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EXTENDED ABSTRACT 

Hydrological models are a popular tool for 
simulating catchment processes in response to a 
rainfall event. The wide range of available models 
means that hydrologists are faced with the problem 
of determining which model is best applied to a 
catchment in any modeling exercise. An attractive 
alternative to selecting a single hydrological model 
is to combine the results from several models, 
thereby providing a model performance that is 
substantially better than any model alone. Methods 
based on Bayesian statistical techniques provide an 
ideal means to compare and combine competing 
models as they explicitly account for model 
uncertainty. Bayesian model averaging combines 
individual models by weighting model outputs 
proportional to their respective posterior 
probability of selection. However, the necessity of 
having fixed weights over the length of the 
simulation period means that the relative 
usefulness of different models at different times is 
not considered. 

In hydrological modeling, evidence exists of the 
catchment responding differently under different 
conditions so that relying on a rigid modeling 
structure can lead to significant inaccuracies and 
biases, particularly when used for prediction. This 
study combines the benefits of model aggregation 
and a dynamic model structure via a framework 
where each model is adopted at each time step 
with a different probability. The framework is 
known as a Hierarchical Mixture of Experts 
(HME, Figure 1). The HME framework consists of 
individual models (known as experts) which may 
have different structures and parameter values. 
These are grouped by mathematical functions 
(known as the gating function).  

The probabilistic nature of the HME framework 
means it is ideally specified using Bayesian 
inference. Bayesian methods incorporate 
uncertainty in our observed data and design 
parameter values, but to date little work has been 

done in assessing the impact of the model structure 
on model uncertainty. HME is a shift towards 
incorporating model structural uncertainty. 

Previous work has shown that an innovation of the 
HME framework is that it provides a way of 
assessing the mechanisms of our existing models 
to see which structures or parameter sets are 
preferred to describe hydrological processes under 
different conditions. However, the challenge still 
remains to apply the HME framework to 
catchments for predictive purposes. This problem 
lies in determining how to calculate which model 
should be selected depending on the state of the 
catchment.  

In the study, the HME framework is applied to a 
catchment in NSW using two parameterizations of 
a simple conceptual rainfall runoff model. We 
investigate the usefulness of different predictors 
and gating functions. More complex choices for 
the gating function involving nonlinear or 
nonparametric functional terms are illustrated.  
The study shows that given careful comparison of 
predictors and gating function, HME can be a 
useful predictive tool, giving an aggregated model 
simulation that is better than any individual model. 

Figure 1. A Single Level HME Framework.  
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1. INTRODUCTION: THE PROBLEM OF 
MODEL STRUCTURE UNCERTAINTY 

A range of hydrological models are available to 
simulate the runoff response to a rainfall event. 
Hydrological processes are very complex, with 
numerous associated variables. This reality, 
coupled with advances in computing power has 
fuelled the desire for many model developers to 
build models of ever increasing complexity. 
Despite this, the practicing hydrological 
community will tend to favour simpler models, 
often due to data constraints and the desire to 
apply a model with a wider range of applicability. 
As a result, hydrological models vary considerably 
in terms of their complexity and scope of 
application. 

Despite the variety of available models, no single 
model has been identified as ideal over all possible 
situations and conditions. As a result, hydrological 
modellers must choose which model is best 
applied to a catchment, a task which can be 
problematic. It is generally desirable to choose a 
model that provides the best fit to the available 
data, but assessing the relative predictive 
performance of competing models can be difficult. 
Recently, it has been of increasing importance to 
allow for uncertainty on the model outputs, which 
can be significant considering the frequent lack of 
data and ever-increasing complexity of new 
hydrological models.  

A number of approaches exist in the hydrological 
literature to incorporate model uncertainty in the 
modelling process. These include likelihood based 
methods such as GLUE (Beven and Binley 1992), 
or stochastic modelling approaches. In more 
applied studies, informal methods that put user-
defined probability estimates on the model inputs 
or outputs are more popular. Uncertainty is 
generally expressed in terms of interval estimates, 
ensemble forecasts, or with predictions defined by 
probability distributions. In recent years, classical 
and hybrid Bayesian techniques have emerged as 
in ideal means of formally incorporating 
uncertainties in the hydrological modelling 
process, the end product being a probability 
distribution (the posterior distribution) on the 
model unknowns (parameters and model outputs) 
describing uncertainty after the data have been 
observed. Many studies have applied Bayesian 
techniques in hydrology. These have often focused 
on computational aspects (Kuczera and Parent 
1998, Bates and Campbell 2001, Thiemann et al. 
2001, Marshall et al. 2004), whilst others have 
explored how Bayesian methods can better 
characterise the sources of hydrological model 

uncertainty (Beven and Freer 2001, Kavetski et al. 
2002). 

Four major sources of uncertainty are well 
recognised in hydrological modelling (Butts et al. 
2004) and Bayesian techniques explicitly 
incorporate these sources of uncertainty with 
varying success: 

1. Parameter Uncertainty. The posterior 
distribution describes uncertainty about parameters 
and serves as a basis for selecting appropriate 
values for use in modelling applications. The 
advent of Markov Chain Monte Carlo (MCMC) 
methods has helped address some of the 
computational difficulties in summarizing and 
exploring the posterior distribution in hydrological 
modelling applications. 

2. Calibration Data Errors.  The data affects 
a parameter’s posterior through the likelihood 
function. In applying different likelihoods, we are 
able to make assumptions about the statistical 
distribution of errors in the data.  

3. Input Data Errors. Input data uncertainty 
can be incorporated in hydrological modelling 
under the addition of a model parameter, such as a 
rainfall depth multiplier (Lamb 1999) or random 
error term (Butts et al. 2004). Recently, likelihood 
based methods have been introduced that allow for 
input uncertainty in a Bayesian framework 
(Kavetski et al. 2002). 

4. Model Structural Uncertainty. The impact 
of model structure assumptions and structural 
uncertainty has been paid less attention in the 
Bayesian hydrological literature. Nearly all studies 
make the assumption that the model structure is a 
reasonable approximation of the processes 
occurring. The structural uncertainty is usually 
incorporated via the distribution of the data noise 
assumed by the likelihood function. Biases arising 
from an incorrect structure are less frequently 
taken into account as it is assumed that the 
structural errors are random. 

With the large number of variables involved in 
describing hydrological processes and the non-
linearity of catchment mechanisms, hydrological 
models will never completely describe the 
processes occurring, especially given current data 
limitations. This means that one of the more 
significant sources of model uncertainty is that 
arising from the assumption of the (imperfect) 
model structure. There is no consensus about how 
to approach model structural error in hydrological 
modelling.  Most studies are aimed at comparing 
model structures by changing the model itself, 
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recalibrating and assessing the model performance 
based on some goodness of fit criterion. 

2. IMPROVING PREDICTIVE 
PERFORMANCE BY COMBINING 
MODEL STRUCTURES  

One way of reducing predictive uncertainty about 
the model structure is to incorporate the 
information of several different models at once. 
Each model provides different information about 
the process being considered so that overall the 
process mechanisms are better captured. The 
advantages of combining model predictions are 
well documented in many disciplines. In 
hydrology, established methods of combining 
models might include a simple or weighted 
average of models’ results, or via the use of neural 
networks (Shamseldin et al. 1997, Georgakakos et 
al. 2004).  Methods based on Bayesian statistical 
techniques also provide a way within which model 
outputs may be combined.  

In comparing two models, the traditional Bayesian 
approach requires calculation of the Bayes factor, 
the odds of one model versus the other after 
observing the data. This logic can be extended to 
combining models. Say we wish to aggregate a set 
of models M={M1,…Mn}, given data y for 
implementing the model. Let p(Mi) be the prior 
probability of model Mi, and θi be the set of 
uncertain model parameters corresponding to 
model Mi. In Bayesian model averaging, the 
model outputs are weighted, with weights defined 
by: 

∑
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where )|( yMP i  is the posterior probability of 
model Mi, )( iMP  is the prior probability of model 
Mi, and )|( iMyp  is the model’s marginal 
likelihood.  

Model weights as defined by Bayesian Model 
Averaging allow us to determine the probability 
for a particular model in comparison to others. We 
are able to compare different model structures 
whilst incorporating the uncertainty associated 
with the model outputs. However, the necessity of 
having fixed weights for each model over the 
entire length of the simulation period means that 
the relative usefulness of different models at 
different times is not considered. We can only 
estimate the overall performance ranking of 
individual model structures, not the times or 
conditions one model structure might be preferred 

to another. An appealing alternative may be to 
allow for the weights to change over time. This 
adaptation could depend on (say) applicable 
catchment antecedent soil moisture conditions.  

3. HIERARCHICAL MIXTURES OF 
EXPERTS 

Such an alternative is presented in a modelling 
framework known as hierarchical mixtures of 
experts or HME (Jordan and Jacobs 1994). HME 
models provide an improvement on simple 
combinations of models, by allowing the way that 
model predictions are combined to depend on 
predictor variables. HME models aim to combine 
the output from two or more models in a 
probabilistic sense. Each model configuration is 
adopted at a given time with a probability that 
depends on the current hydrologic state of the 
catchment. A HME approach to model 
development in hydrology gives greater flexibility 
to specification of the model structure (by allowing 
multiple model structures to exist in a single 
framework) and to the specification of model 
errors (by allowing different assumptions to apply 
depending on the input data or predictor variables). 

The HME architecture is organized into a tree-like 
structure (Figure 1). The framework consists of 
individual model structures (known as experts or 
component models) that are grouped by nodes 
(known as gating functions). Figure 1 is the 
simplest HME framework, consisting of a single 
level and combining only 2 component models. 
The architecture shown may be expanded by 
recursively dividing the branches to include further 
levels or adding component models. 

The HME networks should be considered 
probabilistically. The overall output is generated 
based on a probabilistic weighting of the output of 
each of the component models that is updated at 
each time step. The probability is based on current 
catchment indicators that are specified by the 
modeller to describe the state of the catchment. 
The respective probabilities of selecting each of 
the component models are estimated through use 
of the gating function, a mathematical function that 
is specified by the user.  

The probabilistic nature of the model framework 
means that it is ideally specified using Bayesian 
inference. The difficulties in applying Bayesian 
techniques in to the HME framework in a 
hydrological setting lie in calculating the posterior 
distribution. Markov chain Monte Carlo (MCMC) 
is routinely used for estimating the posterior 
distribution in applied Bayesian statistics in 
complex problems. It has been shown to apply 
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well to rainfall-runoff models and has previously 
been applied to the HME framework in hydrology 
(Marshall et al. 2005b). The HME framework 
presented here is specified via a mixture of Gibbs 
and Metropolis updating.  

3.1. The HME Framework- Importance of 
Predictors 

Implementing the HME approach requires 
specification of the probability of selecting each 
component model at each time step. This 
probability is calculated from two elements: a 
catchment descriptor that summarises the “state” 
of the catchment at a time step (the predictor) and 
the gating function that relates the probability of 
selecting a model to the predictor.  

An important and indeed beneficial part of 
implementing the HME framework is assessing the 
effectiveness of different catchment predictors and 
gating functions in reproducing the switch from 
one component model to another. Each coupled 
component model and error model can be thought 
of as reproducing a different catchment “state”, 
where different dominant hydrological processes 
are driving the catchment’s response to rainfall. By 
assessing different predictors, modellers can 
interpret what physical processes are related to (or 
are forcing) the switch from one catchment “state” 
to another.  

3.2. Interpretation of the Final HME 

Architecture vs. HME as a Predictive 

Tool 

The HME approach has two main innovations for 
hydrological modellers: 

1. Interpretation of the final model structure. In a 
hydrological setting, the HME approach can be an 
ideal tool for model building and for assessing 
individual model components and has been shown 
(Marshall et al. 2005b) to illustrate the conditions 
under which different model structures and model 
parameters are preferred . 

2. Improvement of predictive performance. 
Given the difficulties in selecting a single model 
structure for predicting streamflow, HME provides 
a more sophisticated way to combine models than 
achieved by simple or weighted averages of model 
outputs. Achieving a model performance in 
prediction that is better than that of the individual 
component models can be hard. The HME 
approach shows an overwhelming improvement to 
the model in the calibration period (Marshall et al., 

2005b). This is due to conditioning the probability 
of selecting one component model on the observed 
calibration data. In predictive mode, it must be 
assumed that this data is not available (indeed it is 
what the model is seeking to reproduce). The 
predictive ability of the HME approach is 
determined via investigation of different 
catchment predictors used to weight the individual 
models. 

3.3. Case Study 

The HME framework was applied in a case study 
to assess the predictive performance of different 
catchment descriptors and gating functions. It was 
desirable to attain a predictive performance from a 
combination of models that was better than a 
single model (given the increase in model 
complexity). This requires careful selection of 
appropriate catchment predictors. 

The selected study area was the Never Never River 
at Glenniffer Bridge, a 51 km2 catchment located 
in New South Wales with annual rainfall of 
2036mm and runoff of 1114mm. Ten years of 
daily rainfall and runoff data were used for 
calibration in the study. 

The simplest HME architecture was selected, 
consisting of only 2 component models and a 
single level (Figure 1). Based on earlier studies 
(Marshall et al., 2005b) it was observed that a 
range of catchments were well modelled as a mix 
of only two states. These results motivated the 
desire to show the method’s predictive 
performance for a catchment modelled by two 
component models. 

Unlike earlier studies, different error models were 
specified for each component model. It was 
observed that when conditioned on the observed 
data, one component model would tend to fit to the 
model peaks, with the other model fitting the 
recession curve. It is also recognised in a number 
of hydrological studies that model errors often 
exhibit heteroscedasticity proportional to flow 
magnitude (Sorooshian and Dracup 1980). Based 
on these results, it was likely that the component 
model fitting the peak flows would have a greater 
variance. Use of separate error models would 
allow better justification of the assumptions made 
on the distribution of model errors.  

Each of the component models was specified to 
have the same model structure, but was calibrated 
to have different parameter values. Both 
components were set to be the simplified 3-
parameter Australian Water Balance Model 
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(AWBM, Boughton, 2004). The model (Figure 2) 
consists of 3 parameters: S (surface store capacity), 
K (recession constant) and BFI (base-flow index), 
and uses a soil moisture accounting process to 
generate streamflow from daily rainfall and 
evapotranspiration data. 
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Figure 2. The Australian Water Balance Model 

The distribution of model parameters was 
determined using a MCMC algorithm that was a 
modified version of the Metropolis algorithm. The 
component model parameters and gating function 
coefficients were sampled in separate blocks using 
a multivariate normal proposal distribution in 
which the covariance had been pre-tuned. 

The popular logistic regression model was used for 
the gating function of the form: 
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where 1,tg  is the probability of selecting 
component model 1, tX are the catchment 
predictors and β  is the vector of logistic 
regression parameters. Different options for the 
function 1,),( ttXg β  were implemented in the 
study. A simple linear regression function was 
used of the form: 

ttt XXg 101,),( βββ +=   (3) 

This was also extended to a polynomial regression 
function: 

2
2101,),( tttt XXXg ββββ ++=   (4) 

A spline was also implemented of the form: 
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having continuous linear basis functions )( tm Xh  
and three knots. The knots were intuitively set at 

the 25th, 50th and 75th percentiles of the range of 
predictor values. 

The performance of different catchment predictors 
is compared using an appropriate criterion. 
Comparison of models using Bayes Factors in 
previous hydrological studies (Marshall et al. 
2005a) has effectively compared models, but has 
high computational demands. The Bayesian 
Information Criterion (BIC) of Schwarz (1978) is 
an asymptotic approximator of the marginal 
likelihood of a model. The criterion holds that the 
model log-marginal likelihood is approximately -
0.5 BIC, where (if N is the size of the sample): 

BIC = -2(log maximized likelihood) + (log 
N)(number of parameters)  (6) 

4. RESULTS AND DISCUSSION 

The suitability of the HME framework for 
prediction was assessed in comparison to a single 
model structure. The resulting BIC for different 
gating functions and predictors are given in Table 
1. A ‘null’ predictor was first implemented, so that 
the probability of selecting each model does not   
change in time. Note that this produces a BIC 
value that is worse than a single component model. 
Hence, a simple weighted average of the two 
component models does not give a better 
prediction than that from a single model. In a 
preceding related study (Marshall et al. 2005b) it 
was observed that the parameter BFI was most 
sensitive in describing the switch from one 
catchment state to another. This parameter 
describes the proportion of excess runoff returning 
to the base storage component of the model. 
Hence, the modelled base storage (obtained as a 
weighted average of the two models) was initially 
selected to describe the catchment ‘state’ when 
determining the probability for each model. 

Table 1. Comparison of HME Predictors 
Predictor  Gating 

Function 
-0.5BIC 

Single Component 
Model 

N/A -11233 

Null Predictor Linear 
Logistic 

-11537 

Modelled Base 
storage 

Linear 
Logistic 

-10209 

Log-Antecedent 
Cumulative Rainfall 
(7 days preceding) 

Linear 
Logistic 

-8482 

 Polynomial 
Logistic 

-8480 

 Spline 
Logistic 

-8212 
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 When different predictors are introduced, the 
model performance improves. The antecedent 
rainfall proves to be the best predictor, with a 
spline gating function.  

Calibration of the component models showed the 
existence of two distinct states that were best 
modelled by different parameterisations of the 
AWBM model. Note the detailed results in Table 2 
and the implications of the parameter values for 
each HME component in reference to the AWBM 
structure illustrated in Figure 2. A high BFI (HME 
component 1) implies more rain is stored in the 
baseflow storage, and correspondingly a small 
fraction of the rainfall enters the stream as direct 
runoff. A low BFI (HME component 2) implies the 
reverse. It was observed illustrated that the “quick-
flow” process (HME component 2) dominates at 
the high flow periods and early recession. 

Figure 3. Distribution of (a) AWBM Errors (b) 
HME Errors 

Table 2 also indicates the 90% posterior intervals 
for the model parameters. For each of the 
parameters in the model, diffuse prior distributions 
were defined (in the interval 0 – 1 for the 
parameters K and BFI and the interval 0 – 1500 for 
the parameter S). The posterior intervals show that 
the estimated parameters are not largely influenced 
by these priors. It must also be noted here that for 
each component model the posterior intervals for 
the parameter BFI do not coincide. Two distinct 
models are observed.  

It is important to note the characteristics of the 
errors of the fitted model. If we fit a single 
(AWBM) component model using a likelihood 
function that assumes independent, identical 
normally distributed errors, Figure 3 is the 
resulting error plot. Note the dominance of low 
errors, with few high errors.  The errors are not 
well summarised by a normal distribution and are 
highly heteroscedastic, hence the assumptions 
taken when applying the error model are not well 
satisfied. When we model the errors by a 
combination of two structures, the approach allows 
greater flexibility in the specification of the model 
errors. Rather than using a multiobjective approach 
(where the entire length of the data is used to 
specify each objective), the data is divided and 
different assumptions about the distribution of the 
model errors in different sections of the data may 
be made. We can allow the structure of errors to 
change depending on which part of the 
catchment’s response we are modelling. The errors 
are now better summarised by a normal 
distribution, and the individual error structures do 
not show a dominance of very low values.  

5. CONCLUSION AND FUTURE WORK 

In hydrological modeling, using a single model 
with a rigid model structure can lead to significant 
bias, as evidence exists of the catchment 
responding differently under certain antecedent 
conditions. To form a better prediction of 
catchment behaviour than would be provided by a 
single model, a model can be approximated 
through the combination of a number of different 
modelling configurations. Each model is adopted 
at a given time with a probability that depends on 
the current hydrologic state of the catchment. This 
framework is known as a Hierarchical Mixture of 
Experts (HME). 

Application of the HME framework shows that the 
catchment is well modelled as two different 
“states”, rather than by a single static model. The 
two HME component models corresponded to 
different catchment mechanisms: a high recharge 
state where the baseflow storage is increasing, and 
a low recharge state in low flow times. 

The challenge in applying the HME framework for 
predictive purposes lies in determining which 
model should be selected depending on the state of 

Table 2. HME and AWBM model parameters, estimated as the mean posterior value.  
The bracketed values give the 90% posterior intervals for the parameters. 
AWBM HME Component 1 HME Component 2 
K BFI S K BFI S K BFI S 
0.930 
(0.92- 0.94) 

0.518 
(0.49- 0.54)

149 
(139- 188) 

0.929 
(0.90- 0.95) 

0.506 
(0.47- 0.54) 

175.8 
(139-196)

0.974 
(097- 0.98) 

0.293 
(0.29- 0.30)

37.7 
(36- 42)
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the catchment. Estimating this probability is reliant 
on choosing appropriate variables to characterise 
the catchment state, and a mathematical function 
that can relate the predictor to the dominant model. 
In this study several different gating functions and 
predictors were investigated and the performances 
of these were compared via the BIC, a Bayesian-
like comparison criterion. Results showed that by 
comparing different predictors, the modeller can 
assess which variables are most likely forcing or 
related to a ‘switch’ in the catchment state. By 
selecting different predictors, the HME framework 
can give a better simulation than from a single 
model (taking into account the increase in model 
complexity). The cumulative antecedent rainfall (a 
measure of the catchment’s wetness) proved to be 
the most appropriate predictor. 

Much of the current literature concerning HME is 
interested in finding the optimum topology of the 
network’s architecture. Although this may prove a 
promising way to extend the simple architecture 
used in this study, computational difficulties will 
likely arise and there is a desire to keep the model 
parsimonious in hydrological applications.  By 
dividing the calibration data space, the individual 
component models may become over-identified. 
This is of particular importance in hydrological 
modelling, where there may be insufficient data 
available to identify each model. 
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