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EXTENDED ABSTRACT 

Geographically Weighted Regression (GWR) and 
its variants are analysis methods that can cope with 
the multi-scale, spatially non-stationary 
relationships common to spatial data.  They 
achieve this by using geographical sub-samples of 
the data for which one expects the complexity of 
any relationships to be simpler than over the whole 
study area. 

The current implementation of GWR does not 
allow for locally varying analysis scales, but these 
can be inferred using a post-processing step to 
combine a set of GWR models, for example 
choosing the model with the best local r2 at each 
analysis location.  With this information, one can 
assess the spatial scale at which a set of variables 
are related, and how this varies through space.  
Such an understanding is extremely useful when 
trying to understand the processes operating across 
a landscape, and would improve the utility of 
GWR type analyses. 

However, the above approach has two fundamental 
limitations.  First, the chance of high goodness of 
fit statistics increases as the sample size decreases.  
Second, goodness of fit statistics normally assume 
that errors in the sample data are independent.  
Such independence is unlikely with spatial data, 
and therefore the goodness of fit statistics are 
likely to be over-estimates.  One therefore cannot 
use local goodness of fit statistics alone to choose 
the best local GWR model. 

One approach that can be applied to counter this 
effect is to use spatial randomisations to augment 
the goodness of fit statistics.  We describe such an 
approach using species richness data of ferns 
across the Australian continent, exploring the 
effect of two randomisation models.  Species 
richness is the number of unique species occurring 
in a region, where we used 50 km by 50 km cells. 

Using GWR, the species richness surface is 
correlated with two climatic parameters, the mean 
water relations and standard deviation of annual 
rainfall within each analysis cell.  These were 

correlated one at a time using Gaussian spatial 
weights with bandwidths at 100, 200, 300, 400, 
500, 600 and 800 km. 

The first randomisation used a model of complete 
spatial randomness.  This is the same 
randomisation as used in the GWR software, but 
adapted to produce spatially local assessments.  In 
this model, we randomly allocated species richness 
values across the landscape without regard to any 
spatial structure in the original data.  However, 
such a random distribution is unlikely in reality, 
and ignoring spatial structures represents a test that 
is easy to satisfy when comparing the randomised 
data against the original data. 

The second randomisation allocated the data to the 
landscape on a species by species basis, where 
each species range occurs in a circular pattern 
around a randomly selected cell and the total 
number of species records in the data set is kept 
exactly the same as in the original.  This is a very 
conservative model of the spatial structure. 

Each GWR model was compared against 1000 
randomisations for each random model, and the 
best analysis scale for each GWR model location 
was taken as that with the highest local r2 of those 
that were better than the randomised model 95% of 
the time.   

There is almost no difference for the results 
between the two randomisation approaches.  This 
is because even the circular model is randomly 
located, and so the resulting species richness 
surface is much less structured than the original 
surface.  More variable results are to be expected if 
using indices of species level distributions such as 
endemism or genetic diversity, as opposed to 
simple species counts as used here.  In these cases 
replicating the species richness surface can be used 
as an additional control on the randomisation. 

However, despite the lack of difference between 
the two approaches, this spatially local approach 
does provide greater confidence in GWR model 
results than when using a standard global 
randomisation.   
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1. INTRODUCTION 

Geographically Weighted Regression (GWR) 
(Fotheringham et al., 2002) and its variants are 
analysis methods that can cope with the multi-
scale, spatially non-stationary relationships 
common to spatial data.  They achieve this by 
using geographical sub-samples of the data in a 
moving window approach, where one expects the 
complexity of any relationships to be simpler 
within the geographical sub-sample than over the 
whole study area.  It should be noted that these 
analyses do not assess the degree of 
autocorrelation or spatial dependence.  Rather, 
they can operate in the presence of these effects. 

The current implementation of GWR does not 
allow for locally varying analysis scales, but these 
can be inferred using a post-processing step to 
combine a set of GWR models, for example by 
choosing the model with the best local r2 at each 
analysis location.  With this information, one can 
assess the spatial scale at which a set of variables 
are related, and how this varies through space.  
Such an understanding is extremely useful when 
trying to understand multi-scalar processes 
operating across a landscape, and would improve 
the utility of GWR type analyses. 

However, this approach has two fundamental 
limitations.  First, the chance of achieving a high 
goodness of fit statistics increases as the sample 
size decreases.  Second, goodness of fit statistics 
usually assume that the errors in the sample data 
are independent, causing the errors to cancel out.  
Such independence is unlikely with spatial data, 
and therefore the goodness of fit statistics are 
likely to be over-estimates.  One approach that can 
be applied to counter these effects is the use of 
spatial randomisations to augment the goodness of 
fit statistics when assessing model results.  We 
describe such an approach using species richness 
data of ferns across the Australian continent, 
exploring the effect of two randomisation models 
on the results. 

2. METHODS 

Species occurrence data were obtained from geo-
referenced specimen records from Australian 
herbaria.  The determinations of species records 
from taxonomically confusing groups were 
checked and removed if there was uncertainty in 
their likely veracity.  All duplicate records, 
naturalised species, hybrids and specimens from 
cultivated plants were removed.  Obvious geo-
locational errors resulting from incorrect data entry 
were identified by comparison with other 
published range maps (Orchard 1998) and by 

expert checking.  The final dataset consisted of 
37,071 geo-referenced records of 418 species in 
105 genera.  All of the data locations were 
projected into a Lambert’s conic conformal 
projection with two standard parallels at 18ºS and 
36ºS, centred on a meridian at 134ºE.  This 
projection has minimal spatial distortion across 
large areas like the Australian continent. 

Species richness was calculated as the number of 
unique species occurring in a region, where we 
used a square cell 50 km on a side to reduce the 
effects of biased and non-random sampling 
common to museum and herbarium data (Figure 
1)(Crisp et al., 2001; Bickford et al., 2004). 

 
Figure 1.  The distribution of fern species richness 

across Australia at a 50 km by 50 km cell size. 

Using GWR, the species richness surface was 
correlated with the mean water relations within a 
cell and with the standard deviation of annual 
rainfall within each species richness cell.  The 
standard deviation was used to provide a proxy for 
the heterogeneity within the cell.  The relationship 
with other variables is described elsewhere 
(Bickford and Laffan, in prep.).  We used a 
Gaussian spatial weights scheme for the GWR 
weightings, with seven bandwidths at 100, 200, 
300, 400, 500, 600 and 800 km.  The models were 
fitted one variable at a time to avoid the 
multicollinearity effects to which GWR is subject 
(Wheeler & Tiefelsdorf 2005).  The 
randomisations and collation of model results were 
implemented in PERL.   

The two randomisation approaches have been 
previously used to assess plant endemism patterns 
(Laffan & Crisp 2003).  The first uses a model of 
complete spatial randomness (Figure 2).  This is 
the same randomisation as used in the GWR 
software (Fotheringham et al., 2002).  In this 
model we randomly allocated species richness 
values across the landscape without regard to any 
spatial structure in the original data.  However, 
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such a random distribution is unlikely in reality.  
Ignoring the spatial structure in the data represents 
a test that is easy to satisfy when comparing the 
randomised data against spatially structured data. 

The second randomisation allocates the data to the 
landscape on a species by species basis, where 
each species range occurs in an approximately 
circular pattern around a cell randomly selected 
from the original distribution (Figure 2).  The 
randomly generated species richness values were 
the number of unique species randomly allocated 
to each cell, where the total number of species 
records is kept exactly the same as in the original 
data set.  This is a very conservative model of the 
spatial structure at the species level. 

Each GWR model was compared against 1000 
randomisations for each random model, and the 
best analysis scale for each GWR model location 
was taken as that with the highest local r2 of those 
that were better than the randomised model 95% of 
the time. 

Random values were generated using the 
Mersenne Twister Pseudo Random Number 
Generator (Matsumoto & Nishimura 1998) 
because it has a period length of 219,937 
(~4.3*106002) and passes all of the current tests of 
randomness essential for reliable analyses (Van 
Neil & Laffan 2003; McCullough & Wilson 2005). 

 
Figure 2.  The two randomisations generate 

differing spatial structures.  The blue circles 
represent the observed distribution of 
Acrostichum aureum, the green circles 
represent its distribution for one iteration of 
the complete spatial randomness model, while 
the red circles are for one iteration of the 
circular random model. The triangles 
represent the distribution of all species records 
after aggregation to the 50 km grid cells to 
which the species may be allocated. 
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Figure 3.  The Gaussian sample weights decay to a 
zero asymptote at approximately three times 
the bandwidth (a).  The circles (b) indicate the 
relative locations of the weights in relation to 
Australia, with the inner circle being the 
bandwidth and the outer circle being the zero 
asymptote.  Red circles are a bandwidth of 
800 km, green circles are 100 km. 

3. RESULTS AND DISCUSSION 

There is little difference between the cell based 
and the circular randomisations when considered at 
each individual spatial scale (Figure 4, Figure 5).  
The models are also better than random for all 
locations analysed with bandwidths of 400 km and 
above.  Not surprisingly, those locations where the 
GWR models are worse than the randomisation 
tend to be those where the local model has a low r2 
value.  These are also often locations which have 
low species richness values, such as near the edges 
of the Western Australian deserts.  One exception 
to this is Tasmania, which has a high species 
richness of ferns, but a low correlation with the 
two variables used. 
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The lack of difference between the two 
randomisations is likely due to the use of species 
richness data as the variable that was randomised.  
Even with the circular model, the randomly 
generated species richness surfaces will be far less 
structured than the original, and therefore less 
likely to provide a better correlation with the 
climate surfaces than the original species richness 
data.  While the results indicate little difference 
between the two randomisations for this data set, 
one would expect greater differences when using 
measures such as species endemism and genetic 
diversity (e.g. Bickford et al., 2004), and for which 
the species richness values are used as an 
additional constraint on the randomisation (see 
Laffan & Crisp 2003).  In this case the species are 
randomly located across the landscape, but the 
spatial distribution of species richness must be 
replicated to some degree.  One must also consider 
that there is a strong relationship between ferns 
and water related variables like those used here.  
This may not be the case with other biotic systems 
that do not depend so strongly on water, for 
example sclerophyll vegetation. 

The aggregate results (Figure 6, circular model) 
indicate that the correlations are generally positive 
and strong (t>2) for mean water relations within a 
cell and with the standard deviation of annual 
rainfall in most parts of Australia, except for South 
West Western Australia and for central Australia 
and parts of the Northern Territory for the Annual 
Rainfall SD.  The scale of the best relationship is 
also spatially clustered, and the smaller scales 
correspond to areas of higher species richness 
(compare with Figure 1).  The unusual pattern near 
the Victorian/New South Wales border could be 
due to the inclusion of values from Tasmania in 
the larger analysis bandwidths.  Other issues of 
multiple levels of relationships and the influence 
of other variables are considered in Bickford and 
Laffan (in prep.). 

4. CONCLUSIONS 

While the results for these variables indicate that 
the spatial scales with the higher local r2 values 
were always better than the random models, and 
that there was little difference between the two 
randomisations, this should not be expected for all 
data sets.   

The randomisation approach described here allows 
a more rigorous assessment of what scale should 
be chosen when aggregating a multi-scaled group 
of GWR model surfaces into a single surface and 
enables a significant improvement over a fixed 
bandwidth GWR analysis.  Randomisations also 

need to be developed that can represent “realistic” 
dispersal patterns of species across a landscape. 
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Figure 4.  Local r2 values for the standard deviation of annual rainfall at four scales using the cell based (left) 

and circular (right) randomisations.  The black dots indicate where the model is better than random for 
less than 95% of the 1000 randomisations. 

 
Figure 5.  The randomisation surfaces are very similar between models (Annual Rainfall SD results).  The y-

axes represent the frequency the original model was better than the circular randomisation, while the x-
axes are the frequency the original model was better than the cell based randomisation. 
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Figure 6.  The spatial distributions of the combined model results are clustered (calculated using the circular 

randomisations). 
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