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EXTENDED ABSTRACT 

Analytical solutions for non-steady flow are an 
important aspect of mathematical modeling in all 
fields of computational science. An analytical 
solution provides an exact solution for a specific 
(simplified) test case, which then can be used to 
test and verify numerical solutions. Within soil 
physics, there has been a multitude of analytical 
solutions that model transient flow through one-
dimensional homogenous soil profiles under 
various flow conditions. For homogenous soils, 
analytical solutions exist for realistic soil types 
(i.e. non-linear hydraulic functions) and for 
coupled solute and water transport. However, for 
layered soils, there has only been one analytical 
solution for non-steady flow. Even though this 
solution has been useful for testing numerical 
schemes, the disadvantages of the solution are 1) it 
is lengthy, complex and difficult to program; 2) is 
only valid for a particular form of the hydraulic 
functions with a constant hydraulic diffusivity (D); 
and 3) one of the key soil parameters is constant 
across soil layers.  

To overcome these limitations, we will use a 
transformation technique to transform an analytical 
solution for water flow in a homogenous soil to 
obtain an analytical solution for an idealized 
layered soil profile. The idealized analytical 
solution arises from only transforming part of the 
solution over a selected segment of the spatial 
domain. For this study, we examine 1) a linear 
transformation of the solution variable (θ) and the 
spatial coordinate system (z) and 2) a non-linear 
transformation of the solution variable (θ). As a 
starting point, we will use a simple analytical 
solution developed by Clothier et al. (1981), which 
models constant flux infiltration into a field soil: 
Bungendore fine sand. This soil is a special case 
since experimentally, it was shown that D is near 
constant and K is approximately quadratic. Under 
these properties (1) reduces to the well-known 
Burgers’ equation. Note that under the non-linear 
transformation the new hydraulic functions, that is, 
D and the hydraulic conductivity (K) will take the 
power law form, which is commonly used within 
soil physics. 

Both these approaches will be used to test the 
accuracy of a numerical solution from the Method 
of Lines (MoL) for infiltration into layered soils 
for the water content (θ) Richards’ Equation. In 
addition, we will also use the notion of a relative 
gradient to assess the affect a given transformation 
has on the gradients within the system. Ideally, a 
parameter within transformation functions could 
be used to increase (or decrease) the gradients 
within the system to further test numerical 
schemes under varying flow scenarios.  

It will be shown that, for both transformations, the 
MoL solution showed excellent agreement with 
the analytical solution for the idealized layered 
systems. For the linear case, the linear 
transformation of θ had no effect on the flow 
dynamics of the original homogenous solution. A 
linear transformation of z had the effect of 
stretching or shrinking the underlying soil layer, 
which will artificial change the steepness of 
gradients within the system as long as Δz remains 
constant. However, this affect could also be 
achieved without the use of transformations by 
varying Δz within the system. For the non-linear 
case, the transformation did have an affect on the 
flow behaviour in layer 2. However, the overall 
affect of the transformation was to ease the 
gradients within the system. Ideally, it would be 
beneficial to derive a non-linear transformation 
that will can decrease and increase gradients 
within the system to fully test numerical schemes 
for water flow through layered soils. 

For future work, other non-linear transformations 
will be explored, in conjunction with other 
analytical solutions, to obtain a more appropriate 
transformation to test numerical solution for 
layered soils under various flow conditions. 
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1. INTRODUCTION 

The accurate simulation of water flow through 
soils is an important environmental problem and 
has applications in various fields such as 
agriculture, waste management and water 
management. For some cases, soil profiles can be 
considered homogenous but in most cases, soil 
profiles are heterogeneous and can consist of 
distinct soil layers (Raats, 2001; Matthews et al. 
2004). Vertical water flow through a one-
dimensional unsaturated homogenous soil profile 
is described by Richards’ Equation (Clothier et al., 
1981) as 

 dKD
t z z d z
θ θ θ

θ
∂ ∂ ∂ ∂⎛ ⎞= −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

, (1) 

where θ is water content [L3L-3], D is hydraulic 
diffusivity [LT-2], K is hydraulic conductivity  
[LT-1], z is vertical coordinate positive downwards  
with the soil surface at z = 0 [L] and t is time [T]. 
Note that water flux (q) is defined as  

 q D K
z
θ∂= − +

∂
. (2) 

For vertical flow through a layered soil system, (1) 
can be used to describe the flow dynamics in each 
soil layer with each layer having soil specific 
hydraulic functions. For a multilayered soil, this 
results in a system of partial differential equations 
(PDEs) with each PDE being coupled to its 
surrounding layers via the interface boundary 
condition. The condition at the interface is the 
continuity of flux (q) and hydraulic pressure (h) so 
that 1n nq q +=  and 1n nh h += , where n is the soil 
counter. Generally, (1) is not used to model flow 
through layered soils since θ is discontinuous 
across soil layers. Recently, Matthews et al. (2004) 
showed that (1) is applicable to layered soils by 
developing an iterative solution to handle the 
discontinuity at the interface, which is an approach 
that is used here.  

For most soil hydraulic functions (i.e. D and K), 
(1) is highly non-linear, hence, analytical solutions 
can only be obtained for simplified test cases. As a 
result, numerical solutions are generally sought for 
more complex flow scenarios. Nevertheless, 
analytical solutions are an important aspect of 
mathematical modeling since 1) exact solution can 
highlight important flow behaviour and 2) 
analytical solutions are used to test the accuracy of 
numerical solutions, which is the focus of this 
paper. Within the soil physics literature, there are 
several analytical solutions designed for specific 
test problems. These include constant flux 
infiltration (Clothier et al., 1981; Sander et al., 

1988), two-phase flow (Raats, 2001) and, more 
recently, coupled solute and water transport 
(Sander et al., 2005). One of the simplifying 
assumptions for most analytical solutions is that 
the soil profile must be homogenous. In fact, 
Srivastava and Yeh (1991) have published the only 
analytical solution for transient flow through a 
layered soil profile. Even though this solution has 
been useful for testing various numerical schemes 
(Matthews et al., 2004), there are three main 
disadvantages associated with this analytical 
solution 1) it is lengthy, complex and difficult to 
program; 2) is only valid for a particular form of 
the hydraulic functions with a constant hydraulic 
diffusivity (D); and 3) one of the key soil 
parameters is constant across soil layers. 

Given the paucity of analytical solutions for 
layered soils, this paper will develop a technique 
that uses existing analytical solutions to test 
numerical solutions for water flow through layered 
profiles. As a starting point, we will use a simple 
analytical solution developed by Clothier et al. 
(1981), which models constant flux infiltration into 
a field soil: Bungendore fine sand. This soil is a 
special case since experimentally, it was shown 
that D is near constant and K is approximately 
quadratic. Under these properties (1) reduces to the 
well-known Burgers’ equation. 

2. BURGERS’ EQUATION 

The reduced form of Richards’ Equation is given 
by Clothier et al. (1981) as 

 
2

2 ( )rD A
t zz
θ θ θθ θ∂ ∂ ∂= − −

∂ ∂∂
, (3) 

where D and A are constants, θr is the residual 
water content and ( )rdK d Aθ θ θ= − . Note that 

2( ) ( ) 2rK Aθ θ θ= − giving K(θr) = 0. Clothier et 
al. (1981) derived an analytical solution of (3) for 
an infinite soil profile under a constant surface flux 
boundary condition and a constant θ initial 
condition. The initial and boundary condition are 
given by  

 , 0, 0i r z tθ θ= > = , (4) 

 0 0( ), 0, 0q K z tθ= = ≥ . (5) 

Details of the analytical solution can be found at 
Clothier et al. (1981). Note that Clothier et al. 
(1981) showed, for the Burgendore sand, that the 
analytical solution agreed well with experimental 
data under the above conditions. 
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3. TRANSFORMATION TO LAYERED 
SOILS 

We are interested in transforming the homogenous 
analytical solution so that it is applicable to the 
layered soil system shown in Figure 1. 

Soil 1

Soil 2
z = Δz(c-1) = zc

z = 0

z = L

z

i = 1

i = c -1
i = c

i = c +1

i = N

Soil Surface

Soil 1

Soil 2
z = Δz(c-1) = zc

z = 0

z = L

z

i = 1

i = c -1
i = c

i = c +1

i = N

Soil Surface

 

Figure 1. Grid system for 1D layered soil profile. 

For this study, we will accept the analytical 
solution as the exact solution within the soil profile 
until z = zc. For cz z L≤ ≤ , the solution will be 
transformed to obtain a different flow behaviour in 
the underlying soil. This study will consider two 
transformations 1) linear transformation of both θ 
and z, and 2) non-linear transform of θ to highlight 
disadvantages and advantages of each approach. 
Note that these transformations will create an 
artificial soil layer with hydraulic properties 
determined by the transformation functions, which 
will result in a discontinuity of θ at the interface. 

3.1. Linear Transformations of θ and z 

For the linear transformation, we will scale θ and z 
by the constants μ and λ, respectively so that 

 θ̂ μθ= , (6) 

 ẑ zλ= . (7) 

Applying (6) and (7) to (3) yields  

 
2

2
2

ˆ ˆ ˆ ˆ

ˆˆ rD A
t zz
θ θ θ θλ λ θ

μ
⎛ ⎞∂ ∂ ∂= − +⎜ ⎟⎜ ⎟∂ ∂∂ ⎝ ⎠

. (8) 

Therefore, the governing equations for modeling 
flow through the idealized layered soil system 
(Figure 1) are given by (3) for 0 cz z≤ ≤  and (8) 
for cz z L≤ ≤ . The surface boundary condition is 
still be given by (5) and the initial condition is now 
given by 

 
, 0 , 0

ˆ , , 0.
i r c

i r r c

z z t

z z L t

θ θ

θ θ μθ

= < ≤ =

= = ≤ ≤ =
 (9) 

The boundary conditions at the interface, 
ˆ ˆ( ) ( )h hθ θ=  and ˆq q= , can be written in terms of 

θ as (6) and  

 
ˆ

ˆz z
θ λ θ

μ
∂ ∂=
∂ ∂

, (10) 

respectively, where 

 
ˆ

ˆ
ˆ

q D K
z

λ θ
μ

∂= +
∂

. (11) 

3.2. Non-linear Transformation of θ 

For the non-linear transformation, θ is scaled by 
some non-linear function f and is given by 

 ( )fθ θ= . (12) 

Applying (12) to (3) yields  

 ( )( )d dD A B
t d z d z z
θ θ θ θ θθ θ

θ θ
⎛ ⎞∂ ∂ ∂ ∂= − +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

,(13) 

where θ is the non-linear transformed variable. 
Again, the governing equations for the layered 
system are given by (3) and (13) over 0 cz z≤ ≤  
and cz z L≤ ≤ , respectively. The surface boundary 
condition given by (5) and the initial condition at  
t = 0 for cz z L≤ ≤  is given by 

 ( )i i fθ θ θ= = , (14) 

with the initial condition for 0 cz z< ≤  still given 
by (9). Following the same procedure in section 
3.1, the boundary conditions at the interface at  
z = zc for t > 0 is given by (12) and  

 d
z d z
θ θ θ

θ
∂ ∂=
∂ ∂

. (15) 

For this study, we will assume that the relationship 
between θ and θ is given by 

 
1

1
s r r

r
s r

η
θ θ θ θθ θ
η θ θ

+
⎛ ⎞− −= +⎜ ⎟+ −⎝ ⎠

, (16) 

which gives  

 ( ) r

s r

d g
d

η
θ θθ θ

θ θ θ
⎛ ⎞−= = ⎜ ⎟−⎝ ⎠

, (17) 

where η is a constant, rθ  is the scaled residue 
water content and ( )( 1)s r s rθ θ θ θ η= + − +  is the 
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scaled saturated water content. Note that 
unrealistic values for water content can occur from 
this transformation i.e. 1θ > . However, η (which 
must be > 0) can be bounded on the positive 
domain to achieve a more realistic range for values 
for θ . Since this paper is concerned with testing 
numerical schemes for layered media, we have 
allowed η to remain unbounded.  

Applying (16) and (17) to (13), results in the 
hydraulic functions in (13) resembling a power law 
D and K. This form of the hydraulic functions has 
been used extensively within soil physics (Raats, 
2001). It should also be noted that both the linear 
and non-linear transformations results in a 
discontinuity at the interface. 

4. METHOD OF LINES 

The numerical technique used here is the Method 
of Lines (MoL). In particular, we used the MoL 
template developed by Lee et al. (2004) in Matlab 
to solve the transformed layered systems. 
Fundamentally, the MoL discretises the spatial part 
of a PDE while keeping the time part continuous. 
This results in a system of ordinary differential 
equations (ODEs) with each ODE representing the 
time evolution of the flow dynamics at a particular 
node within the system. Within the template, we 
use the Matlab function ODE15s to integrate the 
system of ODEs. 

The discretisation technique used in the MoL 
template is a fourth-order finite differencing (FD) 
scheme based on an approach by Schiesser (1991). 
Unlike conventional scheme, Schiesser’s approach 
uses a series of backward and forward FD 
equations to account for the boundaries within the 
domain instead of fictitious nodes. Boundary 
conditions are incorporated into the scheme by 
imposing the condition on an appropriate vector 
within the model depending on the type of 
boundary condition, that is, Neumann or Dirchlet. 
This feature, coupled with the grid construction in 
Figure 1, is of particular importance for the 
interface boundary condition since it allows the 
flow dynamics of each soil to be estimated at the 
interface (Matthews et al., 2004b). This approach 
was shown by Matthews et al. (2004a; 2004b) to 
handle the discontinuity in θ at the interface. 

4.1. Interface Boundary condition 

Within the MoL, the interface boundary condition 
for both cases will be handled in a similar fashion 
to Matthews et al. (2004b). Essentially, a direct 
solution for θ is sought by recasting the q 
continuity equation (e.g. (10)) solely in terms of θ. 
In Matthews et al. (2004b), this is achieved by 
using the continuity of h condition to derive a 

relationship between the water contents of the two 
connecting soils. For this study, this relationship is 
already given by (6) and (12). After applying the 
FD scheme to the derivative terms, this procedure 
resulted in a non-linear equation for θ, which was 
solved using Newton’s Method (Matthews et al., 
2004b). 

For the linear transformed case, substituting the 
FD scheme at z = zc into (10) and using the 
condition specified by (6), reduces the interface 
boundary condition to  

 b f( ) ( ) 0θ λ θΔ − Δ = , (18) 

where Δf and Δb are forward and backward FD 
schemes respectively. This results in a linear 
equation which is readily solved for θ and, 
consequently θ̂ , at each time step. For the non-
linear transformation, applying the FD scheme and 
the condition given by (12), (15) can be written 
solely in terms of θ as follows  

 b f( ) ( ( )) ( ( )) 0g f fθ θ θΔ − Δ = . (19) 

Equation (19) is non-linear and is solved for θ in 
the MoL using Newton’s Method. Note that the 
iterative scheme is terminated when 

1 1010j jθ θ+ −− ≤ , where j is the iteration counter. 

5. RELATIVE GRADIENT 

Matthews et al. (2005) explored the effect 
transformations had on (1) via the notion of a 
relative gradient. A relative gradient is defined as 
the magnitude of a gradient, relative to the 
magnitude of the solution variable it is acting on 
and is given by 

RGθ
θ ξ
θ

∂ ∂= ,  (20) 

where ξ is any coordinate system. When 
transforming Richards’ Equation in terms of θ  (or 
θ̂ ), if RG RGθ θ>  the transformation will have a 
diminishing effect on spatial and/or temporal 
gradients within the system. Conversely, if 
RG RGθ θ<  will increase the effect of gradients. 
From these conditions, we can define a relative 
gradient ratio (ζ) as 

RG d
RG d

θ

θ

θ θζ
θ θ

= = .  (21) 

so that ζ > 1 gradients decrease and for ζ < 1  
gradients increase in the transformed space.  
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6. RESULTS 

Water flow through the linear and non-linear 
transformed systems will be simulated for a 30 cm 
soil profile with the interface situated at 5cm. The 
spatial step size (Δz) will be kept consistent at 0.25 
cm for all simulations. Each model will be run for 
a period of t = 12 mins, which gives enough time 
for water to infiltrate into the next layer. The soil 
parameters for the fine sand where set at θs = 0.385 
cm3/cm3, θr = 0.05 cm3/cm3, D = 1 cm2/min and  
A = 5 cm/min except where otherwise specified. 
Also, θ0 = 0.25 which provides a constant flux 
given by (5). The soil properties of the underlying 
idealized soil are determined by the transformation 
functions outlined in section 3. The non-linear 
transformed system also required the specification 
of rθ , which was set at 0.01 cm3/cm3. 

Solutions of the two idealized layered soil systems 
are compared against the analytical solution from 
Clothier et al. (1981). To compare the numerical 
and analytical solutions, relative error (RE) will be 
calculated for each node as 

 
num exact

exactRE i i
i

i

θ θ
θ

−
= , (22) 

where num
iθ and exact

iθ are the water content from 
the numerical and analytical solution, respectively 
and i is the node counter. Note that for cz z≥ , 

exact
iθ is transformed by the appropriate 

transformation functions before RE is calculated. 
As an additional measure, average RE is calculated 
over both layers separately so that 

 
2

12 1

1ARE RE
( )

z

z

dz
z z

=
− ∫ , (23) 

where z1 and z2 are the upper and lower bounds of 
each layer i.e. for layer 1, z1 = 0 (surface) and  
z2 = zc. Note that the integral is calculated in 
discrete form using Simpson’s rule.  

6.1 Linear transformation 

The linearly transformed idealized layered system 
was run for several values of λ = 0.2, 0.5, 1 and 2 
and for μ = 0.5 and 2. For λ = 1, the geometry 
specified above will not be altered. For λ < 1, the 
bottom layer will shrink by a factor of λ while for  
λ > 1 the bottom layer will be stretched. This 
results in ˆLz being determined by ˆ ( )L L cz z zλ= − . 
Also, the parameter μ controls the extent of the 
discontinuity at the interface through (6).  

 
Figure 2. Water content (θ) profiles over depth for 
the non-linear transformation given by (16) with  
λ = μ = 0.5. 

Figure 2 shows a plot of water content over depth 
for various time intervals until the final time of 12 
minutes for λ = μ = 0.5. At earlier times, the 
effective of a stronger convective flow is evident, 
which is smeared over time by dispersion. This 
makes sense since q0 = D = 1 so that the magnitude 
of the conductivity K is less than the magnitude of 
D for θ < θ0. In addition, Figure 2 shows the effect 
of μ = 0.5 with a distinct discontinuity at the 
interface at z = 5cm, and the extent of which is 
determined by (6) with the profile shifting to the 
left within a smaller range of θ. Also, λ < 1, Figure 
2 shows that the second layer has shrunken by a 
factor of 0.5 resulting in the total length of the 
profile being 17.5 cm.  

Table 1. Relative error at the interface (z = zc) and 
average relative error over top (layers 1) and 
bottom (layer 2) for various λ and μ values. 

λ μ 
RE 

z = zc 

ARE 

layer 1 

ARE 

layer 2 

0.2 0.5 9.86x10-4 4.30x10-4 2.35x10-3 

0.5 0.5 1.29x10-4 1.96x10-5 7.10x10-5 

1 0.5 7.77x10-6 4.60x10-6 1.99x10-5 

2 0.5 1.41x10-5 5.64x10-6 1.94x10-5 

0.2 2 9.86x10-4 4.30x10-4 2.35x10-3 

Table 1 shows RE at the interface and ARE over 
the top layer (layer 1) and the bottom layer (layer 
2) for each value of λ and μ. It is evident that as 

1λ < , RE and ARE in both layers increase for all 
values of μ considered. Given that Δz is kept 
constant across all simulations, the increase in 
error is caused by shrinking the flow dynamics 
over a smaller range of z. Essentially, as 1λ < , the 
grid system in the second layer becomes coarser 
since there are less nodes describing the same flow 

1283



behaviour. For example, for λ = 1 there are 101 
nodes in the second layer while for λ = 0.2 there 
are only 51 nodes. The coarser grid system will 
artificial create steeper gradients and increase the 
truncation error in the finite differencing schemes 
causing the increase in error. The increase in ARE 
in the first layer is directly caused by the interface 
boundary condition since the finite differencing 
schemes are link at the interface through (18). 
Note that RE at z = zc is consistently higher than 
the ARE over the first layer. For λ > 1, the ARE in 
the second layer continues to decrease, which is to 
be expected since the stretching of the second layer 
will resulting in a more nodes describing the same 
flow dynamics i.e. a finer grid. However, the RE at 
the interface and consequently ARE in the first 
layer has increased, which seems to be 
counterintuitive. Interestingly, μ has no effect on 
ARE over the soil layers and RE at the interface, 
which is highlighted in Table 1 for λ = 0.5 and μ = 
0.5 and 2.  

6.2 Non-linear transformation 

The non-linear transformed idealized layered soil 
system, was run for various values of η = 0, 0.5, 2, 
5 for the test case given above. For η = 0, (16) will 
reduce to a linear condition at the interface given 
by ( )r rθ θ θ θ= − − resulting in a wetting profile 
that is very close to the original homogenous 
profile. For η < 0, the water content will be 
stretched out in to a larger range of values shifting 
the discontinuity to the right. For η > 0, the water 
content range will shrink and shift the 
discontinuity to the left towards zero. In addition, 
simulations for A = 10 cm/min were run for all 
values of η to examine the effect of increasing the 
convective flow.  

Table 2. Relative error at the interface (z = zc) and 
average relative error over layers 1 and 2 for 
various η values. 

A η RE 

z = zc 

ARE 

layer 1 

ARE 

layer 2 

5 0 7.77x10-6 4.60x10-6 2.01x10-5 

 0.5 6.96x10-6 4.45x10-6 1.43x10-5 

 2 6.61x10-6 4.55x10-6 7.28x10-6 

 5 6.40x10-6 4.68x10-6 3.66x10-6 

10 0 2.00x10-5 3.64x10-6 1.27x10-3 

 0.5 1.79x10-5 3.84x10-6 9.12x10-4 

 2 1.54x10-5 4.07x10-6 4.71x10-4 

 5 1.40x10-5 4.22x10-6 2.37x10-4 

 

Table 2 shows RE and ARE over layer 1 and 2 for 
the non-linear transformed case for all values of η 
and for A = 5 and 10 cm/min. In Table 2, it is 
evident the MoL model compares well with the 
analytical solution with RE and ARE being within 
the order of 10-5. However, this is not the case for 
A = 10 cm/min where ARE over the layer 2 is 
within the order of 10-3. This increase in error is to 
be expected since sharper wetting fronts will 
occur. For A = 10 cm/min, the RE at z = zc has also 
increased as compare to A = 5 cm/min but not to 
the extent as the ARE for the second layer. Note 
that ARE in layer 1 has decreased from A = 5 to 10 
cm/min but this is caused by the top layer reaching 
steady state for A = 10 cm/min.   

For A = 5 and 10 cm/min, Table 2 also highlights 
that as η increases RE at z = zc and ARE over layer 
2 decreases. Interestingly, ARE over layer 2 
almost changes by an order of magnitude while RE 
at z = zc undergoes a small change from η = 0 to 5. 
For layer 1, ARE also undergoes a small change 
except that ARE increases as η increases. Note 
that, for A = 5 cm/min, there is an initial decrease 
in ARE from η = 0 to η = 0.5 but then increases 
steadily until η = 5. Given the non-linear nature of 
the transformation, the above behavior is not 
immediately obvious and will be discussed in the 
next section in terms of relative gradients. 

7. DISCUSSION 

To gain an understanding of the error behaviour 
exhibited in Table 2, we will use (21) to examine 
how the non-linear transformation affects the 
relative gradients within the system. Substituting 
(16) and (17) into (21) provides a function for ζ in 
terms of either θ or θ .  

Figure 3 shows a plot of ζ over the full wetting 
range in terms of θ i.e. from θr to θs. From Figure 
3, it is evident that as η increase the magnitude of ζ 
also increases for the majority of the wetting 
range. Note that of ζ > 1 the transformation will 
decrease the effects of relative gradients within the 
system. Therefore, as η increase, the wetting 
gradients within the second layer will decrease 
resulting in the decrease in ARE. This is also the 
case for RE at z = zc. The increase in ARE for the 
first layer is counterintuitive since the first layer is 
only affected by the transformation through the 
interface boundary condition. However, the ARE 
stays relatively stable for all values of η between  
A = 5 and 10, which demonstrates that the affect is 
minimal for the cases considered. Note that 
applying the linear transformation to the relative 
gradient condition gives ζ = λ. This confirms that μ 
has no affect on the solution and λ decrease the 
effects of gradients has λ increases. 
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Figure 3. Relative gradient ratio (ζ) vs water 
content (θ) over the full wetting range for  
η = 0, 0.5, 2 and 5. 

8. CONCLUSIONS 

This paper outlines a method that utilises 
analytical solution for water flow through 
homogenous soil profiles to test numerical solution 
for layered soils. This is achieved by transforming 
a segment of the soil profile to give an artificial 
soil layer. The artificial layer was created by 1) 
performing a linear transformation on θ and z and 
2) a non-linear transformation on θ. It was shown 
that a linear transformation of θ had no effect on 
the flow dynamics of the homogenous solution. A 
linear transformation of z had the effect of stretch 
or shrinking the underlying soil layer, which will 
artificial change the steepness of gradients within 
the system as long as Δz remains constant. 
However, this affect could also be achieved 
without the use of transformations by varying Δz 
within layer 2. We showed that the non-linear 
transformation did have an affect on the flow 
behaviour in layer 2. However, the overall effect of 
(16) was to ease the effect of gradients within the 
system. For both transformations, the MoL 
solution showed excellent agreement with the 
analytical solution but lost accuracy as the 
convective flow was increased. For future work, 
other non-linear transformation will be explored, 
in conjunction with other analytical solutions, to 
obtain an appropriate transformation to test 
numerical solution for layered soils under various 
flow conditions. 
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