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EXTENDED ABSTRACT 
 
 
Estimation of design floods in ungauged 
catchments is frequently required in hydrological 
practice and is of great economic significance. The 
most commonly adopted methods for this task 
include the Probabilistic Rational Method, the U.S. 
Soil Conservation Service Method, the Index 
Flood Method and the U. S. Geological Survey 
Quantile Regression Technique. The Probabilistic 
Rational Method has been recommended in the 
Australian Rainfall and Runoff for general use in 
south-east Australia (I. E. Aust., 1997). The central 
component of this technique is a dimensionless 
runoff coefficient which in the ARR is assumed to 
vary smoothly over geographical space, an 
assumption that may not be satisfied in many cases 
because two nearby catchments though are likely 
to share similar climatic characteristics but may 
exhibit quite different physical characteristics.  
 

There has been limited study on the assessment of 
the Probabilistic Rational Method on independent 
test catchments. Recently, a Quantile Regression 
Technique has been proposed for south-east 
Australia (Rahman, 2005).  This paper compares 
the performances of the Probabilistic Rational 
Method and Quantile Regression Technique for 
south-east Australian catchments. 

 

 

 

 

 

 

The study uses streamflow and catchment 
characteristics data from 98 catchments in south-
east Australia. A total of 20 catchments were 
selected randomly from the 98 catchments and put 
aside for independent testing of the Quantile 
Regression Technique and the Probabilistic 
Rational Method. The 20 test catchments and the 
78 catchments used for the model development 
were found to have very similar catchment 
characteristics.   

 

It has been found that the Quantile Regression 
Technique in general provides more accurate 
design flood estimates than the Probabilistic 
Rational Method. The 75th percentile values of the 
relative errors in design flood estimates for the 
average recurrence intervals of 2, 5, 10, 20, 50 and 
100 years were in the range of 45 to 62% for the 
Quantile Regression Technique as compared to 
61% to 80% for the Probabilistic Rational Method. 
It has also been found that there is a chance of 
about 10% that the error in design flood estimates 
will exceed 100% with both the Quantile 
Regression Technique and the Probabilistic 
Rational Method. Hence, the users of these 
techniques should be aware of this large error and 
provision should be made accordingly. 

 

 

 

 

 
 

 

 

 

 

1887



 

 

 

1. INTRODUCTION 
 
Flood estimation in ungauged catchments is a 
common problem in hydrologic practice. There 
are several methods that are generally adopted for 
this task including the Probabilistic Rational 
Method (PRM), the U. S. Soil Conservation 
Service Method, the Index Flood Method and the 
Quantile Regression Technique (QRT). In South-
east Australia, the PRM has been recommended 
for general use by the Australian Rainfall and 
Runoff (ARR) mainly due to its simplicity (I. E. 
Aust., 1997). The central component of this 
technique is a dimensionless runoff coefficient 
which in the ARR is assumed to vary smoothly 
over geographical space, an assumption that may 
not be satisfied in many cases because two nearby 
catchments though are likely to share similar 
climatic characteristics but may exhibit quite 
different physical characteristics.  
 
Rahman (2005) presented a QRT for south-east 
Australia which provides reasonably accurate 
design flood estimates for ungauged catchments 
in this region. The main focus of this paper is to 
compare the performances of the QRT and the 
PRM to a set of independent test catchments in 
south-east Australia. 
 

2. METHODS 

2.1 Quantile Regression Technique 

The United States Geological Survey (USGS) 
proposed Quantile Regression Technique (QRT) 
in that a large number of gauged catchments are 
selected from a region and flood quantiles are 
estimated from recorded streamflow data, which 
are then regressed against relevant climatic and 
catchment characteristics variables that govern the 
flood generation process (Benson, 1962; Cruff 
and Rantz, 1965; Riggs 1973). The quantile 
regression method is expressed as follows: 
 

QY = aBbCcDd …                                                (1) 

where B, C, D, … are climatic and catchment 
characteristics variables (predictors) and QY is the 
flood magnitude with Y year average recurrence 
interval (ARI) (flood quantile), and a, b, c, d, … 
are regression coefficients. 

 

2.2 Probabilistic Rational Method 

In Probabilistic Rational Method (PRM), the 
design flood for an average recurrence interval 
(ARI) of Y years, QY (m3/s) is given by: 

AICQ YtYY c ,278.0=                                    (2) 

 

where CY is the dimensionless runoff coefficient for 
ARI of Y years, Ytc

I ,  is the average rainfall 
intensity (mm/h) for a design duration equal to the 
time of concentration tc (h) and ARI of Y years, and 
A is the catchment area (km2). For south-east 
Australia, tc is obtained from: 

38.076.0 Atc =                                                (3) 

The contour maps of C10 in the ARR were 
developed based on Equation (2) and using partial 
series of flood peak and rainfall data from 325 
gauged catchments in New South Wales and 
Victoria. The runoff coefficients for other Y values 
are computed using frequency factors provided in 
ARR (I. E. Aust., 1997). The preparation and use of 
the contour maps of C10 in the ARR assumes a 
smooth variation of C10 values over geographical 
space. Study by Rahman and Hollerbach (2003) on 
104 small to medium-sized catchments in south-
east Australia showed that the C10 values exhibit 
little spatial coherence and many nearby catchments 
showed quite different C10 values. Also their 
attempt to develop a regression equation between 
C10 and catchment characteristics were proved to be 
unsuccessful. The final regression equation 
included 6 independent variables showing an R2 
value of only 50%. An application of this 
regression equation to 25 test catchments provided 
unsatisfactory results in that over 20% of the 
estimated C10 values were found to be negative. 

 

3. DATA 

A total of 98 gauged catchments from south-east 
Australia were selected for this study. These 
catchments are mainly rural with no major 
regulations and land use changes over the periods 
of records. The catchments are small to medium 
sized having areas in the range of 3 to 950 km2; the 
first, second and third quartiles are 128, 308 and 
509 km2, respectively. The sites have streamflow 
record lengths in the range of 24 to 59 years, with a 
mean value of 34 years and 75th percentile of 37 
years. The data for these catchments were 
assembled in the CRC for Catchment Hydrology 
(Rahman et al., 1999). 

An empirical distribution was fitted to each 
station’s annual flood data using Cunnane’s 
unbiased plotting position formula (Cunnane, 
1978). The calculated ARIs were then plotted 
against the observed floods on normal probability 
paper and a best-fit line was drawn by eye, and 
flood quantiles QY (for Y = 2, 5, 10, 20, 50 and 100 
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years ARIs) were read from the graph. Here, QY 
values were obtained from the annual maximum 
flood series and were not converted into partial 
duration series. It may be noted here that given 
the record lengths, the estimated 50 and 100 years 
floods are likely to be subjected to a high degree 
of extrapolation and measurement error, and 
hence the prediction equations for these ARIs 
should be used with caution.  

A total of 12 explanatory (predictor) variables 
were included in the analyses: rainfall intensity of 
12-hour duration and 2-year average recurrence 
interval (I12, mm/h), mean annual rainfall (rain, 
mm); mean annual rain days (rdays), mean annual 
class A pan evaporation (evap, mm); catchment 
area (area, km2); lemniscate shape, a measure of 
the rotundity of a catchment (shape); slope of the 
central 75% of the mainstream (slope, m/km); 
river bed elevation at the gauging station (elev, 
m); maximum elevation difference in the basin 
(relief, m); stream density (sden, km/km2); 
fraction of basin covered by medium to dense 
forest (forest); and fraction quaternary sediment 
area (qsa). The qsa is a measure of the extent of 
alluvial deposits and is an indicator of floodplain 
extent in the study area. The explanatory variables 
rain, rdays, evap, and I12 were determined at the 
catchment centroid.  

From the 98 catchments, twenty were selected at 
random and put aside for independent testing of 
the QRT and PRM. The remaining 78 catchments 
were used to develop prediction equations in the 
QRT and derive runoff coefficients in the PRM. 
The number of test catchments (20 out of 98 i.e. 
20%) appears to be adequate. The statistics of the 
catchment characteristics of the test catchments 
and the 78 catchments used in the model 
development (model catchments) are compared in 
Table 1, which shows that the test and model 
catchments have ‘similar’ range of characteristics. 

Table 1. Comparison of catchment characteristics 
of the 78 model and 20 test catchments 

Mean Median Standard 
deviation 

Character- 

istics 
Model Test Model Test Model Test 

area 

(km2) 

325 334 260 296 251 265 

I12 

(mm/h) 

4.77 4.21 4.47 4.15 1.31 0.61 

sden 

(km/km2) 

1.36 1.42 1.39 1.42 0.43 0.41 

evap 
(mm) 

1294 1235 1255 1200 174 144 

qsa 0.17 0.18 0.03 0.14 0.25 0.20 

(fraction) 

 

4. RESULTS 

4.1 Development of Prediction Equations by 
Quantile Regression Technique 

Each of the flood quantiles (e.g. Q2) was regressed 
against the 12 predictor variables using the 
statistical package SPSS. A number of alternative 
models were developed for each of the quantiles 
and the one showing the highest co-efficient of 
determination (R2) and lowest standard error of 
estimate (SEE) and satisfying the model 
assumptions most closely (as discussed below) 
were selected.  

The regression coefficients in the prediction 
equations 4 to 9 were found to be significantly 
different from zero (at a significance level of 0.05 
or less). The values of R2 are reasonably high 
(range: 0.74-0.79) and SEEs are generally small 
(less than 7% of the mean observed flood quantile 
in log domain) for all the six quantiles. The selected 
regression equations were checked against the least 
squares assumptions (Norusis, 2000).  

The normal cumulative probability plots did not 
show significant departure from a straight line, 
indicating that residuals were near-normally 
distributed (typical plots are shown in Figure 1). 
Plots of standardised residuals against the 
standardised predicted values did not show any 
systematic patterns between the predicted values 
and the residuals (typical plots are shown in Figure 
2). Also, no pattern was detected on the plots of 
predicted and observed quantiles. These indicate 
that the assumptions of linear model and 
homogeneity of variance have largely been satisfied 
for the prediction equations. 

The value of Durbin-Watson statistic was found to 
be in the range 1.55-1.65, which is close to 2, thus 
the residuals are not highly correlated. The values 
of Durbin-Watson statistic range from 0 to 4 and a 
value of 2 indicates absence of any correlation. No 
outlier and influential data point was found. 

The selected prediction equations are given below:  

 

)log(535.1)log(741.0
)12log(558.1)log(682.0958.3)log( 2

evapsden
IareaQ

++
++−=

                                                                      (4) 

R2 = 0.75, Adjusted R2 = 0.74, SEE = 0.22 (6.16% 
of the mean log Q2) 

1889



 

 

)log(124.2)log(714.0
)12log(584.1)log(727.0611.5log 5

evapsden
IareaQ

++
++−=

                                                                       (5) 

R2 = 0.76, Adjusted R2 = 0.75, SEE = 0.23 (5.94% 
of the mean log Q5) 

)log(861.0)log(296.2
)12log(435.1)log(674.0789.5log 10

sdenevap
IareaQ

++
++−=

                                                                       (6) 

R2 = 0.74, Adjusted R2 = 0.73, SEE = 0.23 (5.81% 
of the mean log Q10) 

)log(880.0)log(141.2
)12log(610.1)log(733.0464.5log 20

sdenevap
IareaQ

++
++−=

                                                                      (7) 

R2 = 0.76, Adjusted R2 = 0.74, SEE = 0.23 (5.77% 
of the mean log Q20) 

)log(127.0
)log(848.0)log(430.2

)12log(100.1)log(710.0025.6log 50

qsa
sdenevap

IareaQ

−
++

++−=

                                                                      (8) 

R2  = 0.79, Adjusted R2 = 0.77, SEE = 0.22 
(5.24% of the mean log Q50)  

)log(128.0
)log(921.0)log(529.2
)12log(097.1)log(714.0270.6log 100

qsa
sdenevap
IareaQ

−
++
++−=

                                                                      (9) 

R2  = 0.79, Adjusted R2 = 0.77, SEE = 0.23 
(5.28% of the mean log Q100)             
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Figure 1. Normal quantile-quantile plot of residuals 

for logQ10 
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Figure 2. Plots of standardised residual and 

standardised predicted values for logQ10 

 

4.2 Estimation of Runoff Coefficients for the 
PRM 

The runoff coefficient (CY) for a catchment was 
computed using Equation 2 for Y = 2, 5, 10, 20, 50 
and 100 years. This requires estimates of QY 
and Ytc

I , . The values of QY were estimated by a 
non-parametric method as discussed in Section 3. In 
obtaining the design rainfall intensity ( Ytc

I , ), the 
time of concentration (tc) was estimated using 
Equation 3. Given the Y and duration of design 
rainfall (taken as tc), Ytc

I , value was computed at 
catchment centroid using the ARR method (I. E. 
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Aust., 1997). The values of C10 were estimated 
and plotted in a map of the area. The values of 
other CY were obtained using the frequency 
factors as shown in Table 2. 

Table 2. Frequency factors for the PRM 
Y(ARI) Frequency Factor 

2 0.56 

5 0.82 

10 1 

20 1.09 

50 1.21 

100 1.35 

 

4.3 Comparison Between QRT and PRM 

For the 20 test catchments, QY were estimated for 
Y = 2, 5, 10, 20, 50 and 100 years using the 
developed prediction Equations 4 to 9. These are 
referred to as QRT estimates. The QRT estimates 
for the test catchments are presented in Figure 3, 
which shows that flood quantiles generally 
increase with the ARIs for most of the test 
catchments but some smoothing may be required 
for some catchments so that flood quantiles 
increase consistently with ARIs. 
 
To obtain the estimates by the PRM, the values of 
the runoff coefficients (C10) for the 20 test 
catchments were estimated assuming a smooth 
variation over geographical space (as per the ARR 
method) on the plot of C10. Based on these values, 
Q2, Q5, Q10, Q20, Q50 and Q100 were estimated 
using Equation 2, which are referred to as ‘PRM 
estimates’.  
 
Using historical streamflow data, the values of Q2, 
Q5, Q10, Q20, Q50 and Q100 were estimated for the 
test catchments using a non-parametric method, as 
mentioned in Section 3. These estimates are 
referred to as ‘observed flood quantiles’. The 
difference between the QRT/PRM estimates and 
observed flood quantiles may be taken as a 
measure of uncertainty in design flood estimates 
by the QRT/PRM and are referred to as ‘relative 
error’ here. 
 
The median values of the relative errors (ignoring 
the sign of the relative errors) associated with the 
QRT and PRM based on the 20 test catchments 
are presented in Table 3, which shows that QRT 
has remarkably smaller median relative error for 2 
years ARI, for 5, 10, 20 and 50 years ARIs, both 
the methods have similar median relative error 
values, and for 100 years ARI, PRM has 
remarkably smaller relative error as compared to 

that of the QRT. In the case of the 75th percentiles 
of the relative errors (Table 4), QRT shows much 
smaller values as compared to the PRM. The 
relative error values are greater than 100% for 15% 
and 10% cases with the QRT and PRM, 
respectively.  
 
 
Table 3. Median relative errors (%) associated with 
the QRT and PRM (ignoring the sign of the relative 
errors) 
Method Q2 Q5 Q10 Q20 Q50 Q100 
QRT 28 41 38 36 34 47 
PRM 52 43 35 38 31 36 
 
  
Table 4. 75th percentile values of relative errors (%) 
associated with the QRT and PRM (ignoring the 
sign of the relative errors)  
Method Q2 Q5 Q10 Q20 Q50 Q100 
QRT 45 55 50 57 57 62 
PRM 80 70 72 61 70 73 
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Figure 3. Flood quantiles for the test catchments 

using the QRT 

 

The box plots of relative errors (considering their 
sign) for the QRT and PRM are shown in Figures 4 
and 5 respectively, which show that median values 
for the QRT are closer to zero line than that of the 
PRM. This indicates that on average the PRM 
estimates will show greater bias than that of the 
QRT. The box plots also show that the PRM has 
wider error band than that of the QRT. Table 5 
presents the proportion of cases that QRT/PRM 
underestimates/overestimates the observed flood 
quantiles. Here the QRT provides better results in 
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which proportions with under and over estimation 
are closer to 0.5 as compared to the PRM.  

 

Table 5. Proportion of cases with underestimation 
and overestimation 
ARI 
(years) 

QRT (Proportion of 
cases) 

PRM (Proportion of 
cases) 

 Under-
estimation 

Over-
estimation 

Under-
estimation 

Over-
estimation 

2 0.55 0.45 0.35 0.65 

5 0.45 0.55 0.35 0.65 

10 0.45 0.55 0.40 0.60 

20 0.45 0.55 0.55 0.45 

50 0.50 0.50 0.65 0.35 

100 0.40 0.60 0.65 0.35 
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Figure 4. Box plot of the relative errors (QRT) 
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Figure 5. Box plot of the relative errors (PRM) 

 

The cumulative distributions of relative errors for 
each of the ARIs are plotted in Figure 6, which 
shows that QRT has smaller relative error values 
for greater proportion of cases for 2 and 5 years 
ARIs. For the other ARIs, two methods show very 
similar distributions of relative errors.  
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ARI = 10 years
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Figure 6. Distribution of relative errors 

 

 

5. CONCLUSIONS 

This paper compares Quantile Regression 
Technique and Probabilistic Rational Method for 
design flood estimation in south-east Australian 
catchments. Following conclusions can be drawn 
from this study: 

• The Quantile Regression Technique in 
general provides more accurate design flood 
estimates than the Probabilistic Rational 
Method. 

• The Quantile Regression Technique in 
general shows smaller bias in flood estimates 
than the Probabilistic Rational Method. 

• There is a chance of about 10% that the error in 
design flood estimates will exceed 100% with 
both the Quantile Regression Technique and 
the Probabilistic Rational Method. The users of 
these techniques should be aware of this large 
error and provision should be made 
accordingly. 
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