
The hydrological modelling system J2000 - knowledge core for
JAMS

1Krause, Peter and 1Kralisch, Sven

1Department for Geoinformatics, Hydrology and Modelling
Friedrich-Schiller-University Jena, Löbdergraben 32, 07743 Jena, Germany. E-Mail: p.krause@uni-jena.de

Keywords:J2000, JAMS, Modular Modeling Framework, Hydrological Modelling

EXTENDED ABSTRACT

Hydrological model development and application for
research projects is most often a cycle of model
selection, model application, model adaptation and
enhancement. The reason for the adaptation of an
existing one or the development of a new model is
that most of the conceptual hydrological models have
been developed for a specific test catchment, scale
and problem focus. The transfer to other catchments,
other scales or other problems very often reveals some
systematic drawbacks in the model’s concept, its data
and parameter needs or its capability to reflect the
problem the user is interested in. This often leads
to an extension of the selected model or in the worst
case to model rejection. Additionally, new process
knowledge becomes continuously available because
of the very active research carried out in catchment
hydrology world wide. From time to time this forces
model updates so that the models always reflect the
state of the art.

In general it can be stated that the perfect model
does not exist yet and will probably never exist in
the future. Therefore a more future-proof approach
would be to think of hydrological modelling systems
as toolboxes which should help model developers and
applicators in the adaptation of existing models for
their specific needs. To assist such a purpose some
fundamental considerations have to be addressed
during the development and implementation. The
J2000 (J2K) modelling system which is presented
in this paper, takes these into account by its object-
oriented modular approach.

J2K provides the process knowledge core for the
Jena Adaptable Modelling System (JAMS) currently
under development, which can be considered as a
generalized Java framework for the application of
environmental model components. The development
of JAMS was driven by some disadvantages the J2K
currently has. This is first of all a lack of performance
which is a follow up of the increasing flexibility,
functionality and the more dynamic concept realised
during the continuous development of J2K. It has to be
noted that such a decrease in performance is common
due to an increase in flexibility and functionality.

Nevertheless we are convinced that considerations
of how software performance can be increased are
not only of interest for shorter model execution
times. Moreover it forces the development of lean
and straightforward concepts and implementations
of system and process components, which is a
very important prerequisite for future proof software
development.

In the paper a short overview of the current J2000
modelling system’s design and components and the
basic approach of JAMS will be given. A short
description of an application from a mesoscale
catchment in Germany will complete the paper.

676

mailto:p.krause@uni-jena.de


1 THE J2000 MODELLING SYSTEM

The development of the J2000 modelling system
started in 1997 as process oriented hydrological
modelling in large river basins. The reason for the
development of a new system was that the distribution
concept of the Hydrological Response Units (Flügel
1995), which was selected for the project work,
had not been adapted to large scale basins at this
time. The first version of the modelling system,
implemented using C++, was successfully applied in
three large subbasins (Mulde, Unstrut and Schwarze
Elster) of the river Elbe in Germany (Krause, 2001).
A thorough review which was carried out after the
first applications, revealed that the J2000’s systematic
concept was not flexible enough to use the system
in different environments or for different purposes or
scales without further development. In particular, the
separation between the system core and the process
modules was not perfect in the first version. These
limitations led to a new implementation of the whole
system in Java. The new development was partly
influenced by the Modular Modelling System MMS
(Leavesley et al. 1996) and the Object Modeling
System OMS (Ahuja et al. 2005). On the one
hand, it was designed as a modelling framework for
hydrological purposes and is therefore much more
constrained than the OMS, which is implementing a
much wider perspective. On the other hand, it is
more open and flexible compared to MMS, which was
developed as a platform for the Precipitation Runoff
Modeling System (PRMS) (Leavesley et al. 1983).

The system layout of the J2000 is implemented in
such a way that the system core and the more generic
components are strictly separated from the knowledge
part, which is assembled by the process modules. The
interaction and communication between the system
and the process modules is managed by the run class
of the system which acts as a translator between the
system and the processes.

The core components implement tools and methods
for data in- and output, a graphical user interface and
generic methods for data regionalisation, statistical
analysis and visualisation. Additionally, a spatial
context is provided by basic classes for spatial
objects like distribution units, sub-catchments, the
whole catchment and river reaches. The different
spatial objects which are needed to set up a model
are initialized and parameterised based on object
parameter files containing all relevant attributes for
describing the objects and their topology. The actual
adding of spatial objects to an existing model is task
of the system core which takes care of all necessary
steps.

The system is complemented by the hydrological
process modules implementing different parts of the

hydrological cycle like evapotranspiration, intercep-
tion, snow and soil water assessment, groundwater
and flood routing, which form the knowledge part of
the system.

The experiences made during the development of
J2000 and and also OMS was providing the baseline
for JAMS.

2 JAMS

JAMS (Jena Adaptable Modelling System) has been
developed as a generalized Java framework for the
application of J2000 model components. In order to
identify basic demands for such a framework J2000
has undergone a detailed system analysis. Here
we especially focused on the representation of the
temporal and spatial domain within J2000. Emphasis
was also placed on data exchange between model
components in order to not only provide flexibility
but also maximum performance. As a result of this
analysis we identified the following requirements to
be addressed by JAMS:

1) The representation of multiple, nested temporal
contextsis a basic precondition for the incorporation
of model components that need to be applied in
different temporal resolutions(e.g. daily and hourly
mode),

2) Accounting formultiple, nested spatial contextsis
a prerequisite for the integration of model components
that considerdifferent spatial resolutions(e.g. HRUs
and subcatchments) anddiscretization types(e.g.
raster cells or polygons).

3) The ability to representspatial model entities
as compound objects– each of them holding a
set of user-defined attributes – is a precondition to
incorporate model components that are based on
arbitrary spatial contexts.

4) Data exchange between model components has
to be realized in ahigh-performance mannerin
order to overcome a major drawback of component
based modelling systems compared to conventional
simulation models. Moreover, this data exchange has
to be implemented in aflexible manner that allows
the mapping of arbitrary outputs of component A to
arbitrary inputs of a subsequent component B if data
types are compatible.

All of the abovementioned requirements have been
met by the JAMS architecture which is currently being
implemented. For data exchange between model
components special glue classes are being generated
during runtime. Instances of these classes can then be
used in order to access the data attributes of providing
and requesting model components.

677



The control of component execution and data
exchange is exercised by the JAMS runtime envi-
ronment. This environment is parameterised by an
XML-based user-defined configuration that specifies
the model structure and corresponding metadata.

3 J2000 SYSTEM CORE

The system core of J2000 is assembled by packages,
classes and methods which are common and
generic for different model setups and process
implementation. Because of their stronger technical
meaning they are generally not of major interest for a
hydrologist and it is not likely that they have to be
adapted when new hydrological process knowledge
becomes available. The functionality that a model
developer needs to integrate his or her own process
modules is provided by few documented methods.

The core provides packages for the processing of
time series data, for in- and output of parameter files,
data and results, for initialisation, parameterisation
and processing of spatial objects, and various
tools for statistical analysis, regionalisation, physical
calculations, geographical transformation etc. In
addition, specific GUI components for the creation
and display of different views (e.g. diagrams, tables)
of model data and for user interaction and feedback
are part of the core package.

3.1 J2kRun class

The J2kRun class is responsible for the execution
of existing models. The run-class gets the relevant
information (e.g. start and end date) from a user
dialogue and provides a spatial iterator nested in a
temporal iterator. The ”run method” of each process
module is called for each spatial unit and time step by
these iterators. In addition the run-class is responsible
to produce output in form of text files or pass the
data to the visualisation tools to create diagrams of
the modelling results.

3.2 The data package

The data package of the system core provides classes
and methods for the instantiation and provision of
time series and other data necessary to setup a
model. For processing of time series data the class
”j2kStationDataSet” is once instantiated for each type
of input data (e.g. temperature, wind speed, observed
runoff). The class itself instantiates several classes
of the ”j2kStation” class depending on the number
of stations for which input data is available. Each
j2kStationDataSet is described by attributes which
contain information about the type of input data, its
temporal resolution, the start and end data and the

value for missing data entries. The instances of the
j2kStation class are described by additional attributes
like station names, geographical coordinates and
elevation of the measuring point. Such information
is stored together with the actual data in simple ASCII
files, which are read in during the instantiation.

The ”j2kParameterSet” class is responsible for
implementing and processing of other data like
describing parameters of landuse classes or soil types.
This class reads in attributes and parameters from
ASCII files and provides interfaces for the retrieval
and manipulation of such data inside a model.

3.3 The io package

The io package assembles classes and methods
responsible for all physical file in- and output of
models. The package provides classes for file related
issues when a new model is setup as well as classes
for writing and loading of existing models. When a
model is saved the whole set up including processes
and data is serialized to one object on the hard disc.
In addition a restore file is created which contains a
meta-description of the current model. The restore
file is helpful when the deserialisation of an existent
model fails for some reason or the user likes to change
a specific model setup from outside the system. For
rebuilding a model based on the restore file a special
class exists in the io package.

Besides the methods described above the io package
contains classes to create table views for the various
data and attributes of a model. Such classes comprise
a specific table model class and a table viewer for the
user friendly display of tables.

3.4 Space and time in J2000

Space is represented in J2K by spatial objects which
carry hydrological information and, therefore have
to be considered and processed during modelling.
In practical terms, these might be raster cells,
hydrological response units, sub-catchment and
catchments, but also river reaches or point objects like
lysimeters.

The spatial objects needed to setup a model are
either parameterized by parameter files which contain
attributes describing the entities or constructed from
already existing spatial objects. For instance, a model
implementing the distribution concept of hydrological
response units (HRUs) is instantiating a set of such
units by reading attributes (i.e. coordinates, area,
elevation etc.) from a parameter file. The attributes
of the HRU instances can then be used to instantiate
and construct the catchment object.

678



Beside the temporal static attributes, the spatial
objects can obtain temporal dynamic state variables
from process modules when such are installed into the
system. During model execution the state variables
are changed by processes taking place in the process
modules.

As J2K is a modelling system for continuous
hydrological simulation it requires a temporal context.
This context is provided by the J2kDate class which
is extended from the GregorianCalendar class of
Java. Instances of the J2kDate class provide robust
and consistent time environments for the modelling.
The class has getter and setter methods for the
construction or update of J2kDate objects as well as
transformation functions from calendar date to Julian
days. Additional functions allow e.g. testing if an
actual date object lies within specific constraints given
by start and end dates, if a date is before or after
another one, or how many days or hours a specific
time span comprises.

3.5 Geographical tools and Data analysis

A basic package with geographical tools has been
implemented which helps the user in the conversion
of different projected data sets. Currently only
conversion of Gauss-Krüger coordinates to latitude
and longitude in decimal degree and vice versa
are available but transformation functions for other
projections like UTM can simply be added.

The analysis package of the J2000 system provides
different classes for the quantification of model
performance and a basic class for sensitivity analysis.
Implemented performance measures are the Nash-
Sutcliffe efficiency with normal and logarithmic
values as well as a modified version which allows
other powers than 2, linear regression with the
coefficient of determination and its gradient, double
sum analysis of simulated and observed variables and
the index of agreement. A comprehensive description
of all efficiency measures implemented in J2K can be
found in Krause et al. (2005).

The J2kSensitivity class provides tools for quantifying
parameter sensitivities by one-, two- and multi-
dimensional analysis. The two-dimensional analysis
can be used to detect parameter interdependencies.
From a dialogue the user can choose two process
modules and related process parameters. The
parameter range which should be investigated is
specified by defining upper and lower boundaries
(Min, Max) and the resolution (Res.) of the parameter
space for both variables. A two dimensional matrix
is constructed from the boundaries and the resolution
of the variables during the sensitivity analysis. Inside
the matrix fields random variable pairs are defined
by a Latin-Hypercube method. Then the model

is run for all realisations of the variables and
different performance measures are calculated. The
output is given as text file, which contains the
various realisations and the resulting performance
measurements as well as 2D graphs. The visual
interpretation of the output in form of 2D graphs
shows not only the influence of different parameter
values on different performance measures but also the
dependencies of the two chosen parameter from each
other.

One- to multi-dimensional sensitivity analysis can
be performed by Monte-Carlo-Analysis combined
with a Latin-Hypercube search algorithm. Here the
user can select as many variables as he likes and
can perform multiple runs with different random
parameter combinations. The output is stored in
single files which hold the parameter values, different
efficiency measures and the resulting variables from
each run.

3.6 Visualisation and Graphical User Interface

One of the predefined goals which were guiding the
development of the J2000 modelling system was to
make the system user-friendly and attractive. The
idea was not only to produce something appealing but
moreover to provide an easy to use tool for model
application and development as well as to encourage
other scientists to contribute to the system and process
libraries. Part of this strategy was the provision of an
attractive and intuitive graphical user interface (GUI)
differing from those most often found in hydrological
modelling software. In addition, some effort was
also spent on the integration of Java packages for the
graphical output of modelling results and input data in
form of graphs and diagrams. Fig. 1 shows a screen
shot of the J2000 main frame.

Plotting capabilities based on the JFreeChart package
(www.jfree.org/jfreechart) were implemented into
J2000 for the analysis of input data and model results.
With these tools the user can freely configure different
time series plots for each of the calculated variables
with just a few mouse clicks. Furthermore, the
graphs can be zoomed, altered, printed and exported.
Figure 1 and 3 shows some examples of the plotting
capabilities of J2000.

Most of the J2000 plots present integrated results for
the entire catchment. To view the distribution of the
hydrological conditions, spatially variable output can
also be created. However, at the current state this
is only possible as tabular data, which then can be
visualised in a GIS. A graphical front-end renderer,
which will allow the visualisation of GIS maps of
distributed parameters and model results, is under
development and will be implemented in the near
future.

679



Figure 1. The graphical user interface of J2000, showing various views of data, attributes and results

4 PROCESS COMPONENTS

The system components described above were
developed in such a way that the modelling system
is as open as possible for various tasks, different
model setups and user requirements. Even though
the J2000 was developed as a hydrological modelling
system, most of the generic components may be useful
for modelling of other natural environments. The
knowledge part in form of process components was
strictly divided from the system part to keep the
system open for various hydrological concepts and
other purposes beyond.

For the J2K a complete set of process modules exists
which are contains methods for regionalisation and
correction of time series data and the single processes
for distributed hydrological modelling, like potential
ETP, interception, snow, soil water, ground water and
reach routing. A detailed description of the processes
can be found in Krause (2001 and 2002).

4.1 Process template

The process modules have to follow a template which
implements the following four important methods:

install, init, run, and cleanup.

The install() method is responsible for inserting the
module correctly into the system’s context during
module installation. The method is exporting the
module’s state variables to the specific spatial objects
and is responsible for assuring that the module
receives the necessary input. During runtime the run()
method is called for each time step and spatial unit.
The run() method itself calls first init() to retrieve
the actual system status, then it performs the process
specific calculations and finally calls cleanup() to pass
altered variables back into the system.

For instance, an interception module might need
the actual leaf area index (LAI) together with daily
rainfall and daily potential ETP of a distribution unit
implemented as spatial object. With this information
the module calculates maximum interception storage
(depending on LAI) and reduces the daily rainfall
to throughfall by subtracting interception. The
intercepted precipitation can then partly or fully
evaporate depending on the potential ETP.

680



4.2 Process module implementation and installa-
tion

For the implementation of process modules a parent
j2kProcess class exists from which specific process
implementations are derived. The parent class
implements the install(), init() and cleanup() methods
which can either be directly used or can be overwritten
by the user if needed.

The simplified code shown in fig.2 should illustrate
the layout and implementation of a J2000 process
module. In this example a simple bucket module
is shown which is extended from the parent class
J2kProcesses. It has two local variables (precipitation
and bucket) and a calibration parameter (maxStorage).
When the module is instantiated and its constructor
is called the variable maxStorage is mapped into
the module’s parameter hash-map and is therefore
available for calibration or sensitivity analysis by the
system or for user interaction.

In the install() method the module’s ”bucket” is
added to each modelling unit as a state variable and
initialised with the value 0. When the model is
processed in a temporal and spatial context the run()
method is called by the system, which is first of all
invoking init(). In init() the module retrieves the
actual precipitation of the current unit and the state
of its bucket and maps them to the local variables.
Then the process implementation of run()is executed
where the precipitation is added to the bucket. When
the bucket exceeds its maximum storage capacity
the user is informed by a J2K information message
and the bucket storage is set to zero again. Finally,
run() invokes cleanup() in which the changed bucket
content is passed back to the units bucket state
variable. If the module contains calibration variables,
like ”maxStorage” which the developer wants to
be accessible for tuning a parameter dialogue is
added by the parent class j2kProcess to the module
automatically.

5 APPLICATION OF J2000 IN THE
MESOSCALE GERA CATCHMENT

The following section will give a very brief overview
of an application of J2000 for a research project to
show the potential for hydrological process modelling.
A more comprehensive and critical discussion of the
hydrological modelling in the Gera basin can be found
in Krause & Fl̈ugel (2005).

The J2000 was applied in the mesoscale Gera basin in
Germany for a research project carried out in scope
of the implementation of the EU Water Framework
Directive. The Gera basin has an area of 850 km2 and
is very heterogenous in terms of topography, landuse,

Figure 2. Simple example of a J2000 process module.

soils and geology. The main goal was to simulate the
vertical and lateral water transport processes as good
as possible in a fully distributed way to add nitrate
process dynamics during a second phase, which is
currently in work. As distribution concept 13769
topological connected HRU polygons were delineated
from GIS layers of topography, landuse, soil types
and hydrogeological units. For the modelling, the
entire catchment was divided into four subbasins,
which were modelled separately in a nested catchment
approach. A thorough model calibration was carried
out for the most southern basin ”Arnstadt” on four
years of the eleven year time-series by a comparison
of observed and simulated runoff at the subbasin
outlet. Therefore, the calibration parameters were
tuned until a Nash-Sutcliffe efficiency of> 0.7 was
achieved. The model was then validated with the
remaining seven years of the time series. In addition
the spatial and temporal distribution of the runoff
generation was inspected. After calibrating a good
and plausible parameter set, the model was transferred
to the remaining subbasins and slightly recalibrated
until a reasonable model fit could be observed. The
resulting efficiencies for the subbasins and the total
basin are shown in table 1. A graphical view of the
model results of subbasin Arnstadt is shown as the
diagram in fig 1. The upper panel of the diagram
shows the precipitation, the middle panel the observed

681



(blue line) and the simulated (red line) runoff and in
the lower panel the differences between observed and
simulated runoff is shown.

Table 1. Nash-Sutcliffe efficiencies for the three
subbasins and the total Gera basin

subbasin calibration validation
Arnstadt 0.7090 0.8317

Apfelsẗadt 0.6304 0.7573
Wipfra -0.0843 0.5279

Gera total 0.6654 0.7436

Figure 3. The systematical overprediction of peak
flows in the subbasin Wipfra in the validation period
1994 - 2000.

The efficiencies summarized in table 1 show that
the model was performing well in the subbasins
Arnstadt and Apfelsẗadt, but produced bad results
in the subbasin ”Wipfra”. The reason for the bad
efficiencies in these subbasins is a flood retention dam
in the upper part of the catchment, which is reducing
flood peaks at the outlet significantly. In the current
version of J2K the influences of such dams can not be
simulated. Therefore, the model was overpredicting
peak flows systematically. The modelling results for
the validation period in subbasin Wipfra are shown in
fig.3. The systematic overprediction can particularly
be seen in the differences plot (lower panel).

6 CONCLUSIONS

The current version of the J2000 modelling system
can be considered a flexible and easy to use model
environment for hydrological purposes. Various
applications in Germany and also South Africa
showed that the modelling system is able to simulate
the hydrological process dynamics fully distributed
with reasonable quality. The model has been
successfully applied in basins with areas from less
than 2 km2 up to more than 6000 km2 which
demonstrates in particular the multi-scale ability of
the implemented process descriptions. During the
development from the first version up to now the

system became more and more flexible. Alas,
the growing flexibility led to a decrease in model
performance mostly because of the more flexible data
exchange methods between single sub-components
based on hash-maps, which results in frequent
internal type casting that slows down the system.
Experiences made by the transfer of the model to other
basins revealed also that the implementation of the
spatial and temporal context of the current system is
sometimes not flexible enough. Here, a more common
approach for providing variable temporal and spatial
environments would be an advantage.

Such disadvantages led to the development of JAMS,
which is mostly concentrating on performance issues
but also intends to provide even more flexibility to
the entire system. The multiple, nested temporal and
spatial contexts provided by JAMS open up new and
better opportunities for problem tailored model setup
and application.

7 REFERENCES

Ahuja, L.R., Ascough II, J.C. & David, O.: Develop-
ing natural resource models using the object mod-
eling system: feasibility and challenges, Advances
in Geosciences, Vol. 4, pp 29-36, 2005.

Krause, P., Das hydrologische Modellsystem J2000 -
Beschreibung und Anwendung in großen Flußge-
bieten (The hydrological modelling system J2000
- Documentation and application in large river
basins); Schriften des Forschungszentrums Jülich,
Reihe Umwelt/Environment, Band 29, 2001.

Krause, P., Quantifying the impact of land use changes
on the water balance of large catchments using the
J2000 model; Physics and Chemistry of the Earth,
27, p. 663-673, 2002.

Krause, P., Boyle, D.P. & B̈ase, F., Comparison of dif-
ferent Efficiency Criteria for Hydrological Model
Assessment, Advances in Geosciences (in print),
2005.

Krause, P. and Flügel, W.-A.: Integrated research on
the hydrological process dynamics from the Wilde
Gera catchment in Germany; Headwater Control
VI: Hydrology, Ecology and Water Resources in
Headwaters, IAHS Conference, Bergen 2005.

Leavesley, G.H., Lichty, R.W., Troutman, B.M., Sain-
don, L.G., Precipitation Runoff Modeling Sys-
tem: User’s manual, Water Resources Investiga-
tions 83-4238, USGS, Denver, Colorado, 1983.

Leavesley, G.H., Restrepo, P.J., Markstrom, S.L.,
Dixon, M., Stannard, L.G., The Modular Model-
ing System (MMS): User’s manual, Open File Re-
port 96-151, USGS, Denver, Colorado, 1996.

682


	The J2000 modelling system
	JAMS
	J2000 system core
	J2kRun class
	The data package
	The io package
	Space and time in J2000
	Geographical tools and Data analysis
	Visualisation and Graphical User Interface

	Process components
	Process template
	Process module implementation and installation

	Application of J2000 in the mesoscale Gera catchment
	Conclusions
	REFERENCES

