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EXTENDED ABSTRACT 

Econometric models described by conditional 
moment restrictions cover a wide range of 
interesting cases in applied econometrics. They 
are characterized by 0]|),([ 0 =ZWmE θ  
where m is a k dimensional known function, W is 
a 1×Wd  vector of economic random variables, Z 

is a 1×Zd  and 0θ  is  a 1×p  vector of 
unknown parameters. Given a sample 

niii ZW ,,1},{ Λ= , the pioneering work by Hansen 
(1982) proposes the generalized method of 
moment (GMM) estimator which is defined by 
the solution to 
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where V is a positive definite matrix. It is shown 
that ]|),([ 0 ZWmVarV θ= minimizes the 
variance of th estimator. It is no doubt one of the 
core tools for practitioners, but it is known that 
the original GMM estimator possibly has a large 
bias especially when the number of moment 
conditions is large. To circumvent this problem, a 
modified method has been developed called 
continuous updating estimator (CUE) by Hansen, 
Heaton and Yaron (1996). Principally different 
alternative methods are also proposed for the 
same problem. One is the exponential tilting 
estimator (ETE) which minimizes the 
nonparametrically constructed Kulback-Leibler 
information. The other is the maximum empirical 
likelihood (MEL) estimator proposed by Owen 
(1988) and Quin and Lawless (1994). There, the 
likelihood, constructed nonparametrically 
imposing the moment restrictions, is maximized 
with respect to the unknown parameters. 

Ai and Chen (2003) consider a semiparametric 
moment condition described by 

0]|),,([ 00 =ZgWmE θ  

where qp RRg →:0 is a set of unknown 
(nuisance) functions.  It is different from the model 
above in that it explicitly includes an unknown 
function 0g in the moment restriction. They propose 

a sieve minimum distance estimator for 0θ , where 
they principally take the same approach as GMM 
replacing the unknown functions by nonparametric 
sieve estimates. They proved its consistency and 
asymptotic normality, and showed further that the 
estimator attains the semiparametric efficiency 
bound for this model. The purpose of this paper is 
twofold. Firstly, we briefly review estimation 
methods for moment restriction-based models. 
Inference for models described by conditional 
moment restrictions containing nonparametric 
functions is a relatively less developed topic in the 
context of moment condition based methods. To the 
best of our knowledge, Ai and Chen’s (2003) 
procedure above is the only published result for this 
setup. But it is obvious that MEL type approach to 
this problem is straightforwardly applicable. We 
also compare the GMM by Ai and Chen with 
suitably adjusted MEL estimator by Monte Carlo 
simulation. Our interests are the followings. It is 
now widely recognized that GMM estimator tends 
to have larger bias than the MEL in small samples. 
We wonder if it holds for the current model. The 
nonparametric functions must be estimated to 
obtain the estimates of parametric components, so 
that we would like to check out how much it affects 
the properties of estimator of the parameter of 
interests. Theoretical comparison of statistical 
properties of these estimators is an interesting and 
important issue which we shall study later. 
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1. INTRODUCTION 

Econometric models described by conditional 
moment restrictions cover a wide range of 
interesting cases in applied econometrics, such as  
standard regression models, simultaneous equation 
models, regression models with error-in-variables, 
and ARCH type models. Inference based on these 
restrictions is one of the most widely used methods 
and thus statistical properties of the estimators and 
tests for this class of models have been intensively 
studied in econometric theory. Pioneering work by 
Hansen (1982) proposes the celebrated generalized 
method of moment (GMM) estimator, and tests for 
parameters and the applied moment restrictions. It 
is no doubt one of the core tools for practitioners, 
but it is known that the original GMM estimator 
possibly has a large bias especially when the 
number of moment conditions is large. To 
circumvent this problem, a modified method has 
been developed called continuous updating 
estimator (CUE) by Hansen, Heaton and Yaron 
(1996). Principally different alternative methods 
are also proposed for the same problem. One is the 
exponential tilting estimator (ETE) which 
minimizes the nonparametrically constructed 
Kulback-Leibler information. The other is the 
maximum empirical likelihood (MEL) estimator 
proposed by Owen (1988) and Quin and Lawless 
(1994). There, the likelihood, constructed 
nonparametrically imposing the moment 
restrictions, is maximized with respect to the 
unknown parameters. 

The purpose of this paper is twofold. Firstly, we 
briefly review estimation methods for moment 
restriction-based models. Inference for models 
described by conditional moment restrictions 
containing nonparametric functions is a relatively 
less developed topic in the context of moment 
condition based methods. To the best of our 
knowledge, GMM type estimation by Ai and Chen 
(2003) is the only published result for this setup. It 
is obvious that MEL type approach to this problem 
is straightforwardly applicable. Thus, secondly, we 
compare the GMM by Ai and Chen with suitably 
adjusted MEL estimator by Monte Carlo 
simulation. Our interests are the followings. It is 
now widely recognized that GMM estimator tends 
to have larger bias than the MEL in small samples. 
We wonder if it holds for the current model. Also, 
as seen later, the nonparametric functions need to 
be estimated to obtain the estimates of parametric 
components, so that we would like to check out 
how much it affects the properties of estimator of 
the parameter of interests. Theoretical comparison 
of statistical properties of these estimators is an 
interesting and important issue which we shall  
study later. 

In the following section, we quickly state some 
econometric models which are described by 
conditional or unconditional moment restrictions. 
Section 3 provides estimators for these models 
such as GMM estimator, CUE, ETE and MEL 
estimator. We explain econometric models 
expressed by conditional moment restriction 
containing unknown functions in Section 4 and 
introduce a GMM type estimator for this model. 
We also state an alternative MEL type estimator 
for this model. Section 5 compares these 
estimators in bias and variance by Monte Carlo 
experiments. Section 6 concludes. 

2. MOMENT RESTRICTION BASED  
ECONOMETRIC MODELS 

A number of econometric models can be written in 
terms of moment restrictions such as 

0)],([ 0 =θWmE    (1) 

or 

0]|),([ 0 =ZWmE θ    (2) 

where m is a k dimensional known function, W is a 
1×Wd  vector of economic random variables, Z is 

a 1×Zd  and 0θ  is  a 1×p  vector of unknown 
parameters.  (2) is especially  an important class of 
model which includes many interesting special 
cases.  A simple case is when 

     00 '),( θθ xyWm −=  

where ),( xyW = , y is a scalar dependent 

variable, x is 1×Xd independent variables and Z 
is the corresponding instruments. This model 
includes such cases as one equation model of a 
system of simultaneous equation models, 
regression model when the regressors has 
measurement errors. In this case, we can apply the 
standard instrumental variable estimation or two 
stage least squares method to consistently 
estimate 0θ .   

In time series setup, ARCH type models have been 
widely studied mainly to analyze financial time 
series data. ARCH model originally introduced by 
Engle (1982) is 
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Letting ),( 1−= tt yyW , 1−= tyZ and 

),( 100 ααθ = , this model can be regarded as a 
special case of (2) with  

 )(),( 2
110

2
0 −+−= tt yyWm ααθ . 

A variety of extension of ARCH model is 
proposed to better explain the behavior of financial 
time series, and some of them can be rewritten in 
the form of (2) similarly. 

3. GMM, MEL AND RELATED 
ESTIMATORS 

Suppose we would like to estimate 0θ of model (1) 

given a sample niiW ,,1}{ Λ= . GMM estimator is the 
solution to 

∑
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  (3) 

where V is a symmetric positive definite weight 
matrix. Hansen (1982) showed Vθ~ is −n  

consistent for 0θ and asymptotically normally 
distributed. Its asymptotic variance is minimized 
when )),(()(* θθ WmVarVV ≡= . Since 

)(* θV is unknown, a natural two step procedure 
is proposed. In the first step, we set V=I and obtain 
an initial estimate Iθ~ . In the next step, plugging 

∑
=

=
n

i
IiIi WmWm

n
V

1
)'~,()~,(1ˆ θθ in (3), we 

obtain a feasible efficient estimate 
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However, it is well known that this estimator may 
have large bias especially when we have many 
moment conditions. To circumvent this problem, 
an alternative estimator 
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is proposed by Hansen, Heaton and Yaron (1996), 
where )(ˆ * θV is an estimate of )(* θV given θ . 
This is called the continuous updating estimator 
(CUE). Owen (1988), Qin and Lawless (1994) and 

Imbens (1997) propose a different approach to this 
moment condition based estimation. Letting 
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the maximum empirical likelihood estimator 
(MEL) is defined by 

)(maxargˆ θθ
θ

REL = . 

It is regarded as a nonparametric MLE imposing 
semiparametric constraints. Another alternative 
called exponential tilting estimator (ETE) is 
proposed by Kitamura and Stutzer (1997) and 
Imbens, Spady and Johnson (1998).  The idea is to 
minimize the Kullback-Leibler information 
criterion instead of maximizing the nonparametric 
likelihood in the MELE, or 
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and estimate the parameter by 

)(minargˆ θθ
θ

QET = .  

Smith (1997) and Newey and Smith (2005) show 
that these estimators can be written in a unifying 
manner in terms of “generalized empirical 
likelihood estimator” (GEL).  

There are a number of research which compare 
these alternative estimators both empirically and 
theoretically.   

4. CONDITIONAL MOMENT 
RESTRICTION CONTAINING 
UNKNOWN FUNCTIONS 

The models (1) and (2) and their estimators in the 
previous section have been intensively studied. 
There are cases where the moment restriction may 
depend on unknown functions, when we assume 
the model of the following form. 

0]|),,([ 00 =ZgWmE θ   (4) 

where qp RRg →:0 is a set of unknown 
(nuisance) functions.  A typical example of this 
model is a partly linear regression with an 
endogenous nonparametric component, or 
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0]|)('[ 2001 =−− ZYgXYE θ , 

where 21 ,YY are endogenous variables, X is a 
vector of exogenous variables and Z is the 
instruments. A similar model of partly linear 
regression model is considered by Carroll (1982) 
and Robinson (1987), but their model is a 
regression model of the form 

)('),|( 2010211 XgXXXYE += θ  

and thus it does no allow endogenous variables on 
the right hand side. 

Obviously another model of interest of this class 
includes index models with endogenous variables, 

0]|)','([ 2020101 =− ZYXgYE θθ . 

To estimate the model formulated by (4), Ai and 
Chen (2003, AC hereafter) propose a sieve 
minimum distance (SMD) estimator interpreted as 
a natural extension of the GMM estimator.  Putting 

),( 000 gθα = and 

∫= )|(),(),( |00 zwdFwmzf ZWαα  

where )|(| zwF ZW  is the distribution of W 
conditional on Z, we can rewrite (4) into 

0),( 0 =αzf . 

Thus 0α  should satisfy 

)],()()',([minarg 1
0 ααα

α
ZfZZfE −Ω=  

for any positive definite matrix )(ZΩ . Though 
f is unknown, for a given α , we can estimate it 

nonparametrically. Then a possible estimator is 

∑
=

−Ω=
n

i
iii ZfZZf

n 1
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α

where f̂ and Ω̂ are estimates of f and Ω  
respectively. They propose to use a sieve estimator 
for f̂ , and also for estimator (or approximate) of 

0g , which yields a feasible estimator for 0α . 
Rewriting the estimator as in AC, we immediately 

know that it corresponds to the unconditional 
moment conditions 

ni kiWmZhE ,,1,0)],()([ 0 Λ==α  (5) 

where 
nkii zh Λ,1)}({ = is the sieve basis.  In view of 

(5), it is easy to apply MEL procedure instead of 
GMM, where we also use sieve estimate for 0g to 
make it feasible. The next section compare these 
two estimators by simulation. There is not yet any 
justification for the MEL method, it would be 
likely that these two estimators have similar first 
order properties (see e.g. Newey and Smith 
(2004)).  

5. MONTE CARLO COMPARISON OF 
THE ESTIMATORS 

We implement a Monte Carlo experiment to 
investigate the following two points. Firstly, we 
would like to check out if GMM procedure by AC 
also has the bias problem when the number of 
instruments increases. In standard GMM settings, 
many authors have pointed out the bias of GMM 
estimator increases as the number of moment 
conditions grows. But this result is observed when 
new (and different) instrumental variables are 
added. Here, we consider the case when different 
functions of the same instrumental variables are 
included. Secondly, we would like to see if the 
SMDand MEL are mostly comparable.  Lastly, we 
also investigate the influence of sieve estimate of 

0g on the estimator of parametric components. 

5.1. Monte Carlo settings 

We compare the two estimators by AC and its EL 
counterpart by a Monte Carlo study. We employ 
the same model as AC as the DGP. The original 
DGP used there was 

DGP1:  
⎩
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or a partially linear simultaneous equation model,  
where 
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0g  is an infinite dimensional nuisance parameter. 
They generated an iid sample of size 1,000 and 
computed the bias, variance, quantiles of the 
estimator. The replication is 1000. As the 
approximation of 0g function, they took 

    ))(()( 3
3

2
2100 yyyyyg ββββ +++Φ≈  

where Φ  is the standard normal distribution 
function.  

To see the asymptotic performance, we take n=100, 
300, 1,000.  

Our main concerns are: 

(i) Does the number of sieve basis affects the bias 
of the SMD estimator? 

(ii) Does MEL have a similar properties as SMD? 
Especially, is there any difference in bias 
properties? 

(iii) How large is the efficiency loss due to the 
estimation of unknown function? 

5.2. Results 
It is well known that GMM estimator tends to have 
larger bias when the number of moment conditions 
is large. In view of (5), the number of moment 
conditions is determined by how many sieve basis 
is used to form the moment conditions. We first 
investigate this effect. Table 1 shows properties of 
the estimator for different number of moment 
conditions. SMD1 uses },,1{ 21 XX as the 
instruments, while SMD2 uses 

},,,,,1{ 2
221

2
121 XXXXXX . Similarly, SMDi 

(i=1,2,…,6) uses power functions of },{ 21 XX up 
to i-th degree. The bias clearly increases with the 
number of moment conditions. We may point out 
that the variance of SMD1 seems excessively 
small, but we do not know why it happens at 
present. Otherwise the variance tends to become 
smaller as the number of instruments increases. If 
we exclude SMD1, SMD4 seems to be the best 
choice in this estimation. But in the following, we 
mostly use SMD3 as the reference following AC. 

Estimator Bias SE RMSE

SMD1 0.0043 0.1359 0.1360

SMD2 -0.0092 0.2907 0.2909

SMD3 -0.0345 0.1433 0.1473

SMD4 -0.0664 0.1295 0.1456

SMD5 -0.0928 0.1220 0.1533

SMD6 -0.1244 0.1179 0.1715

Table 1.  Bias, standard error and RMSE of SMD 
estimator for increased number of sieve basis, 
n=1000. 

Table 2 compares the properties of inefficient 
SMD (or when the weight matrix is set to be an 
identity matrix) with the two kinds of efficient 
estimators which differ only in the initial values. 
“Efficient SMD3 (AC)” indicates SMD3 with 
initial value determined as in AC, namely we use 
the inefficient SMD3 as the initial value. “Efficient 
SMD3 (Averaged initial value)” means that we 
give the fixed initial value computed from 
averaging the inefficient SMD3 estimates over 
1000 replications. We found, surprisingly, that 
RMSE is smaller for inefficient SMD3 than 
efficient SMD3 by AC for not only smaller sample 
of n=100, but also n=1000. But efficient SMD3 
computed from with the fixed initial value mostly 
outperforms the inefficient SMD3. This indicate 
that the initial value choice may be quite crucial in 
this SMD method. 

 

Estimator n Bias SE RMSE

100 -0.2678 0.3700 0.4565

300 -0.0884 0.2528 0.2676

Inefficient 
SMD3 

1000 -0.0345 0.1433 0.1473

100 -0.2591 0.4550 0.5231

300 -0.1213 0.2653 0.2914

Efficient 
SMD3 (AC) 

1000 -0.0317 0.1145 0.1187
100 -0.1470 0.2200 0.2640

300 -0.1065 0.1913 0.2188
Efficient 
SMD3 
(Averaged 
initial value) 1000 0.0010 0.1877 0.1877

Table 2.  Performance of SMD and MEL under 
DGP1 for different choice of initial value and the 
sample size. 

 

As the alternative of SMD3, MEL is implemented. 
Table 3 compares SMD3 and MEL3, where MEL3 
indicates MEL estimator with the same moment 
conditions as SMD3. MEL3 seems to have smaller 
bias than SMD as we expected, but the standard 
error of MEL3 is larger by some unknown reasons. 

 

Estimator bias SE RMSE 

SMD3 -0.0345 0.1433 0.1473 

MEL3 0.0010 0.1877 0.1877

Table 3. Comparison of bias, standard error and 
RMSE of SMD and MEL under DGP1, n=1000. 
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Lastly, we investigate how much efficiency loss 
exists due to the estimation of unknown functions. 
We simply estimate the parameter 0θ using the true 
“unknown function”. The results are in Table 4. 
Since the SMD estimator is shown to attain the 
semiparametric efficiency bound of the 
corresponding model, we expected that the 
efficiency loss which comes from the 
nonparametric component estimation would reduce 
as the sample size increases, but we did not obtain 
such a result. Comparing Table 3 and 4, the 
efficiency ratio for inefficient SMD3 is around 
1.64-2.42 and we do not observe efficiency 
improvement for larger sample size. For inefficient 
SMD3(AC), the ratio is quite stable, around 2.55-
2.77 for all three sample sizes. Though in order for 
the asymptotic theory of AC to apply, the number 
of instruments must satisfy )( 7/1nOkn = and 
thus, this comparison we made may be inadequate, 
but we at least know that the efficiency loss due to 
the nonparametric estimation can be quite large 
depending on nk , and in terms of variance, it may 
be about 6-7 times as large as the known function 
case. 

Estimator n Bias SE RMSE 

100 0.0014 0.1603 0.1607 

300 -0.0004 0.0966 0.0966 

Inefficient 
SMD3 

1000 -0.0039 0.0576 0.0577 

100 0.0115 0.1603 0.1607 

300 0.0077 0.0899 0.0902 

Efficient 
SMD3 
(AC) 

1000 -0.0033 0.0545 0.0546 

100 0.0027 0.1662 0.1663 

300 -0.0026 0.0850 0.0850 

MEL3 

1000 -0.0049 0.0454 0.0457 
 

Table 4.  Bias, standard error and RMSE when 

0g is known under DGP1. 

 

We lastly give other findings in the following. 

Continuous updating estimator is less biased 
compared with standard two-step GMM estimator, 
but it is often reported from Monte Carlo studies 
that it has a larger dispersion. Also standard 
optimization algorithms do not always seem to 
work well so that the estimate may not converge. 
We also experienced these phenomena. For 
numerical optimization, we used fminsearch of 

Matlab, which uses simplex search method, and 
fmincon for constrained optimization. We refer to 
Guggenberger (2005) for possible no moment 
problem of CUE, and Kunitomo and Matsushita 
(2003) for the same problem of MEL. 

6. CONCLUSIONS 

The purpose of this paper is to investigate the 
statistical properties of estimators of parametric 
components of the model described by conditional 
moment restrictions containing unknown 
functions. Two estimators, SMDand MEL are 
compared. We found that (1) MEL seems to have a 
smaller bias thanSMD, (2) the optimization seems 
to be quite sensitive to the initial value and thus 
one may need to be cautious in practical 
applications, (3) estimation of nonparametric 
component may give a significant efficiency loss 
to the estimator. 

Research on the estimation of the model 
considered in this paper is still in its early stage. 
Further research on asymptotic theory for MEL 
procedure is necessary and also how to estimate or 
approximate the unknown functions seems to be 
critically important in practice. Also  
computational problem should be resolved.  
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