
Measurement of Volatility of Diffusion Processes with Noisy
High Frequency Data

1K. Oya

1Graduate School of Economics, Osaka University,
560-0043, Machikaneyama Toyonaka, Osaka, Japan. E-Mail:kosuke@econ.osaka-u.ac.jp

Keywords:High frequency data; volatility; market microstructure noise; Fourier analysis

EXTENDED ABSTRACT

A measurement volatility of return process should
be the primary object of traders and practitioners in
financial market for management of their portfolios
and making trading decisions. The realized volatility
is the representative estimator of (integrated) volatility
and is computed from historical data of the return.
The sampling interval of the return plays a key role
in computing the realized volatility. It is commonly
believed in empirical finance literature that the return
process should not be sampled too often in a fixed
period. The realized volatility results become biased
if the sampling interval is chosen to be too small
although the realized volatility computed from the
high frequency data should be the reliable estimate
from a statistical point of view.

One source of the bias is the unequally spaced time
series from the non-synchronous trading. The method
based on Fourier analysis proposed in Malliavin and
Mancino (2002) is very effective approach since it
does not require the even spaced time series. However,
recent studies find that the market microstructure
closely relates with the bias of volatility estimator.
The microstructure issues become more pronounced
when the data are sampled at finer intervals. The
empirical studies suggest that the contamination due
to market microstructure makes the bias in the
volatility estimator. The property about the estimator
based on Fourier analysis has not been examined
so far when the observed sample contains market
microstructure noise.

This research shows that the estimator based on
Fourier analysis is also biased when the observed
sample contains microstructure noise and proposes
the bias corrected estimation method. We compared
the properties of these estimators using Monte Carlo
experiments. The results summarized in Table1.

In Table 1, [Y, Y ](all)
T , ÎV(RV )

T and ÎV(F )

T are the
relative errors of the realized volatility, the bias
corrected realized volatility proposed in Zhanget
al (2004) and the bias corrected estimate proposed
in this research, respectively. Figure 1 shows
that the empirical distribution of the relative errors

Table 1.Evenly sampled case

[Y, Y ](all)
T ÎV(RV )

T ÎV(F )

T

Mean 1.1× 104 4.540 1.964
SD 7.9× 103 13.541 3.445

MSE 1.8× 108 203.968 15.727

of estimates. We find that the realized volatility
commonly used fails to estimate the true integrated
volatility when the returns are sampled at high
frequency with microstructure noise and the proposed
estimator in this research has the smallest mean
squared error among others. This characteristic is also
found in the unevenly sampled case.
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Figure 1. Evenly sampled with Microstructure Noise
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1. INTRODUCTION

A measurement volatility of return process should
be the primary object of traders and practitioners in
financial market for management of their portfolios
and making trading decisions. The realized volatility
is the representative estimator of (integrated) volatility
and is computed from historical data of the return.
The sampling interval of the return plays a key role
in computing the realized volatility. It is commonly
believed in empirical finance literature that the return
process should not be sampled too often in a fixed
period. The realized volatility results become biased
if the sampling interval is chosen to be too small
although the realized volatility computed from the
high frequency data should be the reliable estimate
from a statistical point of view.

One source of the bias is the unequally spaced time
series from the non-synchronous trading. The method
based on Fourier analysis proposed in Malliavin and
Mancino (2002) is very effective approach since it
does not require the even spaced time series. However,
recent studies find that the market microstructure
closely relates with the bias of volatility estimator.
The microstructure issues become more pronounced
when the data are sampled at finer intervals. The
empirical studies suggest that the contamination due
to market microstructure makes the bias in the
volatility estimator. The property about the estimator
based on Fourier analysis has not been examined
so far when the observed sample contains market
microstructure noise. This paper shows that the
estimator based on Fourier analysis is also biased
when the observed sample contains microstructure
noise, proposes the bias corrected estimation method,
and compares the properties of these estimators using
Monte Carlo experiments.

The outline of this paper is as follows. Section 2
details the return process and market microstructure
noise. In section 3, we summarize the estimation
methods. In section 4, some Monte Carlo experiments
are conducted to compare the estimators. Section 5
contains concluding remarks.

2. MODEL

2.1 Diffusion Process and Volatility

Let St be the price process of some financial asset and
the return processXt = ln St follows a continuous
univariate diffusion process.

dXt = µtdt + σtdWt, t ∈ [0, T ] (1)

where Wt is a standard Brownian motion. The
instantaneous varianceσ2

t of the processXt and
the drift coefficient µt also follow stochastic

processes. Our main objective is to estimate the
integrated volatility

∫ T

0
σ2

t dt using Xt ∈ [0, T ]
nonparametricly. It has been reported empirically
that the nonparametric estimate of

∫ T

0
σ2

t dt with high
frequency data is not necessarily robust. We introduce
the market microstructure noise in the next subsection
to treat this phenomenon.

2.2 Market Microstructure Noise

Zhanget al (2004) gives the theoretical grounds why
and where the standard volatility estimator fails when
the data are sampled at the highest frequencies and
proposes the estimation method to correct the bias of
estimator. Their contention is that the contamination
due to market microstructure noise is the same as
what statisticians usually call ”observation error”. Let
ti be the i-th transaction in time period[0, T ] and
εti be the microstructure noise. We assume that
this microstructure noiseεti is independent with the
processXti . Then the observationYti consists of two
random variables as follow

Yti = Xti + εti , ti ∈ [0, T ]. (2)

It is noted that the intervals of the transactionsti ∈
[0, T ], i = 1, · · · , N are not necessarily equally and
regularly spaced.

3. ESTIMATION METHOD

3.1 Using Sum of Squared Return

Empirical researchers and practitioners commonly use
the sum of squared return

∑
ti

(Yti+1 − Yti)
2 as an

estimator of the integrated volatility
∫ T

0
σ2

t dt and
called ”realized volatility”. We define the realized
volatility as

[Y, Y ](all)
T =

∑
ti

(Yti+1 − Yti
)2. (3)

The realized volatility [Y, Y ](all)
T is a consistent

estimator if we observe the return process without the
microstructure noise.

plim[Y, Y ](all)
T =

∫ T

0

σ2
t dt. (4)

This convergence is attained asn goes to infinity
wheren is the sample size over sample period[0, T ].
In this case

lim
n→∞

sup
i<n

(ti − ti−1) = 0.

However the realized volatility[Y, Y ](all)
T is a biased

estimator of
∫ T

0
σ2

t dt when the microstructure noise

exists. It is obvious that[Y, Y ](all)
T converges to
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the true integrated volatility plus the variance of
microstructure noises. The magnitude of the variance
of microstructure noise dominates the integrated
volatility. Zhanget al (2004) shows that the effect of
ignoring microstructure noise on[Y, Y ](all)

T is

[Y, Y ](all)
T = 2n E[ε2] + Op(n1/2). (5)

This fact tells us that the realized volatility which
is commonly used in practice does not estimate the
integrated volatility

∫ T

0
σ2

t dt when the returns are
sampled at very high frequency, that isn is very large.

Zhang et al (2004) also proposed several bias
corrected estimators. The first best approach consists
of the realized volatility[Y, Y ](all)

T and the second
best estimator which is described below. The
second best estimator is constructed by averaging
the estimators[Y, Y ](k)

T acrossK grids of average
size n̄. The full grid G, G = {t0, · · · , tn} is
partitioned intoK non-overlapping subgridsG(k) =
{tk−1, tk−1+K , tk−1+2K , · · · , tk−1+nkK} for k =
1, · · · ,K and nk is the integer makingtk−1+nkK

the last element inG(k). Let [Y, Y ](k)
T be a realized

volatility using only subsampled observationsYt ∈
G(k). The second best estimator that proposed by
Zhanget al (2004) is

[Y, Y ](avg)
T =

1
K

K∑

k=1

[Y, Y ](k)
T (6)

Let IVT and ÎV(RV )

T be
∫ T

0
σ2

t dt and its estimator
using realized volatility with full and subgrid sample.

Then the bias corrected estimator ofIVT is

ÎV(RV )

T = [Y, Y ](avg)
T − n̄

n
[Y, Y ](all)

T (7)

wheren̄ = (n − K + 1)/K, K = cn2/3 and c is
some constant. Zhanget al (2004) derived the optimal
choice ofc∗ which includes unknown parameters that
have to be estimated. See Zhanget al (2004) for
details.

3.2 Method based on Fourier Analysis

Malliavin and Mancino (2002) proposed the other
type of estimation method that based on the Fourier
series analysis. Barucci and Renò (2002) examined
that the properties of the estimator and confirmed that
the estimator is almost unbiased and its variance is
smaller than that of the sum of squared returns when
the returns are unevenly sampled at high frequency
and there is no microstructure noise.

The return process is

dXt = µtdt + σtdWt, t ∈ [0, T ].

We normalize the time window[0, T ] to [0, 2π]. The
Fourier coefficients ofdXt are

a0(dX) =
1
2π

∫ 2π

0

dXt (8)

ak(dX) =
1
π

∫ 2π

0

cos (kt)dXt (9)

bk(dX) =
1
π

∫ 2π

0

sin (kt)dXt, (10)

wherek ≥ 1. Malliavin and Mancino (2002) proposes
an estimator ofIVT using the Fourier coefficients of
dXt

F (all)(X) =
π2

n + 1− n0

n∑

k=n0

(a2
k(dX) + b2

k(dX))

(11)
and shows its consistency

IVT = 2π a0(σ2) = lim
n→∞

F (all)(X). (12)

Using the integration by parts, we have

ak(dX) =
1
π

∫ 2π

0

cos (kt)dXt

=
X2π −X0

π
+

k

π

∫ 2π

0

sin (kt)Xtdt

In fact, we only have the discrete sampleXti ,i =
1, · · · , N . The standard interpolation methods to
representXt, t ∈ [ti, ti+1] are linear interpolation and
previous-tick interpolation. We apply the previous-
tick interpolation, that isXt = Xti for t ∈ [ti, ti+1],
for the integration in the above equation.bk(dX) is
also obtained in the same manner.

However the proposed method in Malliavin and
Mancino (2002) does not take into account the effect
of microstructure noise. As described above, the
observed process is

Yti
= Xti

+ εti
.

It is easy to see that

lim
n→∞

F (all)(Y ) = IVT + (bias term) (13)

since the assumption about independency between the
processXti and the noiseεti .

3.3 Bias Correction

We propose the bias correction method in the same
way of Zhanget al (2004) since the amount of the
bias in the estimation by Fourier method is the same
as in the estimation by realized volatility.

First we use all observations to obtain the estimates
using Fourier series analysis described in the previous
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subsection. Second, the average estimator is
constructed by averaging the subgrid estimators
F (k)(Y ) acrossK grids. Then the bias corrected
estimator can be defined as

ÎV(F )

T = F (avg)(Y ) − n̄

n
F (all)(Y ). (14)

To see the properties of estimators described in this
section, we conduct the series of Monte Carlo in the
next section.

4. MONTE CARLO EXPERIMENT

4.1 Design

We conduct the series of Monte Carlo experiment to
compare the properties of the estimates described in
the previous section. The four cases are considered
here. There is no market microstructure noise in case
1 (evenly sampled) and case 2 (unevenly sampled).
We consider the microstructure noise effect in case 3
(evenly sampled) and case 4 (unevenly sampled).

The stochastic volatility model of Heston (1993) is
used as data generating process which is the same
model as in Zhanget al (2004).

dXt = (µ− σ2
t /2)dt + σtdW

(1)
t (15)

dσ2
t = κ(α− σ2

t )dt + γσtdW
(2)
t (16)

The parameters(µ, κ, α, γ) and the correlation
coefficientρ betweenW (1)

t andW
(2)
t are assumed to

be constant. We set the same values for the parameters
as in Zhanget al (2004),µ = 0.05, κ = 5, α = 0.04,
γ = 0.5 andρ = −0.5. Further we assume that the
microstructure noiseεt is Gaussian and small and we
set (E[ε2

t ])1/2 = 0.0005. We estimate the volatility
overT = 1 day using the sample path. ActuallyT is
equal to 1/252 since parameter values are annualized.
One day consists of 6.5 hours of open trading. There
is 23400 sec(=6.5 h× 60 min× 60 sec) in one day.

We generate two types of high frequency sample
paths. One is evenly sampled and the other is unevenly
sampled. The sampling interval is one second in
the evenly sampled case and the sampling interval
is treated as random in the unevenly sampled case.
The random sampling interval is drawn from an
exponential distribution with mean 10 sec. We set
c = 1 for determining the number of subgridsK.

We use the relative error

estimate − ∫ T

0
σ2

t dt
∫ T

0
σ2

t dt
(17)

to evaluate the estimate.

We summarize the sample properties of the relative
error such as mean, standard deviation and mean
square error in each Table.

The estimates to be compared are the realized
volatility with full sample [Y, Y ](all)

T , the bias

corrected realized volatilityÎV(RV )

T , the estimator
based on Fourier analysisF (all) and its bias correction

ÎV(F )

T .

4.2 No Microstructure Noise

Table 1 shows that the returns are sampled evenly
spaced at high frequency without microstructure
noise. The realized volatility[Y, Y ](all)

T is almost
same as the true integrated volatility since we can
directly observe the processXti . The bias corrected

Table 1.Evenly sampled case

[Y, Y ](all)
T ÎV(RV )

T F (all) ÎV(F )

T

Mean 0.00 10.38 2.23 2.23
SD 0.00 14.25 3.37 3.36

MSE 0.00 310.75 16.31 16.27
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Figure 1. Evenly sampled with No Microstructure
Noise

estimatorÎV(RV )

T introduces some fluctuation and the
estimator based on Fourier analysis is well-behaved.
Figure 1 and Figure2 show the distributions of the
relative errors of the bias corrected realized volatility
and the bias corrected estimate based on Fourier
analysis proposed in this paper.
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Figure 2. Unevenly sampled with No Microstructure
Noise

In the unevenly sampled case, we can see a similar
characteristic as in that of the evenly sampled case in
Table2. This fact is also found in Barucci and Renò
(2002). The results in the case of no microstructure

Table 2.Unevenly sampled case

[Y, Y ](all)
T ÎV(RV )

T F (all) ÎV(F )

T

Mean 0.000 4.001 1.415 1.397
SD 0.050 5.877 2.398 2.383

MSE 0.002 50.544 7.755 7.632

noise show that the bias corrected estimate proposed
in this paper works well even when there is no
microstructure noise.

4.3 Noisy High Frequency Data

The properties of estimates when the observed return
process is contaminated with the microstructure noise
are summarized in Table3 and Table4. It is obvious
that the realized volatility commonly used fails to
estimate the true integrated volatility when the returns
are sampled at high frequency with microstructure
noise. Figure3 shows the distributions of the relative
errors of the bias corrected realized volatility and
the bias corrected estimate based on Fourier analysis
proposed in this paper. The distributions of the relative

Table 3.Evenly sampled case

[Y, Y ](all)
T ÎV(RV )

T F (all) ÎV(F )

T

Mean 1.1× 104 4.540 15.042 1.964
SD 7.9× 103 13.541 10.691 3.445

MSE 1.8× 108 203.968 340.541 15.727

errors of the estimates without bias correction are not
reported here. Their properties can be seen from Table
3 and Table4. The proposed estimation method in
this paper has the smallest mean squared error among
other estimators. This characteristic is also found in
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Figure 3. Evenly sampled with Microstructure Noise

the unevenly sampled case. The sample properties
are summarized in Table4. The number of sample
is smaller than that of evenly sampled case since
the sampling interval is randomly generated by the
exponential distribution with mean 10 sec. Figure

Table 4.Unevenly Sampled case

[Y, Y ](all)
T ÎV(RV )

T F (all) ÎV(F )

T

Mean 1.0× 103 1.609 7.407 1.638
SD 7.3× 102 5.737 5.487 2.535

MSE 1.7× 106 35.507 84.961 9.109

4 shows that the estimate by Fourier method with bias
correction is more reliable than the method proposed

944



Bias corrected (RV)

Relative Error

F
re

qu
en

cy

−10 −5 0 5 10 15 20

0
50

15
0

25
0

−10 −5 0 5 10 15 20

Bias corrected (Fourier)

Relative Error

F
re

qu
en

cy

−10 −5 0 5 10 15 20

0
20

0
40

0

−10 −5 0 5 10 15 20

Figure 4. Unevenly sampled with Microstructure
Noise

in Zhanget al (2004).

5. CONCLUSIONS

This paper has examined the properties of estima-
tors of the integrated volatility when the market
microstructure noise exists. We find that the realized
volatility commonly used fails to estimate the true
integrated volatility and the estimator based on
Fourier analysis is also biased when the returns are
sampled at high frequency with microstructure noise.
We propose the bias corrected estimator that based
on Fourier analysis. The proposed bias corrected
estimator has the smallest mean squared error among
other estimators and works well even when the market
microstructure noise does not exist.
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