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EXTENDED ABSTRACT 

A whole-farm model of a dairy farm was 
optimised to assist the strategic decision making 
given the uncertain environment. Decisions under 
consideration included the stocking rate, the 
calving pattern (defined by calving and dry-off 
dates) and the use of supplementary feed. These 
individual decisions are considered as the choice 
of a farm system in this paper.  

The farmer’s decision making problem is 
simplified by assuming a perfect labour market, 
and so the farmer will be primarily concerned 
with the return on equity. Farm systems are 
compared with stochastic dominance or the 
Sharpe ratio, depending on whether there is a 
perfect capital market and returns are normally 
distributed. 

The Dexcel whole-farm model was extended with 
an economics component that allowed the 
calculation of farm returns. The production risk, 
due to different seasonal conditions, and the price 

risk from feed prices, milk prices and capital 
appreciation was also modelled. 

The whole-farm model was optimised with the use 
of the differential evolution algorithm of Storn and 
Price (1997). The optimisation was parallelised 
over the Dexcel computer network allowing for 
results to be found 30-40 times faster compared to 
using a single computer. 

Improved farm systems could be found more 
quickly by using the Sharpe ratio as a selection tool 
compared to stochastic dominance. This is despite 
the possibility that some assumptions for the use of 
the Sharpe ratio were not met (e.g., normality and 
perfect capital markets).  

The inputs and results were each in four 
dimensions, making traditional visualisation 
difficult. Parallel visualisation was used to compare 
near optimal farm systems (figure 1). The optimal 
system (in red) is characterised by a long lactation 
length, a moderately high stocking rate and a low 
initial amount of silage. 

 
Figure 1. Near optimal farm systems, based on maximum Sharpe Ratio  

Four inputs 
1. SRT: Stocking Rate, 

bounded between 1.5 
(0.50) and 6 (2.00) cows 
per hectare 

2. DOD: Dry Off Date, 
bounded between 16 
March (-45) and 14 June 
(45) 

3. SIL: Initial Amount of 
Silage, bounded between 
zero (0.0) and 4.5 (9.0) wet 
tonnes per cow 

4. CDT: Calving Date, bounded 
between 2 June (0) and 31 
August (90) 

Four results 
1. SHP: Sharpe ratio (0.0 to 

1.0) 
2. AVR: Average return (0 to 

10.3%)  
3. STD: Standard deviation of 

returns (0 to 10%) 
4. SWI: Shapiro Wilks p-value. 

(0.00 to 1.00) 
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1. INTRODUCTION 

The central aim of this project was to improve 
dairy farmer’s strategic (long term) decisions by 
finding optimal farm systems. The process 
involved the integration of an economics 
component into an existing whole-farm model, 
followed by utility based optimisation using a 
evolutionary algorithm. The optimisation was first 
conducted with a single objective function, the 
Sharpe ratio, assuming perfect capital and labour 
markets for a farmer with two investment 
alternatives, a dairy farm or a risk-free asset. The 
optimisation problem was expanded by relaxing 
the assumption of perfect capital markets and 
normally distributed returns. This prevents the use 
of the Sharpe ratio but allows stochastic 
dominance to be applied. Emphasis was placed on 
post-optimisation analysis, particularly through 
visual approaches.  

2. DECISION-MAKING FOR DAIRY 
FARMERS 

The particular focus of this paper is assisting the 
strategic decisions that the farmer must make, 
especially in reference to New Zealand dairy 
farms. A dairy farmer must make both strategic 
and tactical (short term) decisions when optimising 
returns. Strategic decisions include choice of 
forage species, stocking rate, choice of animal 
genetics, calving pattern, expected quantity of 
purchased feeds and the share of capital to devote 
to plant and machinery. Tactical decisions could 
include choosing which paddock to feed on a 
particular day, how much supplementary feed to 
use, what speed to rotate paddocks and how much 
fertiliser to apply to each paddock over the next 
week.  

The farmer’s decision problem is to choose a 
strategy, given their preferences and subjective 
beliefs about physical and economic variables. A 
strategy consists of many choices (as described 
above), and these choices, combined together, 
describe a farm system.  

Variability of profit for a dairy farm system is 
caused by both economic variables and physical 
interactions. Economic variables include the milk 
price, the price of purchased feed and appreciation 
of land values. Physical aspects of climate 
including low or excessive rainfall, temperature 
and solar radiation impact on pasture growth. 

The farmer’s decision problem can be simplified 
somewhat by assuming that a farmer has flexibility 
in labour supply decisions. In other words, the 
farmer will hire labour if required, or sell labour if 
there is an excess of labour. Under this assumption 
the level of labour used by the farm system will 

not be important in deciding on a farm system. 
Hence the farmer’s major concern will be with 
maximising the return on the other major input 
they supply to the farm, their equity. Assuming 
that a farmer’s choice is some convex 
combinations of a farm system (investment) and a 
risk free rate (for borrowing or lending) simplifies 
the problem further. A final assumption is that the 
farmer’s utility function can be defined in terms of 
the mean and variance of returns, allowing the 
application of separation theorem. The result from 
separation theorem is that there is only one optimal 
farm system, regardless of the farmer’s level of 
risk aversion. The farmer responds to their level of 
risk aversion by choosing a level borrowing or 
saving to combine with their investment. 

Figure 2 illustrates two farmers’ risk preferences 
expressed through utility functions to indifference 
curves UA and UB. The risk free rate of borrowing 
and saving is shown as Rf. The three possible farm 
systems (mutually exclusive investments) are 
shown as I, II and III. Without perfect capital 
markets Farmer A might prefer farm system I, but 
under perfect capital markets prefers to save some 
proportion of equity at Rf, and invest the remaining 
equity in investment II, yielding higher utility (or 
satisfaction). Without perfect capital markets 
Farmer B might prefer farm system III, but under 
perfect capital markets prefers to borrow some 
proportion at Rf, and invests the loan proceeds 
with the equity in investment II, again achieving 
higher utility than would be possible without 
borrowing.  

 

Figure 2. Two farmers choosing a farm system 

The slope of the line from Rf is the Sharpe ratio 
(Bodie et al. 2005): 
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In other words, the Sharpe ratio is the excess return 
per unit of risk. The farm system that results in the 
maximum Sharpe ratio is the farm system that 
should be chosen by the farmer to optimise returns, 
regardless of risk aversion characteristics, given 
the assumptions outlined above. 
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An alternative way to select a farm system without 
making as many assumptions is to use stochastic 
dominance. This method allows a full distribution 
of outcomes to be compared (removing the 
restriction that returns be normally distributed).  It 
does not necessarily assume a risk-free rate 
(although this can be incorporated if required). 
First degree stochastic dominance assumes only 
that the farmer prefers more to less.  

While first degree stochastic dominance makes 
few assumptions, it may not be very 
discriminative. It may not significantly reduce the 
number of alternative farm systems that the farmer 
must choose the optimal farm system from. This is 
because a common result from the first degree 
stochastic dominance test is that neither system A 
nor system B dominates (or is clearly preferred to) 
the alternative. 

Second degree stochastic dominance makes the 
additional assumption that some level of risk 
aversion exists. This rule (B dominates A) is 
summarised in Hardaker et al, (2004) and is more 
discriminatory than first order stochastic 
dominance. 

Levy (1992) provides an example of the 
discriminatory power of the rules described above 
with reference to 73 mutual funds. He found that 
using a rule equivalent to the Sharpe ratio reduced 
the efficient set to one fund. First degree stochastic 
dominance still had an efficient set of 68 funds 
(only 7% of funds were dominated). Under second 
degree stochastic dominance, the efficient set was 
reduced to 16 funds (78% of funds were 
dominated). 

3. BACKGROUND OF DEXCEL’S 
WHOLE-FARM MODEL 

Dexcel is the research and extension arm of New 
Zealand's dairy industry. The goal of Dexcel is to 
improve the competitiveness and profitability of 
New Zealand dairy farmers. The research division 
within Dexcel has a specialist programme on farm 
systems. The farm systems programme has the 
goal of “developing farm systems that optimise 
resource use for maximum profit and providing 
farmers with tools and knowledge to manage their 
resources to best achieve their personal business 
objectives” (Dexcel, 2004). Within this 
programme is a strong modelling component with 
the primary tool used for modelling being the 
Whole-farm model (WFM).  

The WFM is a model of a pasture based dairy 
farm, implemented using an Object-Oriented (OO) 
approach, using the Smalltalk language. The OO 

approach allows the incorporation of sub-models 
that may have been developed elsewhere, 
including cases where they may be built in a 
different programming language. The WFM has a 
choice of two pasture models, a simple seasonal 
average growth rate model (SimplePasture) and a 
more complex growth model called McCall, based 
on the work of McCall et al (2003). The WFM also 
has two animal models; currently a simple 
energetics based cow model (SimpleCow) and a 
more complex model (MollyCow) based on the 
work of Baldwin (1995) at the University of 
California, Davis.  

Figure 3 shows a simplified schematic of the 
WFM (Wastney et al. 2002). The WFM creates 
multiple instances of a cow based on the selected 
animal model and user descriptions. All cows may 
be different in any physical aspect such as weight, 
genetic potential and calving date. The WFM 
creates multiple paddock instances based on the 
user descriptions. Each paddock may be different 
in size, although currently the model does not use 
spatial characteristics of location as an input into 
the model. The paddocks currently model only the 
predominant pasture type of Ryegrass. The 
management policies interact with the cows and 
paddocks on a daily time step to simulate the 
biophysical output. The biophysical output is then 
used in the economics component of the model to 
generate a simplified profit and loss statement, 
balance sheet and return on assets. 

 

Figure 3. Whole-farm model schematic 

A large proportion of costs are defined in an 
activity based costing framework. Default values 
are generated through the use of economic survey 
data specific to a farm region. The main cost 
drivers are the number of cows calved and the 

Whole-farm Model 

Biophysical system (controlled by management policies)  
Daily timestep 
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Component 

Paddock Component 

Cow 1 

Cow 2 

Cow n 
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Paddock x 

Paddock 1 

Silage and 
supple-
mentary 

feed 

Climate data 

Economics (P&L, BS, ROA) Annual timestep 
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effective farm area. With further improvements in 
the model, new cost drivers can be incorporated to 
reflect the wider alternatives of management. 
Constant returns to scale is assumed and Neal 
(2004a) found this to be a reasonable assumption 
over a wide range of farm sizes encompassing 
more than half of the farms surveyed in the 2002 
economic survey (Dexcel, 2003).  

The WFM attempts to predict what effect variables 
outside the farmer’s control will have on his 
return, and the risk associated with that return. The 
major causes of risk are assumed to be: 

1.  Weather, e.g. the risk of a dry or wet year 
occurring; 

2.  Milk price, e.g. risk of milk price being higher 
or lower than the long term average; 

3.  Supplementary feed price, e.g. risk of the feed 
price being higher or lower than average; and 

4.  Capital appreciation rates, e.g. the risk of land 
prices moving up or down. 

The risk report takes a farm system and performs 
Monte Carlo simulation to find the distribution of 
returns with variable weather, milk price, 
supplementary feed price and capital appreciation 
rates. 

4. OPTIMISATION WITH AN 
EVOLUTIONARY ALGORITHM 

The evolutionary algorithm (EA) used for the 
optimisation of the Dexcel WFM is a variant of 
common genetic algorithms. This differential 
evolution (DE) algorithm is implemented in a 
similar way to Mayer et al (2005) based on the 
work of Storn and Price (1997). The important 
features are that it performs recombination and 
mutation as a single step. This is implemented in a 
way that benefits from adaptive search. Adaptive 
search implies that knowledge of the diversity of 
the current population is used in creating new 
individuals. In terms of the DE, a population is a 
group of individuals, where an individual is a 
specific farm system.  

Firstly a member of the population is chosen as a 
Parent (P). A child (C) is then created and replaces 
the parent if it has a higher fitness level. To create 
the child three members are selected at random 
from the population. These can be labelled X, Y 
and Z. The difference between the allele values of 
X and Y produce a vector of values (D) that 
represent a random measure of the diversity in the 
population.  A proportion of this difference is then 
calculated using a scaling factor (f) multiplied by 
the vector of differences (D) to create (E). The 

Vector E is then added to Z to create another 
parent (G). The child is then created by choosing 
an allele from the parent P with probability CR, or 
the respective allele from the parent with 
probability (1-CR), where CR is the crossover 
probability. This process is shown graphically in 
figure 4. Mayer et al (2005) also implements a 
useful method suggested by Kinghorn (pers 
comm.) to prevent premature convergence due to 
the interpolative nature of using an f value of less 
than one. The method is to “pulse’ f to a value 
(much) larger than one, every n generations, 
facilitating extrapolative search. 

 

Figure 4. Representation of the differential 
evolution process; adapted from Storn (1997) 

In the WFM selection was driven by a fitness 
measure which was implemented in two alternative 
ways. Firstly, through the maximum Sharpe ratio. 
This rule is very discriminating, as explained in 
Section 2. Secondly, through first order stochastic 
dominance. A common outcome of a stochastic 
dominance comparison is that no individual is 
clearly preferred to the other. In this event, the 
algorithm keeps the parent for the new population 
with probability (Q), or discards the parent and 
keeps the child with probability (1-Q). If Q is set 
equal to 1, this ensures that no acceptable 
individual is lost from the population. However a 
smaller value of Q enhances the search capability 
of the algorithm.  

One of the benefits of a genetic algorithm is the 
implicit ease of parallelising the process. The 
calculation of the individual’s fitness (running a 
WFM simulation and risk report), is typically 
computationally expensive, but can be calculated 
independently of the selection, recombination and 
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mutation process of the EA. This feature is used to 
maximum advantage in the implementation of the 
WFM optimisation as the fitness calculation is 
distributed to computers in the available network.  

The Dexcel network consists of around 70 
computers that are idle around 70% of the week. 
The specific implementation is a master-slave 
approach, where one computer is a master, and 
runs the GA. The master then passes individual 
chromosomes to other computers on the network 
(slaves) to evaluate the fitness.  

Through the use of secure virtual private networks 
and remote viewing software, the optimisation can 
be run from any computer with the correct 
software installed. The communication between 
slave and master is via generic internet protocols. 

5. RESULTS 

Two optimisations were initiated; the first using 
fitness comparison based on the Sharpe ratio and 
the second using first degree stochastic dominance 
criteria. Both optimisations used the following four 
inputs to find the optimal farm system(s):  

1. Calving Date, bounded between 2 June and 31 
August; 

2. Dry Off Date, bounded between 16 March and 
14 June; 

3. Stocking Rate, bounded between 1.5 and 6 cows 
per hectare; and 

4. Initial Amount of Silage, bounded between zero 
and 4.5 wet tonnes per cow;  

Each fitness level involved the simulation of two 
climate years, 1994 and 1995, where the former 
year showed above average pasture growth and the 
latter showed below average growth. The 
population size was set at 20 and the termination 
criterion was 30 generations. The crossover rate 
(CR) was set to 0.5. The interpolative factor (f) 
was set to fi=0.4 and pulsed to fe=4.0 every 4 
generations for extrapolative search. The Sharpe 
Ratio was calculated based on a risk free rate (rf) 
of 5%. When the stochastic dominance rule did not 
find a dominance relationship, the probability for 
selecting the parent (Q) was 0.5. Each of the two 
optimisations was repeated three times to check for 
consistency of results. The majority of results 
discussed relate to the first replicate of each 
optimisation.  

Using the Sharpe ratio as the fitness function leads 
to a larger improvement in the best Sharpe ratio 
than using stochastic dominance. This is mainly 
due to its improved discriminatory power (figure 

5). In the stochastic dominance optimisation, 
around 50% of the replacements were by 
dominance relationships, reflecting its reduced 
discriminatory power. Interestingly, the average 
Sharpe ratio of the children of each generation 
does not appear to be radically different using 
different fitness functions (figure 5). This would 
be due to the nature of the WFM returns and could 
not be expected to occur in all related problems.  
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Figure 5. Sharpe ratio across an optimisation with 
two fitness measures 

 All individuals (farm systems) evaluated from 
both optimisations can be examined in the mean-
standard deviation space (figure 6). The Security 
Market Line (SML) is shown as an upward sloping 
line from the risk free rate of 5%. The highest 
Sharpe ratio was found by the Sharpe ratio 
optimisation, although only during the last 
generation for the replicate shown. This suggests 
that more generations of this optimisation would 
have found even higher Sharpe ratio individuals. 
The final generation of the stochastic dominance 
driven optimisation have the appearance of a 
frontier, however this is well below the highest 
Sharpe ratio found. 
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Figure 6. Individuals from optimisations in a 
mean-standard deviation space 

The optimisation showed a tendency towards 
individuals whose cumulative distribution of 
returns are clustered closely and crossover in at 
least one point. This slows the progress of a 
stochastic dominance based optimisation.  
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One of the key assumptions allowing the use of the 
Sharpe ratio is that the returns of the farm systems 
are normally distributed. The Shapiro-Wilks 
normality test was tested on each individual 
evaluated over both the Sharpe and stochastic 
dominance based optimisations (Shapiro et al. 
1965). The null hypothesis is that the returns are 
normally distributed. While there are some 
individuals where normality can be rejected at the 
5% level of significance, the final generation for 
each optimisation does not contain these 
individuals. However, these results would be 
sensitive to the assumed distributions of economic 
variables and possibly the climate years chosen for 
the simulations. Hardaker (pers comm.) also 
advises that a statistical test for normality may not 
be sufficient for the assumption of normally 
distributed returns because a deviation from 
normality at low return levels has a higher utility 
weight compared with deviations at high returns. 

Analysing the results of an optimisation is 
sometimes difficult due to the multi-dimensional 
aspect of both the inputs and results. One method 
to ease graphical interpretation is the parallel 
coordinate visualisation technique (Inselberg, 
1981). This technique represents each variable as a 
vertical line and joins the relevant values with a 
line (ie representing an individual of interest). Liu 
(2003) and Post (2004) created and updated a 
program (OptVis) to allow the visualisation of any 
number of individuals for any number of inputs 
and results in a colour mapped visualisation. 

The last generation from the Sharpe ratio 
optimisation showed most individuals with a 
moderate stocking rate, late dry-off date, a range of 
initial silage and early calving dates. However, as 
previously mentioned, there was large progress 
made by an individual with the highest Sharpe 
ratio. This individual was characterised by a very 
high stocking rate, very early dry-off date and a 
moderate calving date, representing a very 
different type of farm system. The final generation 
is displayed in figure 1 using OptVis. 

The final generation of the stochastic dominance 
based optimisation provided solutions that were 
quite different farm systems to those found from 
the Sharpe optimisation. There were similar 
tendencies to late dates and early calving dates, but 
these values were more diverse. A much wider 
range of stocking rates was considered, but initial 
silage levels were quite high. Initial silage levels 
were probably high due to the insurance effect of 
having feed on hand during feed shortages.  

Stochastic optimisations by their nature will not 
produce the same results each time they are 

repeated. For comparative purposes, 3 replicates 
were performed and their progress in the Sharpe 
ratio was recorded. The first replicate was for the 
results presented above and actually had the lowest 
Sharpe ratio of the replicates, although only 
slightly lower than the second replicate. The best 
replicate was the third replicate and this suggests 
that the optimisation configuration did not allow 
for enough searching to ensure near-optimal 
regions could be reliably found. Solutions to this 
could include increasing the number of 
generations, increasing the pulse size and/or 
frequency of extrapolative search (fe) or increasing 
the population size. 

6. CONCLUSIONS AND FUTURE WORK 

As a selection tool, the Sharpe ratio proved quite 
discriminatory. However, it may not be applicable 
to all farmers due to the restrictive assumptions. 
The reduced assumptions of stochastic dominance 
may be less restrictive, but the optimisation 
provides several possible farm systems. The 
farmer would then have to apply some other 
criteria to in order to select a farm system. 

Other basic limitations of the analysis include the 
assumed distribution of prices, and the small set of 
possible climates used in the optimisation process. 
The model may be a source of error due to factors 
that are not explicitly modelled such as pugging 
effects (treading damage) in the McCall pasture 
model, or aspects not perfectly modelled such as 
the dry matter intake model of MollyCow. The 
scaling of the model to an average farm may also 
cause a minor bias. The economics model did not 
expressly model the capital requirements for 
feeding high levels supplementary feed and this 
would be expected to positively bias towards high 
stocking rates and the high use of supplementary 
feed. 

It is possible that the farmer expresses preferences 
over outcomes quite different to average income 
and income variability. For example, a farmer 
might have large aversion to bankruptcy. The 
probability of bankruptcy would be related to the 
liquidity of a farm system, and this depends on 
cashflows rather than profits. The impact of this 
might be a bias towards low risk farm systems 
with reliable cashflows and lower non-cash profits.  

Where alternative investments are available it 
would be possible to create a portfolio including 
some farm investment and share market 
investments. To the extent that they are less than 
perfectly correlated, some diversification benefit 
exits. However, for most farmers, the farm 
comprises more than 90% of the investment 
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portfolio. The low use of alternative investments is 
due to a number of factors such as familiarity, 
perceptions of risk and perceived economies of 
scale. 

The current optimisation did not take into account 
temporal correlation. Temporal correlation can 
occur through milk price cycles. Although first 
order autocorrelation was not found by Neal 
(2004b), it is possible that a conditional 
heteroskedascity exists. There is some correlation 
in land prices over time and correlation with milk 
price cycles. The impact of correlation could be 
reduced by modelling longer time periods using a 
historical correlation matrix.  

Improvements to the WFM are incorporated 
regularly with the most recent version available 
can be used for optimisation. The short term 
direction of the current research is towards 
improved optimisation configuration and directly 
modelling the capital required for different feeding 
levels. Alternative fitness functions such as second 
degree stochastic dominance and certainty 
equivalent maximisation is also under analysis.  

Longer term research may involve multi-objective 
optimisation which would allow preferences to be 
expressed over labour use, liquidity and 
environmental outcomes. Further exploration of 
temporal correlation of prices may also provide 
insights into farm systems that are less risky over 
time.  

Tactical optimisation could improve farmers’ 
response to the physical and economic 
environment. For example, should the farmer cull 
earlier than planned in response to high feed 
prices, or should the farmer dry off the herd earlier 
due to long range weather forecasts.  

In summary, there is a large potential for 
multidisciplinary work through a modelling project 
such as the WFM to link biophysical modelling to 
economic optimisation to assist the decision maker 
in making better strategic and tactical decisions. 
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