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EXTENDED ABSTRACT 

Vegetation condition assessment tools have been 
developed throughout Australia in response to 
vegetation management legislation and policy 
requirements for a metric that can be used to 
demonstrate duty of care. Queensland’s tool 
BioCondition is based on the pioneering Habitat 
Hectares framework developed in Victoria and the 
Biometrics approach used in NSW. It comprises 
three components: (A) a standardized field 
methodology; (B) a set of easily measured 
attributes that act as surrogates or indicators of 
biodiversity values; and (C) a set of preliminary 
benchmarks that discriminate sites with 
undisturbed remnant vegetation from more 
disturbed sites, for each attribute and for each 
ecosystem type.  

Current heuristic approaches to setting these 
benchmarks use the median value derived from 
‘Best on Offer’ (BOO) sites. An expert-defined 
score, based on various disturbance factors and 
ecological maturity of the site, is used to identify 
BOO sites. For this project we considered 
statistical approaches to setting benchmarks, based 
on determining how sensitive a vegetation 
condition indicator is to various disturbance 
factors. In this paper we present data-driven 
approaches for cases where appropriate data is 
available. Otherwise, in the common situation with 
no data, expert elicitation methods were examined, 
but are reported elsewhere. Even when data for 
benchmarking is available, different benchmarks, 
and therefore different models for assessing 
sensitivity, are required for each ecosystem type. 
Indeed certain indicators may not be relevant in 
some ecosystems, e.g. large trees in mulga 
landscapes of western Queensland.  

For a data-driven approach we must first assess 
how sensitive an indicator is to a range of different 
disturbance factors. This was facilitated by 
statistical modelling within an overall Bayesian 

decision analytic framework as defined by Gelman 
et al (2004). This framework was chosen since it 
provides (I) flexibility in selecting the statistical 
model to describe the sensitivity of the vegetation 
condition attribute to disturbance, and (II) a 
consistent basis for setting a benchmark. A cost 
function is defined to balance the need to avoid 
misclassifying relatively disturbed sites as being in 
good condition, as per the Precautionary Principle 
(QEPA, 1999), with the need to avoid false alarms 
when relatively undisturbed sites are assigned poor 
condition.  

Different statistical modelling approaches were 
found useful for assessing different indicator 
responses to disturbance. These included 
regression trees, ordinary and generalized linear 
models (GLMs), hierarchical GLMs and mixtures 
of regressions.  We present results for a selection 
of attributes in Corymbia citriodora (Spotted 
Gum) forests from southern central Queensland, 
for which different surrogacy models applied: a 
regression tree for number of large trees; a Poisson 
regression for fallen woody debris counts; and a 
hierarchical Beta-Gamma regression for average 
litter. Mixture of regression results are omitted for 
brevity.       

Models used to assess sensitivity can also be used 
to estimate credible ranges for the effect of each 
disturbance and ecological maturity factor on these 
vegetation condition indicators.  Describing 
uncertainty using these models helps ecosystem 
managers to better understand how well we can 
measure the indicator’s response to aspects of 
disturbance using existing data, and therefore how 
to target future monitoring activities to support 
benchmarking. 

In conclusion, we demonstrate that regression 
within a Bayesian decision analytic framework can 
be a flexible and in this case, more appropriate, 
alternative to existing approaches based on 
correlation and single heuristic scores.  
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1. INTRODUCTION 

Monitoring vegetation condition is an essential 
foundation of many biodiversity protection and 
environmental management activities, such as 
adaptive management of forestry resources and 
implementation of tree clearing legislation (QEPA 
2004). To demonstrate duty of care by landholders, 
several vegetation condition assessment tools have 
been developed in Australia: “Biometric” and 
“Habitat Hectares” (Oliver, 2004). Based on these 
methodologies, the Queensland tool 
“BioCondition” has three main components: (A) a 
standardized sampling protocol and field 
methodology; (B) a set of easily measured 
attributes that act as surrogates or indicators of 
biodiversity values; and (C) a set of preliminary 
benchmarks that discriminate sites with 
undisturbed remnant vegetation from more 
disturbed sites, by attribute and ecosystem type.  

Currently, selection of indicators is based on those 
proposed nationally, in line with international 
trends, via scientific and stakeholder consultation 
(Oliver, 2002). The set covers several themes, 
primarily overstorey and understorey structure, and 
others such as weeds, fallen woody material and 
the presence of large and mature trees. In this 
paper we report research on assessing adequacy 
(B), and developing benchmarks (C), of these 
indicators for particular vegetation types in 
Queensland. Benchmarking provides a simple 
system with well-defined thresholds that 
discriminate good from poor vegetation condition. 

Following the Pressure-State-Response ecological 
model for environmental reporting (QEPA, 1999) 
indicators are more effective if they measure the 
state or condition of vegetation in a way that is 
sensitive to disturbance pressures. Condition can 
then be managed through landholder or legislative  
responses addressing these pressures. Typical 
facets of disturbance impacting on native 
vegetation condition at landholder scale include 
grazing; fire both wild and prescribed; erosion; 
logging and other silvicultural treatment. These 
disturbance factors in isolation or combination can 
result in changes in the structure of the community 
and are generally associated with less mature 
overstorey. We thus require indicators that show 
clearly increasing response (changing vegetation 
condition), and so are sensitive, to increased levels 
of disturbance and less mature overstorey.  

Current heuristic approaches to setting these 
benchmarks use the median value of ‘Best on 
Offer’ (BOO) sites. This score is based on an 
unweighted sum of expert ratings of the site on 
different facets of disturbance, then effectively 

multiplied by the site’s maturity score, and 
categorized from A-D using expert-defined 
thresholds. Category A corresponds to BOO sites. 
This expert-defined disturbance/maturity score 
embodies several implicit assumptions. A single 
disturbance score assumes (a) all indicators 
respond to an overall level of disturbance, rather 
than to distinct disturbance factors. Using an 
unweighted sum assumes, for each indicator, that 
(b) all disturbance factors have an adverse effect, 
and (c) equal impact. The overall moderation by 
maturity assumes that (d) ecological maturity of a 
site moderates the effect of each disturbance factor 
in the same way. Thresholds defining BOO sites 
are set by experts, so presume (e) some unknown 
tradeoff between misclassifying good condition 
and poor condition, and (f) the same BOO sites 
represent best condition for all indicators. 

A related problem of testing surrogacy of 
ecological indicators is often addressed through 
assessment of correlation (e.g. Moritz et al, 2001). 
Using correlation in this context would assume in 
addition that: (g) the indicator is at its maximum 
(minimum) when the underlying disturbance level 
is zero (maximal); and similar to (d) that all 
disturbance measures impact on the attribute to the 
same degree and do not act in concert. 

In this paper we examine statistical approaches to 
setting benchmarks. Using regression we may 
investigate the pressure-state relationship, and test 
assumptions inherent in previous approaches. 
More than one covariate allows that (b) each 
disturbance factor may have adverse or positive 
effect and (c) may have different relative impact 
compared to other factors on each indicator. 
Including interactions means (d) ecological 
maturity of the site may moderate the effect of 
each disturbance factor separately. Separate 
regressions for each indicator addresses (a) and 
allows (f) that a different set of BOO sites may 
reflect good condition specific to an indicator. 
Non-zero intercept means (g) the indicator may be 
nonzero even for disturbed sites.  

The particular regression model appropriate for 
any indicator is difficult to prescribe in advance. 
Instead we consider a spectrum of linear regression 
methods for data-driven assessment of an 
indicator’s sensitivity to disturbance/maturity. The 
regression equation provides an alternative to the 
expert-defined score that effectively calibrates 
weights for each disturbance/maturity measure of 
vegetation condition to particular indicators.  

Developing benchmarks is constrained by 
information available and accessible on each 
indicator. There are two levels of information 
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which typically represent the current state of data 
availability on vegetation condition in Queensland. 
The most common data-poor situation is where 
expert knowledge is available, but with little 
quantitative measurement of vegetation condition. 
Expert elicitation methods for addressing this 
situation are documented elsewhere (Low Choy et 
al, 2005a). This paper focuses on the opposite 
data-only situation where moderate data is 
available, although this information may have 
arisen from a monitoring program with different 
objectives, such as the Regional Forest Agreement 
process or other similar planning processes (QEPA 
1999). Here we apply Bayesian regression with 
non-informative priors for data-driven results. 

Finally we propose a flexible Bayesian decision 
theoretic framework for setting benchmarks. This 
addresses assumption (e) by specifying the tradeoff 
between misclassifying good condition and poor 
condition. This framework applies equally to the 
data-poor situation using prior scores based on 
expert elicitation rather than expert-defined scores, 
and the data-only situation, using posterior scores.  

2.  DATA 
 
Vegetation condition indicators of potential 
interest to environmental managers numbered over 
a hundred. In this paper we present a general 
approach suitable for all data types but to save 
space, give details only for counts and proportions.  
 
Ecologists with expertise in vegetation condition 
followed the expert panel approach of Parkes et al 
(2003) to distil their conceptual model for major 
factors defining vegetation condition and derive a 
reduced set of indicators. This set, arrived at 
through consensus across nearly twenty experts, 
was considered to (EPA, in prep.): (i) capture the 
main elements of vegetation condition; (ii) be 
sufficiently simple and robust for use by 
landholders; and (iii) be sensitive to disturbance 
changes.  A subset of these indicators was selected 
for further statistical investigation to (a) test their 
sensitivity to disturbance and (b) identify 
benchmarks which discriminate good from poor 
sites. The case study examines two examples: 
amount of fallen woody debris, and average litter 
cover. 

Different disturbance factors were investigated as 
detailed in Section 1. Levels of impact were based 
on expert-based assessment in the field on a scale 
from 0 to 4; increasing values indicate increased 
disturbance. Confidence in accuracy of scores was 
moderate, however, as a result of the inherent 
subjectivity and qualitative nature of the measures. 
In addition ecological maturity was used in the 

study as an important factor influencing vegetation 
condition. Its measurement was based on the 
proportions of growth stages in the tree layer. This 
ranked study sites into 4 classes of maturity from 
most mature, typified by older forests, to least 
mature, where the tree layer is dominated by 
regenerating trees. These disturbance scores and 
maturity score were used as input to the expert-
defined score (Section 1). 

Some indicators may respond to disturbance in 
different ways depending on vegetation type. An 
initial assessment focused on two clearly defined 
vegetation types for which datasets of moderate 
size were available. These are forests in southern 
central Queensland dominated by Spotted Gum 
(Corymbia citriodora) or else by Poplar Box 
(Eucalyptus populnea). Depending on vegetation 
type and indicator, 60–100 sites were selected for 
analysis. This was considered adequate 
representation, and did not contain replicates or 
other forms of pseudo-replication. Benchmarking 
and sensitivity modelling approaches are 
illustrated in Section 4, in the data-only case, on 
two indicators in Spotted Gum. This forms part of 
a larger assessment (Low Choy et al, 2005b). 

3. METHODS 
 
Initially it was hoped that it would be sufficient to 
compare the distribution (mean and variability) of 
an indicator across categories of the expert-defined 
score (Section 1), where A comprises relatively 
undisturbed mature sites and D relatively disturbed 
immature sites. This approach applies when gold 
standards of condition are available, e.g. trigger 
values for physico-chemical water quality 
parameters (DEH, 2000). However this score was 
found to give poor discrimination between good 
and poor sites, for all attributes, e.g. fallen woody 
debris (Fig. 1) does not increase or decrease 
consistently with this expert-defined score.  

 
Figure 1. Distribution of fallen woody debris, for 
sites scored in good (A) to very poor (D) condition 
using the expert-defined score.  
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We initially assessed implicit assumptions (Section 
1) behind the expert-defined score via exploratory 
multivariate statistics techniques (Low Choy et al, 
2005b). Principal components and factor analysis 
did not confirm the assumptions (a-c) that weights 
in the score were all equal to one. Canonical 
correspondence analysis did not identify a simple 
way to explain variability between a set of 
vegetation condition indicators and disturbance/ 
maturity factors.  Classification trees were used to 
test (a) whether different disturbance/maturity 
regimes form each category of condition. We 
found that, for example, a C class site could arise 
from high levels of logging coupled with low 
levels of grazing and silvicultural treatment, or 
equally, low levels of logging but high levels of 
fire. These sub-divisions of the expert-defined 
score still led to poor discrimination of good 
condition. This suggested that further modelling be 
based on separating the score into its constituent 
measures of maturity and disturbance factors.  

3.1. Data-driven models assessing surrogacy  

A normal regression model for condition indicator 
y with expected value E[y] = μ is  

y ~ N(μ,σ2) with identity link μ =η  (1) 

with score η determined by up to M disturbance 
factors {xm}, weighted by coefficients {βm} 

η = β0 + β1 x1 + β2 x2 + … + βM xM (2) 

Two-way interactions were considered as 
additional x terms. In this case with at most 100 
sites and 7 disturbance factors, and an uneven 
experimental design, care was required to interpret 
interactions among the disturbance/maturity 
factors, e.g. without a full factorial design, some 
interactions were in fact main effects or 
conditional. Also, since data is observational, 
coefficients occurring later in the score represent 
the additional effect of a disturbance factor after 
eliminating preceding ones. For Bayesian 
implementation uninformative priors were 
selected. Normal priors with zero mean and large 
variance were selected (Box & Tiao, 1992) for the 
regression coefficients. In addition to the usual 
conjugate Gamma prior for the precision, truncated 
(Normal or Uniform) priors for standard deviation 
were also considered (Gelman, 2005).  

max

2

max max

~ N(0, ) (3)

1 Ga( , )  or
N(0, )(0, )  or Unif (0,2 ]

m

a b

β ξ
τ σ
σ ϕ σ ϕ

=
∞

:
: :

 

Here ϕmax and ξmax are reasonable upper limits. 

We consider the extension to the non-normal case 
via Generalized Linear Models (McCullagh & 

Nelder, 1989) for most indicators. For Poisson 
distributed counts such as fallen woody debris, we 
consider a log link to disturbance factors: 

y ~ Poisson(μ) with log (μ) =η (4) 

with priors for regression coefficients as in (3). 
This can be extended using dispersion parameter γ 
to relieve the Poisson constraint for equal variance 
and mean. This hierarchical Poisson-Gamma 
model has been developed to account for 
overdispersion (e.g. Frey & Cressie, 2003): 

y ~ Poisson(γμ) with γ ~ Ga(a, b) (5) 

with same link g from mean μ to regression 
coefficients (2). A sensible choice for Gamma 
hyperprior parameters is to assign the mode (a-1)/b 
a value of one to enable assessment of whether 
there is under- (γ < 1) or over-dispersion (γ >1). 
This leads to consideration of values b=a+1. Then 
a can be chosen to match a high though reasonable 
95th percentile or variance.   
 
Similarly a Beta-Gamma model may be applied to 
proportional data: 

y ~ Beta(γμ, γμ(1–μ)) with γ ~ Ga(a, b) (6) 

with logit link to the regression score,  logit(μ)=η 
and hyperprior parameters a and b as above. 

Another useful extension to regression is a mixture 
of regressions (Quandt & Ramsey, 1978; Hurn et 
al, 2003) which models different regression 
relationships for different groups of sites. This is 
useful when the factor determining the grouping 
has not been measured or identified so cannot be 
used as a predictor in the regression equation (2). 
In particular this approach may identify “outlier” 
sites that do not respond to disturbance. More 
details and results are provided in Low Choy et al 
(2005). 

Bayesian regression models were implemented 
using Gibbs Sampling in the package WinBUGS 
(Spiegelhalter et al, 2002). Convergence was 
assessed using the CODA package (Plummer et al, 
2005) for R (R Development Core Team, 2005). 

Regression trees (Breiman et al, 1984) were also 
used to assess whether an indicator changed 
abruptly with respect to disturbance/maturity 
gradients. Fully Bayesian approaches to fitting 
regression trees are still under development, since 
their computation requires advanced techniques 
(Chipman et al, 2002). We therefore used a non-
Bayesian optimization cost-function based 
approach of the recursive partitioning algorithm: 
rpart package (Therneau & Atkinson, 2005) for R. 
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3.2. Decision framework for Benchmarking  

The Bayesian regression approaches outlined 
above define posterior distributions of parameters 
β. Parameter estimates alone are not sufficient for 
decision-making. Following Gelman et al (2004) 
we superimposed a decision analytic framework 
over the model, to explicitly provide a decision 
rule as a cost function based on these parameter 
estimates. The benefit of this Bayesian framework 
(Cooper et al, 2004) is that uncertainty in the cost 
is directly obtained from uncertainty, or posterior 
variability, in parameters. Where data is 
unavailable prior distributions of parameters may 
be used for initial estimates of costs of decisions.  

Of interest here is a benchmark or threshold which 
separates sites in good from poor condition. One 
way to achieve this is to derive a cost function 
based on misclassification rates: a better threshold 
will lead to less misclassification. Using standard 
terminology we set negative and positive to be 
equivalent to poor and good condition, 
respectively. False Negative Rate (FNR) is the rate 
of misclassifying relatively undisturbed sites and 
occurs if they have unusually poor indicator 
values, whilst False Positive Rate (FPR) is the rate 
of misclassifying relatively disturbed sites, and 
occurs when they have unusually good indicator 
values. We can estimate these rates from the data 
considered representative of the vegetation type. It 
is impossible to minimize misclassification of both 
poor and good condition sites simultaneously. 
Instead we use a cost function to balance cost CN 
of false negative (poor) sites with its opposite cost 
CP of false positive (good) sites. Supposing that an 
indicator, e.g. No. large trees, with high values 
corresponds to good condition, error rates are then: 

 

FPRCFNRCCost
BBypFNR
BBypFPR

PN

ii

ii

+=
≥<=
<≥=

)|(
)|(

μ
μ

  (7) 

One choice of a benchmark B* arises naturally as 
the threshold which minimizes this cost. We may 
apply the precautionary principle (QEPA, 1999) 
and set high penalty CP for mistaken classification 
of poor sites as good, so that sites in poor 
condition are unlikely to score above such a 
threshold. Alternatively, a landholder may be 
interested in placing high cost CN on 
misclassifying good sites as poor. A neutral 
approach places equal costs on these two errors. 

4. CASE STUDY 

Here we illustrate two different regression 
modelling approaches for examining sensitivity, 
and derive benchmarks for two indicators.  

Generalized linear model – Fallen woody debris. 
Sensitivity of the number of logs of fallen woody 
debris (FWD) to disturbance was best assessed via 
a Poisson generalised linear model with log link. 
(For details see Low Choy et al, 2005b). The 
resulting regression score uses posterior estimates 
of parameters: 

score = 1.87 + 0.31 S – 0.36W -0.16W×M 

for silvicultural treatment (S), wildfire (W) and 
wildfire–ecological maturity interaction (W×M). 
Coefficients shown above have at least 95% 
probability of being away from zero (Table 1). 
Noting that an additive relationship with log link 
yields a multiplicative one on the raw counts, these 
results show that FWD strongly decreases with 
wildfire and strongly increases with silvicultural 
treatment. For more immature sites, more wildfire 
will additionally decrease FWD somewhat. There 
is weak evidence to suggest that for immature 
sites: more silviculture leads to small increase in 
FWD (with 84% probability) and grazing also 
leads to small increases in FWD (with 74% 
probability), perhaps since this reduces fuel load. 

Table 1. Regression Coefficients (mean posterior 
estimates, Standard Errors) for sensitivity of FWD 
to disturbance and maturity variables. Uncertainty 
in coefficients is shown by the 95% Credible 
Interval and the probability that coefficients are 
away from zero max(p(β>0), p(β<0)).  

Variable Est SE 95% CI p 
Intercept 1.87 0.32 (1.23, 2.5) 1.00
Grazing 0.06 0.09 (-0.12, 0.23) 0.74
Logging 0.02 0.19 (-0.36, 0.4) 0.54
P. burn  -0.02 0.22 (-0.44, 0.4) 0.52
Silvicult.  0.31 0.08 (0.14, 0.47)* 0.99
Wildfire  -0.36 0.09 (-0.54, 0.18)* 0.99
Maturity -0.06 0.13 (-0.32, 0.2) 0.68
S×M 0.09 0.09 (-0.08, 0.27) 0.84
W×M -0.16 0.10 (-0.36, 0.03) 0.95

Posterior mean regression scores were applied to 
each site, and then used to assess FPR and FNR (7) 
for potential benchmarks equivalent to the 10th, 
20th through 90th deciles. The marginally most 
successful benchmark (Fig. 3b) is set at approx. 5 
logs/ha, leading to a FNR of under 20% but a FPR 
of 40% (Fig. 3a). Higher benchmarks would result 
in higher FPR (chance of indicator suggesting 
good condition even though badly disturbed); 
lower benchmarks lead to higher FNR (chance of 
indicator suggesting poor condition though hardly 
disturbed). 

Regression trees generally resulted in worse FPR 
(22-40%) compared to Poisson-Gamma regression.  
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Figure 3.  FWD: (a) Boxplot showing distribution 
of FWD (x-axis) for sites in “good” and “poor” 
condition (y-axis). “Good” (green) sites have 
disturbance-maturity regression score exceeding 
benchmark, whereas “poor” sites fall below. (b) 
Both FNR and FPR misclassification error rates 
are shown when the benchmark is set at 10th, 20th, 
through 90th percentiles of sites ordered by 
disturbance/maturity score.  

Model assessment via posterior predictive checks 
showed that very few sites did not fit the overall 
disturbance-condition relationship at all (Fig 3, 
left) whereas most others did (Fig 3, right). 
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Figure 3. Posterior predictions for FWD given 
disturbance/maturity: predicted distribution (black) 
and observed (red) value for 2 typical sites. 

Beta-Gamma regression – Average litter. Average 
litter is defined as the sum of average coverage of 
coarse and of fine litter across the site, estimated 
using quadrat sampling. A beta-gamma 
hierarchical GLM was selected using model 
diagnostics. The gamma-distributed dispersion 
parameter estimated beta parameters were 
magnified 5-fold (Fig. 4). The fitted regression 
(Table 2) found that average litter in spotted gum 
increased with logging and other silviculture 

practices, and was lowest for more mature 
ecosystems (higher maturity scores for less mature 
forests). Wildfires decreased average litter. A 
benchmark of 0.56, corresponding to the 40th 
percentile of scores, corresponded to minimal joint 
error rate, with FNR of 20%, and FPR of 42%.  

 
Figure 4. Prior (black) and posterior (red) 
distributions of dispersion parameter for 
hierarchical beta-gamma model for average 
%cover litter. 

Table 2. Most important regression coefficients 
for sensitivity of average litter (%) to disturbance 
and maturity (with same columns as Table 1).  

Variable Est SE 95% CI p 
Logging 0.35 0.36 (-0.35, 1.06) 0.84
Silvicult.  0.26 0.18 (-0.09, 0.62) 0.93
Wildfire  -0.32 0.16 (-0.63, -0.01) 0.98
Maturity 0.29 0.23 (-0.18, 0.75) 0.89

5. DISCUSSION 

For both attributes benchmarks could be proposed 
by first isolating which aspects of disturbance were 
most closely linked to condition, and then 
minimizing the rate of misclassifying a disturbed 
site as being in good condition (FPR).   

Attribute Benchmark FPR FNR 
FWD (no. logs) 5 18% 40% 
Av%Litter 0.56 20% 42% 

Analyses of condition-disturbance relationships 
also help select a set of vegetation condition 
indicators that are sensitive to many aspects of 
disturbance. In spotted gum forests, indicators 
were sensitive to similar disturbances, but to 
different degrees: logging and ecological maturity 
(number of large trees, results not shown); 
silviculture, wildfire and maturity (both FWD and 
average litter); and logging (average litter). 

6. CONCLUSIONS 

In summary the difficult problem of assessing 
sensitivity of vegetation indicators to disturbance 
and using this assessment to set benchmarks for 
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vegetation condition (when data is available) can 
be facilitated by a Bayesian decision analytic 
framework. This can be supported by common 
regression models implemented in accessible 
statistical modelling environments. The focus on 
finding the best possible calibration model and 
benchmarks, as supported by a Bayesian modelling 
approach encourages a continuing cycle of 
improvement. Future models may use these 
posterior estimates of disturbance/maturity impacts 
on vegetation condition as prior information that 
can be combined with new data. 
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