
The architecture of the E2 catchment modelling
framework

1Perraud, J.-M. , 1S. P. Seaton, 1J. M. Rahman, 1G. P. Davis, 2R. M. Argent and 1G. D. Podger

1CSIRO Land and Water, 2University of Melbourne, E-Mail: jean-michel.perraud@csiro.au

Keywords: Catchment modelling; E2; TIME; Model development framework

EXTENDED ABSTRACT

Catchment management is becoming a more
complex task. The sharing of water resources
between traditional water users and the
environment, the introduction of water and
contaminant trading and water quantity and quality
targets has necessitated a whole-of-catchment
modelling approach. A variety of software
products address this need. They range from
abstract, general-purpose modelling frameworks
which are not tailored to catchment modelling, to
software that is applicable only to a specific
catchment. Many of these catchment models are
‘hardwired’ with algorithms that may not be
appropriate for another catchment, or do not allow
for the reuse of prior modelling knowledge. E2 is a
catchment modelling framework within the
Cooperative Research Centre for Catchment
Hydrology (CRCCH) Catchment Modelling
Toolkit. It allows the integration of components
and models from other Toolkit products, and is
designed to enable flexibility in model choice. The
core capabilities of the framework extend beyond
the modelling of physical processes in unregulated
catchments, and the architecture was designed
from the ground up to also enable the
representation of regulated systems and ecological
responses to physical conditions.

E2 has no intrinsic assumption about the time step
of the input data and, with an appropriate choice of
models warranted by the data available, can run
over a range of time steps and spatial scales. The
catchment is modelled using a structure of sub-
catchments, nodes and links. These key elements
have been designed as modular, extendable
modelling units. E2 is built upon The Invisible
Modelling Environment (TIME) and shares several
of its characteristics, notably the use at run-time of
model metadata attributes and reflection. In
particular it relies on the use of abstract software
interfaces, flexibility by composition of objects
using a “plug-in” approach, and object oriented
design patterns, wherever appropriate to enable
this flexibility. This helps to foster minimal
software coupling between the models dealing
with different processes, and for each of these

processes there is thus the possibility to choose
from a library of candidate models. This flexibility
extends to the user interface and the persistence
mechanism used to save the system configuration.
The user interface is designed to accommodate a
choice of different methods when building
scenarios, enabling, for example, alternate
approaches to defining the node-link network. The
use of “wizards” guides the definition of an
overarching workflow between the tasks required
to set up the network, and at many steps in this
workflow an extensible list of alternate methods to
perform the task is offered. The persistence
mechanism uses a relational database, and can
handle complex dependencies between objects in
the system.

The high level features of E2 are described by
Argent et al. (2005). The present paper describes
the software design process and key architectural
aspects in the various software layers that were
required to enable the features and flexibility of the
framework. The modelling engine, user interface,
on-disk persistence mechanism and calibration
tools all rely on the use of software interfaces,
software reflection and various software design
patterns to achieve flexibility and enable
extensibility of the modelling framework. The
modelling engine contains four main software
elements: nodes, links, sub-catchments and
functional units, and each can have alternate
concrete software implementations. This engine
also relies on a standardised software
representation of mass balance and unit
consistency throughout the system. The user
interface relies on the use of a wizard with selected
points of extension for alternate methods to
perform a given task. The persistence mechanism
uses software reflection to save and load model
configurations, which has no overhead in terms of
code for model developers. If objects are too
complex to rely solely on software reflection,
another mechanism using a software interface that
still keeps the overhead at a minimum can be used.
The calibration tool uses the builder and factory
patterns to build composite parameter sets at run
time by grouping model parameters.

690

1. INTRODUCTION

Catchment management requires increasingly an
integrated modelling approach. There is a growing
demand for modelling systems and decision
support tools taking into account the biophysical,
water management, economic and ecological
processes taking place in catchments. Numerous
software packages support the modelling of one or
more of these processes. However the integration
of these software packages to support an integrated
approach is often a very difficult exercise, if it is to
go beyond a relatively simple data exchange. Also
many catchment models have fixed algorithms that
may not make the best use of the modeller’s prior
knowledge of the catchment, nor have the
flexibility to adapt the model structure for
changing modelling requirements.

E2 is an integrative catchment modelling platform
using the Catchment Modelling Toolkit (CMT) as
its primary source of component models and tools.
It is built upon The Invisible Modelling
Environment (TIME, Rahman et al. 2003), and has
been designed as an extensible framework
enabling model choice. This paper presents the
design and architecture of E2, and the software
mechanisms that underpin it. Note that it is
assumed that the reader has a good understanding
of object-oriented programming.

2. KEY GOALS

E2 is a catchment modelling framework based
conceptually on two previous software packages,
the Environmental Management Support System
(EMSS, Cuddy 2003) and the Integrated Quantity
and Quality Model (IQQM, Podger 2004). The
features of other well-known catchment and river
system modelling tools (e.g. SWAT, QUAL2E)
were reviewed in order to ensure there was enough
flexibility in the product.

The key requirements for E2 were identified as:

• Enabling choice wherever warranted, e.g.
rainfall-runoff modelling, flow routing
model, but also for various methods of
definition of the river network and sub-
catchments,

• Being a transparent system, i.e. the
modeller can explore the state variables of
the models in depth if required

• Ability to model a variable list of
conservative and non-conservative water
constituents

• Including advanced tools facilitating the
calibration of the models in a
computationally efficient manner

• Minimising the up-front data
requirements to start building a network,

• The modelling engine itself must not be
tied to a fixed temporal or spatial scale,

• Allow for adapting the quantity of output
data (e.g. number of time series) to the
memory constraints of the computer,

• Designed from the ground up with the
aim to implement water management
rules and support ecological response
models.

The high level architecture of E2 consists of three
layers: user interface, modelling engine and
handling of data input-output, a fairly standard
approach in most recent softwares. This paper will
illustrate the design of key architectural elements
in these layers.

3. MODELLING ENGINE

Three sub-layers can be distinguished in the
modelling engine itself:

• physical layer, embodied by the
interconnected nodes, links and sub-
catchments, dedicated to representing any
biophysical process,

• management layer, that comprises the
modelling units that deal with any human-
induced process and which inspects and
acts upon the physical layer, and

• a layer for tools acting on the previous
two layers, e.g. a tool cropping a sub-
network out of a full network, for
calibration purposes.

E2 relies on a structure of projects and scenarios.
A project is a container for a series of scenarios,
and a repository for a central list of stored
parameter sets that can be applied to the models in
the scenarios. The scenarios in a project do not
necessarily have the same spatial structure, since
for example a scenario representing the addition of
a dam would modify the structure of the river
network.

Each scenario has a network runner, which is an
aggregate of a network (a collection of sub-
catchments, nodes and links), a component that
centrally stores the temporal information of the
simulation (start, end and time step), and two

691

software components in charge of recording time
series from and feeding time series into the
models. These last two components (“Player” and
“Recorder”) are central to addressing two of the
core requirements: being able to record at run-time
any model variable, and adapting the size of the
data handling to the memory availability of the
system.

Players and Recorders rely on software reflection
(Rahman et al. 2004) to specify the association of a
given time series and the property of a model that
is played to, or recorded from. Software reflection
is a cornerstone of the E2 architecture, and is used
extensively in the modelling engine (e.g. to build
parameter sets at run-time) as well as in the other
main software layers.

3.1. Spatial sub-systems

E2 is a catchment modelling framework that uses a
hierarchical, nested structure, especially with
respect to the spatial scale. For each modelling
sub-system defined at a certain scale or relating to
a type of process, a software interface was defined
whenever possible. The advantages of this
approach were explained by Gamma et al. (1994).
In E2 this fosters the decoupling of the software
classes operating at different spatial scales or
modelling separate physical processes, and is a key
mechanism enabling model choice.

The catchment is broken up as a series of sub-
catchments. Their outflows contribute to the node-
link network representing the river system itself, as
lateral inflow to the links. A standard
representation of a sub-catchment is as a collection
of Functional Units (FU), a generalisation of the
concept of Hydrological Response Units. A FU is
a part of a sub-catchment that has homogenous
characteristics for the modelling purpose at hand.
In most cases this means homogeneity in terms of
hydrology and constituent generation. FUs do not
have any explicit spatial representation, although
they have an area as a property. The rationale for
this choice can be found in Argent et al. (2005). A
standard implementation of a FU is a series of
three models: a rainfall-runoff model, a constituent
generation model, and a constituent filtering
model. The generation and filtering models are
usually a collection of models that deal
independently with each water constituent.

Sub-catchments, FUs, constituent generation and
filtering models are defined as interfaces or
abstract classes (Figure 1.). The previous
paragraph only detailed a possible implementation,
albeit the standard one. The main advantage of this
systematic reliance on software interfaces and

abstract classes is that it is possible to replace these
default models at different granularity with more
custom models if required. A sub-catchment may
then be modelled in a different way, e.g. as a fully
grid-based model, without any modification to the
rest of the modelling engine. Similarly, if a
standard representation of a functional unit is not
appropriate for the modeller, another concrete
implementation may be used. This possibility has
already been used to support the modelling of
irrigation areas (Hornbuckle et al. 2005).

Figure 1. Sub-catchment structure in E2

3.2. Links and nodes

The river system is modelled using a structure of
links connected via nodes. This is a common
conceptual structure also used in e.g. IQQM and
EMSS. Conceptually links and nodes are both
network elements with one or more inflows and an
outflow. The difference is that nodes are usually
thought of as having no spatial extent. These
network elements support the most demanding part
of the modelling exercise from a mathematical
point of view, and as a consequence it is also a
challenging part of the framework in terms of
software engineering.

From a software standpoint, links themselves are
simple and have a small number of properties and
methods. Their software architecture relies on
flexibility by composition of objects rather than
direct inheritance (Gamma et al. 1994). The task of
propagating the characteristics of the flood wave is
delegated to an instance of a FlowRouting
class, which itself delegates the task of
manipulating the constituents to an instance of an
InStreamProcessingModel. Reservoirs are
represented as links rather than nodes, the rationale

692

for this being that reservoirs have a significant
spatial extent. Reservoirs can also arguably be seen
as just another flow routing scheme, and they are
thus another instance of the FlowRouting class.

Nodes are well suited to support the modelling of
processes that occur at a given point in the system
with little or no spatial extent. Nodes feature an
expandable list of instances of a NodeModel
class that can be used to model these processes.
Node models are called sequentially in the order
they are in the list, and modify the states of the
node and any other objects they are related to.
Current examples of node models are models
forcing time series of flows or water quality
constituents, water demand and extraction.

3.3. Mass balance and units

Work at a variety of temporal and spatial scales,
with a variable list of constituents and a choice of
different models raises some significant
challenges. Notably, the handling of units and the
related issue of mass balance may be taken for
granted at an abstract level but is surprisingly
difficult in practice from a software engineering
perspective. Many readers will likely have come
across lines of code with obscure unit conversion
factors, and will be aware of how easily these lead
to errors.

In order to limit the risk of inconsistencies, the E2
modelling engine represents physical quantities in
S.I. base units (BIPM 1998). The component
models used in E2 may have their parameters
expressed in other units, but their output into the
modelling engine must conform to the S.I.
standard. The context-dependent conversion to
other units is delegated to the presentation layer,
and is facilitated by the unit handling framework
provided by TIME.

Masses and fluxes of water and constituents, and
their concentrations, are represented throughout
the system via self-contained objects. Operations
like the addition of two quantities or fluxes of
water solutes, water extraction for irrigation, or the
conversions between concentrations to equivalent
masses or fluxes can thus be encapsulated in
methods, thus greatly reducing the risk of error.

3.4. System run

The modelling engine adopts a hierarchical
approach to running the system. Prior to the start
of the simulation, model state variables can be set
to initial values. In other catchment modelling
systems initial values are often expressed as
additional parameters, adding unnecessary degrees

of freedom when calibrating. The software system
of E2 handling initial values relies instead on a
variant of the Memento Pattern described by
Gamma et al. (1994), and uses software reflection
wherever possible to avoid writing custom code
for every model. Prior to running every time step,
the values of input time series are fed into the
model, once again relying on reflection. The
system is run in a hierarchical fashion, each model
element passing the temporal characteristics (date
and time step length) to its sub-models, leaving
room for the sub-models to run at a finer temporal
resolution if need be. The temporal characteristics
of the run are derived from the input time series if
unambiguous, or can be specified by the user.

4. USER INTERFACE

The approach of allowing for choice between
alternate models or methods for performing a
given modelling task poses some significant
challenges in terms of user interface. A system
with fixed algorithms, or a fixed workflow for
building the catchment model, has the advantage
of making it easier for a user interface designer to
tailor the forms. In such systems the number and
types of input data and parameters expected at
every step are set and thus allow for designing
easy to use, custom forms that reflects the
predefined tasks.

E2 provides several points of extension for
alternate methods of performing a given task, e.g.
defining the sub-catchments and network (Figure
2). Importantly, it allows for the choice of a
method that is adapted to the data availability.
However, this makes it more difficult to design a
user interface workflow that guides the user
effectively.

Figure 2. Network definition in a scenario setup

The overall approach for the E2 user interface is to
have some broad overarching workflow that users
must adhere to when creating a scenario. This is
embodied by a scenario wizard stepping through

693

the broad categories of tasks required (definition of
sub-catchments and network, then assignment of
models, and finally assignment of parameters to
these models). At many of the steps in the standard
scenario wizard, the user is presented with a
variety of options to complete the step. In the
example shown in Figure 2, four alternate methods
were detected for performing the task. These
methods are primarily detected at run-time by
exploring the executable and libraries of the
application. E2 also uses a plug-ins manager
component to load additional libraries (.NET
assemblies), that are also explored for additional
methods to perform a given task.

The underlying mechanism to find these methods
is software reflection. The software types
(synonym of classes, here) defined in the assembly
are retrieved and inspected for relevant
characteristics. For instance in the case of the
network definition, the program would look for
types that inherit from the class UserControl,
and implement an interface
ICatchmentDefiner. The level of
sophistication in this detection of appropriate types
can be enhanced using custom attributes, as
explained by Rahman et al. (2004). An example is
the detection of user interface controls for editing
the parameters of instances of NodeModel, since
the control can be given an attribute that specifies
with which model it is working. The use of
software reflection is a key technique for keeping
the user interface and modelling engine decoupled,
and for enabling the points of extension in E2.

5. PERSISTENCE

The persistence mechanism is based on a relatively
simple but robust method which will be expanded.
It has been designed to allow for a relational
persistence tool, such as NHibernate (Koshcheyev
2005), to be used in the future. At the moment an
E2 project file is a zip file with an “e2proj”
extension. It contains a Microsoft Access database
file and a number of data files which may include
rasters, time series and shape files. When a project
is loaded all of the scenarios and data related with
each scenario are loaded. When saving a project, a
new database is created and along with the
necessary data files they are saved to a temporary
location and a zip file of the folder is created. The
new project file is then copied over the previous
project file.

The following section focuses on the E2 specific
challenges involved with the implementation of a
persistence mechanism.

5.1. Unknown Models

Allowing choice between alternate models or
methods for performing a given modelling task is
not a significant problem for persistence; however
the fact that models can have any object as a
parameter complicates matters. The saving
mechanism needs to be able to persist previously
“unknown” objects. This is the case for models
such as the storage models that have a
StoreGeometry object as a parameter.

This is enabled by setting up an interface that a
model developer can implement in order to save
previously unknown object types. The interface is
called an ITypePersistor (Figure 3).

Figure 3. The ITypePersistor interface.

The createStatement function in Figure 3
enables a developer to create their own table
structure within the database to save an object. The
saveObject function is given an object and an
ID that will be associated with that object.

The RelationalTool object (Figure 3) has a
number of functions for executing SQL statements,
saving references to other objects in the system,
and saving other objects. This includes the core
elements such as models or constituents and any
object that has an ITypePersistor associated
with it. The load object function simply has to load
the object that was associated with the ID given.

5.2. Extending core elements of the
framework

It is possible to extend the core elements of the
framework such as in the case of the Irrigation FU
(Hornbuckle et al. 2005). This irrigation FU
inherits from the abstract parent class
FunctionalUnit and implements different
functionality to the standard FU described earlier.
Thus a similar mechanism to the method used to
handle unknown objects was needed. This is done
with an interface
IInheritedTypePersistor. The definition
of this is slightly different to the
ITypePersistor. When loading and saving
the IInheritedTypePersistor it only
needs to save anything extra that the class needs.
The load object function is given an instance of the

694

object with all the elements of the base class
already set.

When implementing either a ITypePersistor
or a IInheritedTypePersistor a
WorksWith custom attribute tag needs to be
included on the class indicating which classes it
can persist.

6. CALIBRATION

Calibrating a model, or a suite of models,
encompassing multiple scales and processes is a
difficult task, both conceptually and practically.
The main conceptual difficulties are the obvious
risk of non-uniqueness of parameter sets (Beven et
al. 2001) due here to a large number of parameters,
the high non-linearity of many catchment
processes, and the usual sparsity and uncertainty of
the data to calibrate against. A practical difficulty
is the likely requirements in terms of computing
power due to the large number of parameters, but
by far the main difficulty is that it is hard to design
an easy-to-use calibration tool for complex
systems.

While software engineering per se can do little to
address the sparsity of data, it is more feasible to
reduce the tedious part of a calibration exercise
and to turn a problem with too many degrees of
freedom into one of a more manageable
complexity. It was acknowledged from the start of
the project that one key feature of E2 would be to
facilitate the calibration process.

E2 currently features a calibration methodology
allowing for the creation at run time of custom sets
of tied parameters. This allows for representing the
variability of catchment characteristics, e.g. that a
conceptual soil moisture store is larger over a
forested area than pasture, while exposing only one
parameter in an optimisation process, without
having to recode a soil moisture model with new
hard-coded algorithms. The groups of tied
parameters must contain only parameters that are
dealing with a given process, e.g. sub-catchment
outflow or in-stream processing of total suspended
sediment. The software mechanism building the
group of parameters relies on the Builder and
Factory patterns, as shown in figure 4, in order to
filter the candidate model parameters that can be
grouped. The values of model parameters included
in this group are tied by a factor to a “master
value” held in a
GroupedItemsCharacteristics, thus
removing a degree of freedom for every model
parameter grouped. The idea of grouping or tying
parameters has been exploited previously in other
model optimisation tools like PEST (Doherty

2002). Another key feature of the calibration tool
is the ability to crop a sub-set of the full network to
calibrate and input time series as required in the
headwater elements of the sub-set, thus drastically
reducing the model runtime by up to several orders
of magnitude for large catchments.

Figure 4. Parameter group builder

7. CONCLUSIONS

A flexible catchment modelling software
framework, named E2, is under ongoing
development within the Catchment Modelling
Toolkit (www.toolkit.net.au). It blends the unique
capabilities of several water quantity and quality
catchment models currently in use in Australia and
elsewhere, and tries to overcome some of their
limitations. It has been designed from the ground
up to cater not only for the physical modelling of
unregulated river systems but also for regulated
systems, ecological response models and possibly
for economical modelling. Using a plug-in
approach, modellers can tailor their catchment
model not only by choosing amongst alternate
models for various sub-systems, but potentially
customise the user interface for a non-expert
audience if required, though the latter remains to
be done in practice. The architecture of E2 relies
heavily on object oriented design patterns and
software introspection to achieve this flexibility
and manage the complexity stemming from this
integration exercise. Upcoming work on E2
includes improvements of the modelling
capabilities of regulated systems, water
temperature, the addition of ecological response
models, and enhancements to the calibration
capabilities.

695

8. REFERENCES

Argent, R. M., R. B. Grayson, G.D. Podger, J.M.
Rahman, S. Seaton and J-M. Perraud (2005),
E2 - A flexible framework for catchment
modelling, Proceedings of MODSIM 2005.

BIPM, Bureau International des Poids et Mesures
(1998), The international system of units (SI),
7th edition,
http://www.bipm.org/en/publications/brochure
, Last Accessed August 9, 2005.

Beven, K.J. and J. Freer (2001), Equifinality, data
assimilation, and uncertainty estimation in
mechanistic modelling of complex
environmental systems using the GLUE
methodology, Journal of Hydrology, 249, 11-
29.

Cuddy, S. (2003), EMSS User Guide, pp. 105.
http://www.toolkit.net.au, Last Accessed
August 9, 2005.

Doherty, J. (2002), PEST, Model-independent
parameter estimation, fourth edition (2002),
User manual, Watermark Numerical
Computing, pp. 279

Gamma, E., R. Helm, R. Johnson, and J. Vlissides,
(1994), Design Patterns: elements of reusable
object oriented software, Addison Wesley,
1994.

Hornbuckle, J.W., E.W. Christen, G. Podger, R.
White, S. Seaton, J-M. Perraud, J.M. Rahman
(2005) Predicting irrigation return flows to
river systems: conceptualisation and model
development of an irrigation area return flow
model, Proceedings of MODSIM 2005.

Koshcheyev, S. (2005), NHibernate
www.nhibernate.org, Last Accessed August 9,
2005.

Podger, G.D. (2004) IQQM Reference manual,
Software version 7.32, Department of
Infrastructure, Planning and Natural
Resources, 04/11/2004, pp. 102

Rahman, J.M., S.P. Seaton, and S.M. Cuddy
(2004), Making frameworks more useable:
using model introspection and metadata to
develop model processing tool, Environmental
Modelling and Software, 19, March, 2004, pp.
275-284.

Rahman, J.M., S.P. Seaton, J-M. Perraud, H.
Hotham, D.I. Verrelli and J.R. Coleman,
(2003), It’s TIME for a new environmental
modelling framework, Proceedings of
MODSIM 2003, (4), 1727-1732.

696

