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EXTENDED ABSTRACT 

This work is part of CLIME project (Climate and 
Lake Impacts in Europe), which assesses climate 
change effects on lake dynamics. In CLIME, a 
decision support system (CLIME-DSS) is based 
on a causal Bayesian network that summarises the 
most important relationships between climate 
variables and lake characteristics. A Bayesian 
network is a probabilistic graphical model, where 
nodes represent random variables and arcs 
between the nodes represent conditional 
dependencies. In a Bayesian network, relationship 
between the dependent variable and its 
explanatory variables is described for discrete 
variables as a conditional probability table (CPT). 
The aim of this study is to demonstrate how 
expert knowledge provided by researchers, and 
results of an environmental simulation model, are 
exploited in constructing a Bayesian network. A 
case study addresses the impact of climate change 
on concentrations of dissolved organic carbon 
(DOC) in catchment runoff.  

The environmental simulation model is a DOC 
model (Jennings and Naden, 2004), which is 
coupled with the hydrological routine of the 
Generalized Watershed Loading Function 
(GWLF) model. The output of the model is the 
daily stream water DOC concentration and the 
daily load of DOC entering a lake. The 
DOC/GWLF model has been calibrated and 
validated against historical data from three 
catchments in Europe.  

A Bayesian network for describing interrelations 
between the climate and DOC concentrations is 
constructed on the basis of expert opinions and 
the structure of the DOC/GWLF simulation 
model. Those variables that are present both in the 
DOC model, and in the network structure based 
on the expert opinions, are included in the final 
structure of the Bayesian network. One Bayesian 
network is constructed for each of the three study 
sites. 

The GWLF/DOC model was run under a variety of 
climatic conditions using one set of calibrated 
parameter values at a time. The meteorological 
input variables were compiled from results of 
Regional Climate Models (RCM). Subsequently, 
the RCM and GWLF/DOC model results were 
analysed to compute conditional frequency tables 
for the links between each dependent node and its 
explanatory variables in the Bayesian network. The 
procedure of Kokkonen et al. (2005) was utilised to 
estimate link strength values from the conditional 
frequency information. The link strength values 
were optimised against the conditional frequencies 
determined from the model simulations. Finally, all 
values in the CPTs were generated using the 
optimised link strength values.   

In order to apply the Bayesian networks within the 
study region, RCM results are utilised for creating 
distributions of explanatory variables for all 
computation grid cells in Europe. The distributions 
are constructed for different scenarios 
characterising current and future climatic 
conditions. These spatial data on the climatic 
variables together with the Bayesian networks 
allow the CLIME-DSS users to study the predicted 
climate change effects across Europe.  

Three Bayesian networks were applied to predict 
how decomposition and summertime DOC 
concentrations change in the future in Lough Leane 
in Ireland. The application revealed that variability 
of the predicted annual decompositions and summer 
DOC concentrations was very different between the 
three Bayesian networks. The predicted direction of 
change in DOC concentrations, however, from the 
control scenario to the future climate scenario was 
same for all three Bayesian network 
parameterisations. The model application 
demonstrates how Bayesian networks can be used 
as diagnostics for assessing the conformity of 
model regionalisation.  
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1. INTRODUCTION 

The predicted climate change along with its 
potential impacts on physical, chemical, and 
biological lake processes sets a challenge to lake 
management in the future. Meteorological forcing, 
such as precipitation, evaporation, and air 
temperature, exert a significant control on 
catchment hydrological processes, lake flushing 
rates, lake residence times, thermal stratification, 
loadings of dissolved and suspended material, and 
productivity of a lake. According to the predictions 
of the Intergovernmental Panel on Climate Change 
(IPCC), in case of an increasing population and an 
insufficient extent of emission control 
technologies, greenhouse gas and aerosol 
emissions will lead to a large increase in air 
temperature and to altered precipitation patterns. 
Computational methods are needed for quantifying 
how lake variables respond to these changing 
conditions. 

The CLIME project (Climate and Lake Impacts in 
Europe) aims at developing a suite of methods and 
models that can be used to manage lakes and 
catchments under future as well as current climatic 
conditions. In CLIME, regional climate scenarios, 
and existing catchment and lake models are 
combined to support lake management in the light 
of the water quality criteria prescribed in the 
European Union Water Framework Directive. 
CLIME aims at integrating expert knowledge and 
simulation model results in a form of a decision 
support system (CLIME-DSS) that illustrates and 
summarises the main results of the project to 
interest groups outside the research community. 
The CLIME-DSS is based on probabilistic 
Bayesian networks that characterise causal 
dependencies between climate, catchment, and 
lake variables. 

In Europe, one of the key water quality issues that 
is likely to become increasingly important in the 
future is the leaching of coloured water from 
catchments having a large percentage of organic 
soils. The brown colour of water, which suggests a 
high concentration of dissolved organic carbon 
(DOC), results mainly from humic acids produced 
by the decomposition of organic matter within the 
catchment. Variation of climatic and hydrological 
conditions is a major factor controlling the 
decomposition of organic matter and transport of 
DOC to water bodies (Boyer et al., 1996; Dawson 
et al., 2002). Increases in water colour have been 
reported in several catchments in Europe, where 
these increases have been attributed to changes in 
climate (e.g. Freeman et al., 2001; Hongve et al., 
2004, Jennings and Naden, 2004). Climatic 
variables control the drying and wetting patterns of 

soil, which have a major effect on the 
decomposition rate of organic material. 
Furthermore, changes in the climate have an 
impact on runoff volumes, which affect the DOC 
load transported to a lake (Holmberg, 2003). In 
CLIME, a DOC model (Jennings and Naden, 
2004) is coupled with the hydrological 
computation scheme of the Generalised Watershed 
Loading Functions (GWLF, Haith et al., 1996) to 
simulate production, leaching and transport of 
DOC. The model is calibrated against historical 
data and applied to future climate scenarios. 

The aim of this study is to demonstrate how expert 
knowledge provided by CLIME researchers, and 
results of the DOC/GWLF model, are exploited in 
constructing a Bayesian network for the CLIME-
DSS. The first task is to conduct an expert survey 
to determine the variables characterising DOC 
processes, and to identify the causal dependencies 
between the variables. The experts’ choice of the 
most important variables is compared with the 
variables included in the DOC model. The second 
task is to parameterise the Bayesian network 
characterising the response of DOC concentrations 
to changes in climate. The parameterisation is 
based on DOC model results and the methodology 
presented in Kokkonen et al. (2005). Finally, it is 
explored how the Bayesian network can be applied 
to regionalizing the model results from one 
location in Europe to another.  

2. MATERIALS AND METHODS 

2.1. Bayesian networks in CLIME-DSS 

The CLIME-DSS is an expert system that is used 
for 1) visualising how hydrological and 
meteorological variables are predicted to change 
across Europe in future climate, and 2) illustrating 
how these changes are reflected in variables 
characterising lake water quality. The system 
allows the user to select a location in Europe, and 
explore how the variability of a water quality 
indicator, such as DOC level, responses to the 
climate change. Lake water quality assessments 
are based on Bayesian networks that are solved 
using the BNJ software (Bayesian Network Tools 
in Java, http://bndev.sourceforge.net). A Bayesian 
network is a probabilistic graphical model, where 
nodes represent random variables and arcs between 
the nodes represent conditional dependencies. In a 
Bayesian network a relationship between a child 
variable and its parent variables is described for 
discrete variables as a conditional probability table 
(CPT) (Pearl, 1988; Neapolitan, 2004). In this 
study, the method of Kokkonen et al. (2005) is 
applied to describe the CPTs with aid of link 
strength values. 
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2.2. Expert elicitation 

Construction of a Bayesian network for DOC starts 
from elicitation of expert information. Figure 1 
shows a graphical illustration of the question areas 
included in the expert elicitation. A questionnaire 
was sent to 40 experts; 12 of them returned it. 
Based on the answers, the most important DOC 
variables and their dependencies were identified. 
In addition, the variable characterising the level of 
DOC in lake water was selected, and the predicted 
changes in meteorological variables were ranked in 
a descending order of importance. 

CATCHMENT PROCESSES
- DECOMPOSITION

- TRANSPORT

DOC IN LAKE WATER

CLIMATE CHANGE

EFFECTS OF HIGH LEVELS 
OF DOC

 

Figure 1. Question areas in the elicitation of 
expert knowledge about DOC processes. 

2.3. Climate scenarios 

The climate data for the CLIME-DSS have been 
compiled from simulation results of Regional 
Climate Models (RCMs). RCMs have been applied 
to generate scenarios for a control period from 
1960 to 1990, and for a future period from 2070 to 
2100. The future simulations include two different 
greenhouse gas and aerosol emission scenarios, A2 
and B2 (Nakicenovic and Swart, 2000). In A2, 
population growth is assumed to be low during the 
21st century. However, energy use and gross 
domestic product (GDP) growth are assumed to be 
high. B2 represents an intermediate alternative of 
all the IPCC scenarios: population growth, energy 
use, and GDP growth are all considered to be 
moderate in the future decades.   

Climate simulations are carried out with two 
RCMs. These are the RCAO (Rossby Centre, 
SMHI, Sweden) and the HadRM3p (Hadley 
Centre, U.K. Met Office) models, which operate 
on grids with a cell size of ca. 50x50 km2. Details 
on the RCM simulations are reported in 
Samuelsson (2004). In addition to meteorological 
variables, each climate scenario produces 
predictions of hydrological variables, such as 
evaporation, soil moisture, snow cover, and runoff. 

2.4. GWLF/DOC model applications 

In addition to the expert elicitation results, 
GWLF/DOC model simulations provide 
information to formulation of Bayesian networks 
in CLIME-DSS. The construction of the DOC 
model in CLIME rests on the work by Naden 
(1991) and Naden and Watts (1998), who 
developed models for assessing response of water 
colour to changing weather patterns. Jennings and 
Naden (2004) provide a description of the coupled 
DOC and GWLF model, where the hydrological 
fluxes are simulated using the curve number 
approach of GWLF, and decomposition and 
transport of organic matter are described in the 
DOC model. The model takes as the 
meteorological input daily time series of air 
temperature and precipitation. Decomposition of 
organic matter, which is primarily controlled by 
soil moisture conditions, produces dissolved 
carbon that is subject to washing out with runoff. 
The output of the model is the daily stream water 
DOC concentration and the daily load of DOC 
entering a lake.  

The GWLF model has been calibrated and 
validated against historical streamflow data, and 
the DOC model against DOC load data from three 
catchments in Europe. The study catchments are 
Trout Beck (11.4 km2, 54.1° N, 2.1° W) in the UK, 
Lough Leane (130 km2, 52.1° N, 9.4° W) in 
Ireland, and Mustajoki (76.8 km2, 61.0° N, 25.1° 
E) in Finland. Trout Beck is typical of peaty 
upland areas in the northern Pennines underlain by 
a clayey soliflucted till deposit. Eriophorum, 
Calluna and Sphagnum are the dominant 
vegetation species in the catchment, and more than 
90% of the area is blanket bog. Lough Leane is 
located in an upland mountain peat area overlying 
Old Red Sandstone. About 90% of the catchment 
is covered with moor/bog/scrub grassland, with 
heather and grass dominating. Mustajoki lies in the 
southern boreal vegetation zone with surficial 
deposits typically characterized by moraine, with 
some highly permeable sand and gravel deposits, 
and organic peat layers. The proportion of forest 
land is 67%, peat land 20%, and agricultural land 
13% from the total catchment area. Norway 
spruce, Scots pine, birch, and European aspen are 
the typical tree species in the catchment. Jennings 
and Naden (2005) assessed qualitatively the model 
fit against measured DOC load data from the three 
sites. Visual inspection of the results revealed that 
the model performance was better in Lough Leane 
than in the other two catchments. In this study, one 
Bayesian network is constructed for each of the 
three study sites. 
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3. RESULTS 

3.1. Identification of the structure of the 
Bayesian network for DOC 

Figure 2a illustrates the structure of the network 
that was constructed based on the expert 
elicitations. The ellipses are those explanatory and 
dependent variables that were mentioned most 
frequently by the experts, and the arcs indicate 
dependencies between the variables as seen by 
most experts. The annual average rate of 
decomposition of organic matter is dependent on 
the annual average soil moisture, the annual 
average air temperature, and the fraction of organic 
soils within a catchment. The seasonal DOC 
concentration depends on the annual 
decomposition rate, the runoff volumes in the 
same and the previous season, and in-lake DOC 
processes. Comparison of the expert network 
against the DOC model structure (Figure 2b) 
reveals that in the model there is no direct 
dependency between air temperature and 
decomposition. The control of the organic soil on 
the decomposition rate is embedded in the 
calibrated values of model parameters and the 
initial carbon store. In-lake DOC processes are not 
included in the model.  

In this study, those variables that are present both 
in the DOC model and in the network structure 
based on the expert opinions are included in the 
Bayesian network for DOC. It is worth noting that 
expert elicitation results represent the opinion of a 
large group of scientists, and therefore it would 
have been desirable to formulate the Bayesian 
network based on the elicitation results alone. 
However, the selection of the variables was 
conditioned on the model structure, because the 
parameterisation of the Bayesian network was 
carried out on the basis of model results. The 
variables included in the Bayesian network of the 
CLIME-DSS are underlined in Figure 2a. The 
parent variables (soil moisture and runoff nodes) 
attain their distributions from the RCM results as 
explained in Section 3.3. Identification of the 
CPTs for child variables (decomposition and DOC 
nodes) is explained in Section 3.2. 

Instead of using absolute values, the present study 
deals with deviations from prescribed reference 
levels. In other words, all variables in the Bayesian 
network for DOC describe how annual/seasonal 
values deviate from the reference level. The 
reference level is the long-term mean value of a 
variable over the control period from 1960 to 
1990. Deviations are used for two reasons. Firstly, 
the CLIME project concentrates on describing 
changes in the lake water quality that arise from 

the predicted climate change, and deviations from 
a reference level are illustrative in presenting such 
water quality changes. And secondly, 
regionalisation of results on deviations is assumed 
to be more robust than regionalisation of results on 
absolute values. 

Soil moisture Air temperature 
i

Organic soil fraction

Peat decomposition

Winter runoff

Spring runoff

Autumn runoff

Summer runoff

Winter DOC Spring DOC Summer DOC Autumn DOC

Lake effect

 

Peat decomposition

Soil moisture 

Available carbon 

Carbon washout

DOC concentration

Runoff

 

Figure 2. Structure of the DOC network identified 
by the experts (a) and structure of the DOC 

simulation model (b). The underlined variables in 
(a) are included in the Bayesian network for DOC. 

3.2. Parameterisation of CPTs 

In order to set up the Bayesian network for DOC, 
the GWLF/DOC model was run under a variety of 
climatic conditions using the calibrated parameter 
values from the three catchments (see Section 2.4). 
The meteorological input was compiled from 
RCM results for 63 grid cells located within the 
CLIME region. The meteorological input 
comprised RCM simulations for the control, A2, 
and B2 scenarios. A cumulative probability 
distribution of deviations was computed using the 
model results from all 63 grid cells. Based on this 
cumulative probability distribution, a range of 
variability was determined for every variable, and 
all variables were discretised into 5 classes, where 
the middle class represented a “no deviation” state 
(Figure 3). 

a) 

b) 
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Figure 3. A cumulative probability distribution for 
the deviation in annual decomposition for control 
and A2 scenarios. The results were computed with 

the GWLF/DOC model parameterisation for 
Mustajoki. Discretisation to five classes is also 

shown. 

Subsequently, the RCM and GWLF/DOC model 
results from the 63 grid cells were analysed to 
compute conditional frequency tables for the 
Bayesian network shown in Figure 2a. Table 1 
shows the conditional frequency table computed 
for the link between the deviation in annual 
decomposition and soil moisture. 

Table 1. The conditional frequency table for the 
link between the deviation in annual 

decomposition and soil moisture (Mustajoki 
DOC/GWLF parameterisation). 

 Decomposition    

Soil moisture 
Much 
lower  

Lower  No 
deviation 

Higher Much 
higher 

Much lower  0 0 0 6 1056 
Lower 0 0 227 2190 748 
No deviation  0 303 1698 292 0 
Higher  164 540 102 0 0 
Much higher  286 55 0 0 0 

The procedure of Kokkonen et al. (2005) was 
utilised to estimate link strength values from the 
conditional frequency information. The link 
strength values were optimised against the 
conditional frequencies determined from the model 
simulations. The value of an optimised link 
strength parameter is an indicator of the 
dependency between the child node and one of its 
parent nodes. Table 2 shows optimised link 
strength values between the deviation in the annual 
soil moisture and the deviation in the annual 
decomposition for the three CLIME sites. All link 
strengths are negative, indicating that drier 
conditions lead to a more efficient decomposition.  

 

Table 2. Optimised link strength values between 
the deviation in the annual soil moisture and the 
deviation in the annual decomposition for three 
CLIME sites (Lough Leane, Mustajoki, Trout 

Beck). 
      Decomposition   

  Lough Leane Mustajoki Trout Beck 

Annual moisture -0.432 -0.598 -0.374 

When studying the link strengths between 
deviations of seasonal DOC concentrations and 
their parents (Table 3), increase in runoff is 
identified to lead to a decrease in the DOC 
concentrations, and an increase in decomposition 
is found to result in an increase in DOC. Also, 
most of the time deviation in decomposition is 
more important than deviation in runoff in 
explaining the deviations in seasonal DOC 
concentrations. 

Table 3. Optimised link strength values between 
the deviations in the seasonal (a - winter, b - 

spring, c - summer, and d - autumn) DOC 
concentrations and their parents for three CLIME 

sites (Lough Leane, Mustajoki, Trout Beck). 
a) Winter DOC concentration   

 Lough Leane Mustajoki Trout Beck 

Autumn runoff -0.41 -0.28 -0.32 
Winter runoff -0.30 -0.28 -0.52 
Decomposition 0.63 0.28 0.52 

b) Spring DOC concentration   

 Lough Leane Mustajoki Trout Beck 

Winter runoff -0.50 -0.22 -0.55 
Spring runoff -0.43 0 -0.12 
Decomposition 0.67 0.22 0.35 

c) Summer DOC concentration   

 Lough Leane Mustajoki Trout Beck 

Spring runoff -0.23 -0.24 -0.07 
Summer runoff 0.00 0.00 -0.14 
Decomposition 0.54 0.24 0.41 

d) Autumn DOC concentration   

 Lough Leane Mustajoki Trout Beck 

Summer runoff -0.21 -0.29 -0.21 
Autumn runoff -0.42 0.00 -0.12 
Decomposition 0.61 0.49 0.58 

3.3. Application of the Bayesian network 

Climate model simulation results are utilised for 
creating a distribution of the deviations for each 
explanatory (parent) variable for all RCM grid 
cells in Europe, and for all three scenarios (control, 
A2, and B2). These input data allow the users to 
study the predicted climate change effects across 
the European continent. To demonstrate the 
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capabilities of the CLIME-DSS, predicted changes 
in decomposition and DOC concentrations are 
studied here as an example for one location, Lough 
Leane. 

Figure 4 plots distributions of deviations in annual 
decomposition and Figure 5 shows deviations of 
summer DOC concentrations using the three 
parameterisations from Lough Leane, Trout Beck, 
and Mustajoki. The results are presented for 
control and A2 scenarios. It is noteworthy that also 
for the control period some of the years have 
higher (or lower) values for the modelled variables 
compared with the long-term average over the 
control period.  

The differences between the bars for control and 
A2 scenarios indicate that both decomposition and 
summer DOC concentrations are predicted to 
increase in the future for each Bayesian network 
parameterisation. While decomposition shows a 
clear increase for Lough Leane and Trout Beck 
parameterisations, the seasonal DOC 
concentrations are less affected. This is explained 
by the parameterisation and structure of the 
Bayesian network. In a Bayesian network, where 
the link strength values are not perfect (absolute 
value < 1), the uncertainty of the state distribution 
of the variables increases when moving down the 
hierarchy of the network (see Figure 2a).  
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Figure 4 Deviation in annual decomposition for 
the control and A2 scenarios using three different 

Bayesian network parameterisations: Lough Leane 
(a), Trout Beck (b), and Mustajoki (c). 

It is evident that the different parameterisations 
yield different distributions for deviations both in 
the control and A2 periods. The GWLF/DOC 
model parameterised for Trout Beck yields a much 
greater variability in DOC concentrations in 
response to different climatic conditions than the 
model calibrated for Mustajoki. The difference in 
the variability of DOC concentrations is a 
reflection of the variability in decomposition. And 
variability of decomposition is in turn explained by 
soil moisture distribution, which according to the 
GWLF/DOC model appears to be the primary 
factor controlling the DOC response to climate 
change. Since the results from the three model 
parameterisations are clearly different, 
regionalisation of the model results to catchments 
having different soil moisture response to climate 
change is not warranted.  
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Figure 5. Deviation in summer DOC 
concentration for the control and A2 scenarios 

using three different Bayesian network 
parameterisations: Lough Leane (a), Trout Beck 

(b), and Mustajoki (c). 

4. CONCLUSIONS 

A methodology for combining expert knowledge 
and results of a DOC simulation model into a 
Bayesian network was presented. Use of 
simulation model results in estimation of 
conditional probability tables is straightforward, 
when the variables included in the Bayesian 

a) 

b) 

c) 

a) 

b) 

c) 
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network are in accordance with the structure of the 
simulation model.  

In a case study three Bayesian networks were 
parameterised utilising results of a DOC model 
that was calibrated to data available from three 
different sites. Application of the three Bayesian 
networks revealed that variability in the predicted 
deviations of both annual decomposition and 
summer DOC concentration was clearly different 
between the three parameterisations. The predicted 
direction of change in DOC concentrations, 
however, from the control scenario to the future 
climate scenario was same for all three Bayesian 
network parameterisations. The model application 
demonstrates how Bayesian networks can be used 
as a diagnostic tool for assessing the conformity of 
model regionalisation.  
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