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EXTENDED ABSTRACT  

Ecological regions are increasingly used as a 
spatial unit for planning and environmental 
management. It is important to define these 
regions in a scientifically defensible way to 
justify any decisions made on the basis that they 
are representative of broad environmental assets. 
The paper describes a methodology and tool to 
identify cohesive bioregions. The methodology 
applies an elicitation process to obtain 
geographical descriptions for bioregions, each of 
these is transformed into a Normal density 
estimate on environmental variables within that 
region. This prior information is balanced with 
data classification of environmental datasets using 
a Bayesian statistical modelling approach to 
objectively map ecological regions. The method 
is called model-based clustering as it fits a 
Normal mixture model to the clusters associated 
with regions, and it addresses issues of 
uncertainty in environmental datasets due to 
overlapping clusters. 
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1. INTRODUCTION 

Ecoregions define recognizable areas which 
embody broad environmental and landscape 
structures. Ecoregion classification and subsequent 
boundary definition have a significant impact on 
natural resource management. The need for 
bioregionalisations was initially driven by 
conservation planning, but they have taken on 
extended roles as spatial units for tabulating 
environmental information (as opposed to socio-
economic administrative units) and for the 
allocation of funding for the environment. In 
Australia a bioregional planning framework, called 
the Interim Biogeographic Regionalisation of 
Australia (IBRA) has been established [EA, 2000]. 
The biogeographical regions in IBRA are land 
areas comprised of interacting ecosystems that are 
repeated in similar form across the landscape. 
Typically the IBRA regions are based upon factors 
such as climate, lithology, geology, landforms and 
vegetation as surrogate indicators of the ecological 
processes that occur on land, particularly as 
relevant to conservation strategies and natural 
resource capability. The ecoregions are mapped at 
different scales within a hierarchy ranging from 
broad land types to local regional ecosystems (See 
Figure 1). 
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Figure 1. Conceptual hierarchy of bioregional 

classification at four levels. Adopted from Sattler 
and Williams [1999] 

The focus of this paper is on sub-bioregions as 
areas of land that have a distinctive pattern of 
landform and vegetation which indicates major 
differences in land processes and biological 
communities [Sattler and Williams, 1999]. Sub-
bioregions are mapped at a scale of 1:100,000. In 
Queensland, the delineation of sub-bioregions is 
largely overseen by an expert scientific panel who 
interpret available mapped information sources 
using their knowledge of the region. The regions 
are mapped as areas that have distinctive 

landscape patterns with permeable boundaries. 
With growing use of these regions within natural 
resource decision-making there is pressure to shift 
from subjective expert-based methods for defining 
bioregions to a more repeatable, scientifically 
defensible and objective system of classification. 
In response to this need a project was undertaken 
to make the expert input more explicit and to 
incorporate classification based on statistical 
analysis of geographic information. The guiding 
principle in the classification is to determine the 
key drivers amongst a range of abiotic 
environmental factors using cluster analysis to 
identify cohesive and separable classes from 
geophysical datasets. 

The outline for the paper is as follows. The next 
section explains the location for the study area. 
Section 3 describes the Bayesian approach to 
classification. Section 4 describes the spatial and 
graphical tool used to elicit knowledge from 
experts that is used as prior information to guide 
the classifier. Section 5 illustrates the results for a 
classification. Section 6 summarises and discusses 
the significance of the work.   

 
2. STUDY AREA 

The results of the research are to be applied to 
eastern bioregions within the state of Queensland 
in Australia, however the paper will focus on one 
bioregion in the south-eastern corner of the state 
(Figure 2).  

 

 
Figure 2. Locality map showing bioregion and 

sub-bioregions for the study region in South-East 
Queensland. 

The bioregion covers 66,000 km2 and comprises 
coastal plains, a major drainage basin for the 
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Brisbane river catchment, and mountain ranges.  
The area is sub-tropical and is considered one of 
the most species-rich and diverse parts of Australia 
for flora and fauna [Sattler and Williams, 1999]. 
There is significant settlement of the region with a 
population of approx. 2 million people, and the 
expectation this population will double in the next 
40 years. Despite a number of national parks and 
smaller reserves the area has several vulnerable 
species that are endangered and bioregional 
planning plays an important part in decision-
making for future development. 

 
3. METHODOLOGY 

Previous approaches to bioregionalisation have 
tended to be either expert-driven or data-driven 
[eg Bunce et al 2002, Hargrove and Hoffman 
1999). For example the most recent set of 
Queensland’s sub-bioregions [Sattler and Williams 
1999] is based on expert opinion on sub-
bioregional boundaries [see Morgan and Terry 
1990]. As is common in these situations a Delphic 
approach was used, where a panel of several 
experts were consulted together about the location 
of boundaries, based on mapped and well-defined 
topographic features such as regional ecosystem 
boundaries (derived from aerial photography), 
ridgelines, etc [Neldner 2002]. In their 
assessments, experts also referred to other spatial 
information such as soils and climate. In contrast 
the most recent sub-bioregions for Tasmania 
[Peters and Thackway 1998] take a data-driven 
approach and make use of spatially extensive fine 
scale information both biotic and abiotic. This data 
was input to multivariate clustering techniques 
[Everitt and Hand, 1981], and then use this as 
input, post-hoc, to an expert panel process to 
address inconsistencies and other model 
inadequacies.   

Here we propose a regionalisation approach that 
aims to balance inputs from both experts and data, 
integrated within a Bayesian statistical modelling 
framework. The basic premise [Congdon 2001] is 
that updating prior information on parameters 
using information provided by data (likelihood) 
provides posterior information on these 
parameters: 

 Posterior  ∝ Prior × Likelihood (1) 

This provides a natural framework for continually 
updating old models (priors) with new data 
(likelihood) as it arises to produce new improved 
models (posteriors). Readers are referred to 
Gelman et al [2004] for further information on 
Bayesian statistical modelling. 

 

 

3. 1 Models 

In many situations statistical distributions (eg 
Normal, Poisson, exponential, etc) do not fit the 
observed data. This is particularly true of 
environmental data where a mixture of 
environmental conditions could lead to different 
patterns in the data. Mixture models address this 
issue by explicitly allowing for a mixture of 
components, each described by a separate 
distribution, to combine together into an overall 
mixture distribution.  

More precisely, we define a mixture distribution 
for K clusters or mixture components indexed k = 
1…K. Let wk denote the weight or proportion of 
observations in each cluster. Denote by x the 
dataset with one row per observation and one 
column per variable (eg environmental attribute). 
Let θ represent the set of mixture model 
parameters. Then the overall mixture likelihood 
p(·) is defined as the weighted sum of mixture 
components f(·):   

 ∑ =
= K

k kkk xfwxp
1

)|()|( θθ  (2) 

A common choice for the model for each cluster is 
a multivariate Normal, giving rise to a Gaussian 
mixture model. In the kth cluster, for the ith 
observation on all variables xi: 

 ),()|( kkdki MVNxf ∑≡ μθ  (3) 

This indicates that each observation in the cluster 
is drawn from a multivariate Normal distribution 
of d dimensions with d×1 vector of means μ and 
d×d variance-covariance matrix Σ. This could 
mean for bioregionalisation that a particular region 
is defined by a 3D Normal distribution with mean 
rainfall 50mm pa, soil moisture 0.10, and elevation 
50m. The standard errors could be, say, 
respectively 10mm pa, 0.04, and 20m, with the 
only non-negligible covariance being 42% 
between soil moisture and rainfall. If the 
variability of a variable is narrow (small standard 
error) then the cluster/region is closely linked to 
that environmental attribute. Similarly wide 
variance leads to little relationship between that 
geographical region and the environmental 
attribute in question. See Figure 3. 

A method proposed by Dempster et al [1977] 
relies on introduction of extra (auxiliary) variables 
to facilitate the computations. These keep track of 
cluster membership for each observation. Let zi = 
k if the ith observation falls into the kth cluster. See 
figure 4. Then the weight of each cluster is just the 
same as the probability of cluster membership: 
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Figure 3. A mixture model with two variables and 
two clusters. The ellipsoids mark the standard 

deviation of the bivariate normal distribution that 
defines each cluster. The size, shape and 

orientation of a cluster's ellipsoid indicates the 
means, variances and correlations of the two 

variables for sites in the cluster. 

 

 
Figure 4. A mixture model in which the 

distribution of one variable is modelled as a 
mixture of the distributions of the variable at sites 

in each of two clusters. Site 1 is assigned  to 
cluster 1 because the probability density at x1 is 

greater for cluster 1 than that for cluster 2.  

The computation of the mixture model is applied 
iteratively to explore the posterior distribution of 
each parameter repeatedly until most important 
parts of the distribution have been explored. This 
is the general idea behind Markov Chain Monte 
Carlo (MCMC) [Gelman et al , 2004]. Through 
MCMC we obtain dependent simulations that, 
once they’ve reached equilibrium, model the target 
posterior distributions (1) for each parameter. The 
challenge is to design an MCMC sampler that 
converges to equilibrium efficiently.  

A general approach for implementing either 
Bayesian approach comprises three steps: 

1. Designing priors 
2. Designing MCMC samplers 
3. Implementing MCMC 

Designing the MCMC samplers and implementing 
the MCMC are not the focus of this paper. We 
focus on the first stage of designing appropriate 
priors in the next section. 

3. 2 Priors and eliciting expert knowledge 

In equation (1) the priors and likelihood have 
equal impact. The theoretical mixture model 
likelihood is defined through equations (2)-(4). 
Designing appropriate priors is somewhat of an 
“art” and requires two main stages: 
1. Select appropriate priors to enable dialogue 

with expert(s) so that they can describe their 
prior knowledge in a form suitable for input to 
the model. 

2. Design and implement elicitation processes 
(experiments) to quantify the prior knowledge 
held by experts. 

These two stages are closely linked. Without 
knowing the form of the prior the elicitation 
process at worst can provide irrelevant 
information. On the other hand, without a rigorous 
elicitation experiment, it is difficult to ensure the 
validity, repeatability and transparency of priors 
obtained. 

For Gaussian mixture models there are four main 
types of priors we can consider, depending on the 
type of expert knowledge available. 

Expert knowledge Appropriate prior 
Experts know nothing 

(objective ~ Frequentist) 
Non-informative 
(improper) priors 
Informative 
conjugate 

Experts know something 
about model coefficients 
(means and variances on 

each variable in each cluster) 
Informative 
semi-conjugate 

Experts know something else Data Augment-
ation priors 

 
We focus on the second more usual choice, the 
informative conjugate prior: informative since 
prior knowledge on means and variances in each 
cluster informs the model (has impact on results), 
and conjugate since the choice of prior distribution 
factors out “nicely” mathematically. For the 
Gaussian mixture model, this prior comprises a 
Normal distribution for cluster means conditional 
on known cluster variance (μk | Σk in Equation 5), 
with an inverse Wishart distribution for the inverse 
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covariance matrix (Σk
-1 in Equation 5) [Diebolt and 

Robert 1994].  

 ),(~),(~| 11
kkkkkkk WsmN ϕνμ −−ΣΣ (5) 

Each prior has a number of hyperparameters mk, sk, 
μk, νk describing respectively the best guess of the 
value and precision of the cluster means, and best 
guesses for cluster covariance matrix and the 
“effective” amount of prior information used to 
derive these. 

These priors match expert knowledge about 
average and standard deviation of each 
environmental attribute within each cluster, where 
the mean depends on the standard deviation. 

 
4 SPATIAL ELICITATION TOOL 

Eliciting information from experts for input into 
Bayesian models requires a blend of psychological 
survey design skills, designing questions for 
interview, determining who is interviewed and 
how many times. The challenge is that instead of 
factual information, we require knowledge as 
synthesized by the expert to be deconstructed and 
quantified in a form like (5) suitable for input into 
modelling. These issues are addressed in the 
expert elicitation literature [O’Hagan 1988]. 

4.1 Design 

To this end we have designed a computer assisted 
elicitation process that uses a spatial and graphical 
tool to help the user visualize and explore the data. 
Essentially the user can interact with data from 
various “viewpoints” each with a different activity:  
 Cartographic: select an existing sub-bioregion 

or select attributes to spatially define a “new” 
sub-bioregion, 

 Data exploration: inspect and adjust 
histograms of each environmental attribute, 

 Spatial analysis: map several environmental 
attributes within the geographic region. 

Thus a user can choose to define a sub-bioregion: 
in geographic space as a cartographic view or in 
variable space as an environmental “domain”. The 
aim is to elicit the priors (μk , Σk ) for each cluster, 
where a cluster corresponds to a sub-bioregion. 
The two step process in eliciting these priors is 
explained below.  

Use the cartographic view to geographically select 
areas that characterise each sub-bioregion. This is 
typically specified in terms of land classes for 
vegetation types, landforms and species 
distributions. For example, an ecologist may select 
areas that form a bio-region made from coastal 
lowlands with Banksia open forest. This is carried 

out in a GIS with custom tools to assist in making 
attribute selections. The geographical selections 
are used to analyse environmental datasets and 
extract variables within the selected regions. 

The data exploration view shows histograms for 
the set of environmental variables within the above 
geographical selection. These variables are the key 
abiotic factors used to classify and differentiate 
between sub-bioregions. For example, continuous 
variables for climate, topography and soil 
characteristics. An important facet of the data 
exploration view is the ability to define thresholds 
for variables. For instance the user may clearly 
want to eliminate a certain range of values for a 
variable (eg particular soil qualities or low rainfall 
values). These thresholds can be defined in a 
univariate or bivariate fashion. A graphical tool 
invoked from the GIS shows adjustable histograms 
of several environmental attributes within that 
region. This provides hyper-prior parameter 
estimates mk,sk for the mean. Instead of eliciting 
the covariance matrix from the user, we use a 
sample covariance matrix ϕk estimated from a sub-
sample for that region. The user can adjust another 
control to set the degrees of freedom (or effective 
prior sample size)νk to reflect certainty in this 
matrix. The graphical tool has functions to store 
the prior estimates of mean (best guess and 
certainty) as well as the degrees of freedom of the 
covariance matrix for each sub-bioregion to be 
classified. This “experimental” data along with 
other basic metadata is used as priors in the 
Bayesian cluster classification.  

4.2 Implementation and Visualisation Interface 

A map-based user interface has been developed 
using GIS technology to display parameters as 
maps and charts. See Figure 5. In the data 
exploration view, means are visualized by splitting 
the x-axis on histogram and slider bar into three 
colours. Data symbolization is based upon a 
variation of a boxplot to show where credible 
intervals are which are then displayed on the map 
view [Car et al, 1999]. The slider control allows a 
user to adjust class breaks interactively, and these 
changes are automatically reflected in the colours 
displayed on the chart and the map cartographic 
view. This provides an effective means for a user 
to interactively set an estimated credible interval 
for single variables within the region.  

This information gathered from experts is feed into 
the informative priors and is recorded as part of an 
experimental workbook. Elicitation information 
includes the name of the expert, date, remarks, 
centre value and bounds for each variable 
analysed. This information may be used to weight 
(e.g. based upon certainty or expert knowledge) 
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informative priors and to document the results of a 
classification. 

 
Figure 5. Univariate data visualization.  

The graphical interfaces includes a map-based 
(cartographic) view and a graph-based (data 
exploration) view. The user may add up to three 
environmental variables as maps. These two views 
are linked so that changes in one are 
simultaneously reflected in the other. Up to three 
maps may be added in this way, and then a 
combined map or overlay may be created to see 
the mapped overlap distributions. The overlap 
distribution is representative of the confidence 
intervals of the means of the environmental 
attributes of a sub-bioregion. The expert can then 
interact with the map to add or remove areas from 
the sub-bioregion. Hence, the cartographic view 
and exploration view are dynamically linked. The 
expert may view another graphical interface for 
exploration of combinations of the variables. A 
map and a scatter diagram with a background 
density frequency chart are displayed for 
combinations of the two intervals attributes in two 
dimensions. The co-occurrence of related variables 
show up as clusters which the expert can refine by 
selecting the representative center or mean μ in 
two dimension, and an area around this center 
representing the credible interval. This information 
is also saved as prior information for the classifier. 

 
5. RESULTS 

The approach may be validated visually against 
the existing sub-bioregions by fitting mixture 
models to the most significant environmental 
variables and a comparison made to see what 
adjustments are suggested by the resulting clusters. 
Figure 6 shows the results of this computation for 
south-east Queensland and it is seen that the 
adjustments are minor. The most significant 
variables used in the analysis were selected 
statistically with a dimension reduction technique. 
In our south-east Queensland case study we were 

able to adequately fit mixture models to the 
existing sub-bioregions with a manageable number 
of topographic, climate and soil variables. 
Conformance with the existing sub-bioregions 
could be effectively controlled by manipulation of 
the relative weights placed on the priors and data 
variables (Figure 6). 
(a)  (b)  (c) 

Figure 6. The existing sub-bioregions for south-
east Queensland shown by solid lines on Bayesian 

mixture model classifications with: (a) no prior, 
(b) moderate weighting on priors, and (c) strong 
weighting on priors. The priors were calculated 

from the existing sub-bioregions. 

 
6. CONCLUSION 

The significance of the research is that a Bayesian 
approach allows us to combine qualitative 
information and quantitative data in classification. 
Hence combining - the previously competing - 
approaches of expert panel and data classification. 
Bayesian mixture models provide a method for 
classifying ecoregions with a formal statistical 
procedure that fits overlapping clusters. When 
mapped spatially the cluster components relate 
well to coherent bio-regions. This is illustrated in 
Figure 6, which also shows the results of adjusting 
the relative weightings on expert knowledge and 
data between bio-regions. Our elicitation tool 
enables experts to interactively specify 
quantitative model parameters (e.g. means and 
covariance matrices) by viewing and manipulating 
familiar entities such as maps and histograms. The 
results are presented visually in this paper; future 
work will provide details on model diagnostics, 
model performance, and model comparisons. 
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