3. Z-distribution of normalized residuals 
for calibration run of all 5 data sets 
 
In contrast to the calibration cdfs, the IA cdfs for 
validation steepen progressively with increasing 
number of calibration data sets and hence 
decreasing number of validation data sets. 
Increasing the steepness indicates reducing 
sensitivity of model performance to selection of 
data sets. The validation cdfs show a decrease of 
the range of IA values when increasing the number 

of calibration data sets and hence decreasing the 
number of corresponding validation data sets. The 
overall performance of the validation improves 
only substantially when increasing the number of 
calibration data sets from one to two data sets. 
This leads to the conclusion that at least two 
longitudinal data sets of differing boundary 
conditions should be used for model calibration 
and the benefit of the use of more than two data 
sets may be marginal. It should be noted that the 
findings are restricted to the specific conditions of 
the River Elbe with its long unregulated section, 
high algal growth rates and significant 
dependencies between algal biomass and nutrient 
concentrations. In the case of more complex 
boundary conditions, e.g. high inputs from sewage 
plants, and less significant relationships between 
water quality constituents more than two 
longitudinal surveys may be needed for reasonable 
model identification. 
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Figure 4. Empirical cumulative distribution 
functions of the Index of Agreement statistics for 
different numbers of calibration data sets 
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Figure 5. Empirical cumulative distribution 
functions of the Index of Agreement statistics for 
different numbers of validation data sets 
 
4. CONCLUSION 
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The River Elbe case study on the calibration of the 
river water quality model QSIM shows that an 
automatic multi-objective calibration using the 
optimization tool PEST leads to reasonable model 
identification. The optimization tool is very 
efficient using a comparatively small number of 
optimization runs for model calibration. 
Furthermore PEST offers additional information 
for assessing uncertainties of calibrated model 
parameters.  The investigation on data information 
content showed that calibration with single flow 
time related measuring surveys lead to substantial 
errors if these parameters are applied to deviating 
boundary conditions. These uncertainties can be 
decreased with an increased calibration database. 
In the case of the Elbe River, two or more data sets 
of flow time related longitudinal measuring 
surveys will be needed for a reasonable model 
identification of the primary production and 
associated nutrient model components of the river 
water quality model. These findings are restricted 
to cases were data sets of deviating boundary 
conditions are available.  If data sets with 
comparable boundary conditions are used 
additional information for model parameter 
identification may be limited. The suggested 
methodology for model calibration including a 
cross validation procedure is especially suited for 
case studies with limited available data which is 
common for river water quality modelling 
investigations. Recently cross validation 
procedures have also been used for precipitation 
runoff modelling. 
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