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EXTENDED ABSTRACT

This paper proposes the Lagrange multiplier (LM)
test for the null of the simple stochastic volatility
(SV) model without jumps against the alternative of
the SV model with jumps in return. It is shown
that the LM test statistic does not include the jump
probability, which is an unidentified parameter under
the null hypothesis, and that this test is free from the
Davies problem (1977). The LM test for jumps in
volatility is also proposed in the case where jumps
in returns and volatility are contemporaneous and
correlated under the alternative hypothesis. Dirac’s
delta function method is used in dealing with the
degenerate likelihood function of volatility jumps
with infinitely small variance under the null. It is
also shown that this test statistic is also free from
the unidentified parameter under the null. The LM
test statistic for volatility jumps cannot be obtained
in the case where jumps in returns and volatility are
stochastically independent. The estimation of the
stochastic volatility (SV) models with jumps has been
an important topic in financial econometrics, because
the excess kurtosis that cannot be explained by the
simple SV model is often attributed to jumps in returns
and volatility.

This paper considers the following four types of
stochastic volatility models: Simple SV Model
without Jumps (Simple SV), SV Model with Jumps
in Returns (SVJ), SV Model with Independent Jumps
in Returns and Volatility (SVIJ), SV Model with
Correlated Jumps in Returns and Volatility (SVCJ),
which are discretized versions of the continuous
models of Eraker et al. (2003).

In contrast to the large number of papers on estimation
of the jump models, less attention has been paid to
testing. The presence of jumps has not been checked
by the standard tests, but identified by comparing
posterior Bayes odds by Eraker et al.(2003), by
excessive skewness in Bates(2000), and by testing a
moment condition on options prices in Pan (2002).
Hypothesis testing of jumps is a difficult problem, as
demonstrated by Khalaf et al. (2003) in the context of
the GARCH model; the asymptotic null distribution
of the standard test statistics, such as the Wald and
likelihood ratio test statistics, is almost intractable,

since these test statistics include nuisance parameters,
such as jump arrival rate, that is unidentified and
cannot be estimated consistently. Davies (1977)
first considered the difficulty caused by the presence
of nuisance parameters unidentified under the null
hypothesis and this problem is sometimes called the
Davies problem. A theoretically interesting solution is
to construct a new test based on the entire distribution
of the original test statistic over a range of values of
the unidentified parameter. See Andrews (2001) for
the recent development of research in this line.

In this paper we take the conventional approach to
this problem with a new technique; we use Dirac’s
delta function method employed by Kobayashi and
Shi (2005) and Shi and Kobayashi (2005) and obtain
the Lagrange multiplier test statitics for SV against
SVJ and for SVJ against SVCJ free from nuisance
parameters unidentified under the null hypothesis;
the convolution integral in the derivation of the test
statistic can be defined only by regarding the density
of jumps with infinitely small variance as Dirac’s delta
function.
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1 TESTING FOR SIMPLE SV AGAINST SV
WITH JUMPS IN RETURNS

We first define the simple SV model as

yt = σtut , θt = α +βθt−1 +σvt , (1)

where

ut ∼ NID(0,1) , vt ∼ NID(0,1) , (2)

σ2
t = exp(θt), |β |< 1. (3)

Then the conditional densities ofyt and θt are
expressed as

g(yt |θt )≡ 1√
2πσ2

t

exp

(
− y2

t

2σ2
t

)
, (4)

h(θt |θt−1)≡ 1√
2πσ2

exp

(
− (θt −α−βθt−1)

2

2σ2

)
.

(5)

The density function for the simple SV is obtained
by integrating outθ1, . . . ,θT from the joint density of
θ1, . . . ,θT andy1, . . . ,yT . It is expressed as

f (y1,y2, . . . ,yT)

=
∫ ∞

−∞
g(yT |θT)h(θT |θT−1)

· · ·g(y1|θ1)h(θ1|θ0)dθ1 · · ·dθT .

(6)

The integration interval(−∞,∞) will be suppressed
hereafter where there is no fear of ambiguity.

1.1 SV Model with Jumps in Returns

We here assume that a jump in returns occurs with
probability p and that the jump size has normal
distribution with meanµ and varianceλ . The process
can be expressed as

yt = σtut +et , σ2
t = exp(θt), (7)

θt = α +βθt−1 +σvt , (8)

where the distribution of the jump variableet is a
mixture of a normal distribution and0 with weights
p and1− p. It is expressed as

et ∼
{

N(µ,λ ) with probabilityp,
0 with probability1− p,

(9)

where 0 denotes a degenerate distribution with all
probability mass at 0. The SVJ model can be
expressed as a nonlinear state space model using the
measurement and transition equations as follows:

gλ (yt |θt) =
p√

2π(σ2
t +λ )

exp

(
− (yt −µ)2

2(λ +σ2
t )

)

+
1− p√
2πσ2

t

exp

(
− y2

t

2σ2
t

)
,

h(θt |θt−1) =
1√

2πσ2
exp

(
(θt −α−βθt−1)2

2σ2

)
,

σ2
t =exp(θt).

(10)

The density function of̃yT ≡ (y1, . . . ,yT) with jumps
in returns is expressed as

fλ (ỹT) =
∫

gλ ,ThT · · ·gλ ,1h1dθ . (11)

where gλ (yT |θT−1) = gλ ,T ,h(θT |θT−1) = hT , for
example. Evidently, the jump probabilityp is
a nuisance parameter unidentified under the null
hypothesis in testing SV against SVJ, because we have
the identity

fλ (y1,y2, . . . ,yT) = f (y1,y2, . . . ,yT), (12)

whenµ = 0 andλ = 0, even ifp > 0.

1.2 Test Statistic

We here obtain the Lagrange multiplier (LM) test
statistic for the null hypothesisµ = 0 and λ = 0
against the alternative of the SVJ model with unknown
parametersα,β ,σ2,λ , andµ . We show that the jump
probability p, which cannot be estimated under the
null hypothesis, is not included in the test statistic, so
that p is no longer a nuisance parameter in deriving
the distribution of the test statistic.

The Lagrange multiplier test rejects the null hypoth-
esis of the absence of jumps in returns, namely
µ = 0 and λ = 0, when the first derivatives of the
logarithm of the likelihood (11) with respect toµ and
λ differ sufficiently from zero, because they would be
distributed with mean zero under the null hypothesis
µ = 0 andλ = 0. In our notation the score functions
are expressed as

∂ log fλ (ỹT)/∂λ , ∂ log fλ (ỹT)/∂ µ, (13)

evaluated atµ = 0,λ = 0, where the first derivatives
are evaluated atµ = 0 and λ = 0 hereafter unless
otherwise stated.
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First, we have that

∂ fλ (ỹT)
∂λ

=
p
2

∫ (
y2

1

σ4
1

− 1

σ2
1

)
gThT · · ·g1h1dθ + · · ·

+
p
2

∫ (
y2

T

σ4
T

− 1

σ2
T

)
gThT · · ·g1h1dθ ,

(14)

noting that

∂gλ (yt |θt)/∂λ = (p/2)(y2
t /σ4

t −1/σ2
t )g(yt |θt).

Then the score with respect toλ is expressed as

∂ log fλ (ỹT)
∂λ

=
p
2

T

∑
t=1

∫ (
y2

t /σ4
t −1/σ2

t

)
f (θ̃T |ỹT)dθ ,

(15)

where the conditional density of ỹT =
(y1, . . . ,yT), θ̃ = (θ1, . . . ,θT) is expressed as

f (θ̃T |ỹT) =
gThT · · ·g1h1

f (ỹT)
. (16)

This conditional density function is obtained by
smoothing of the simple SV model. See Hamilton
(1996) for a general explanation of smoothing of the
nonlinear state space model.

We also have the score function with respect toµ as

∂ log fλ (ỹT)
∂ µ

= p
T

∑
t=1

∫
yt

σ2
t

f (θ̃T |ỹT)dθ . (17)

since we have that

∂ fλ (ỹT)
∂ µ

=p
∫

yT

σ2
T

g(yT |θT)h(θT |θT−1) · · ·g(y1|θ1)h(θ1|θ0)dθ + · · ·

+p
∫

g(yT |θT)h(θT |θT−1) · · · y1

σ2
1

g(y1|θ1)h(θ1|θ0)dθ ,

(18)

from

∂gλ (yt |θt)/∂ µ = g(yt |θt )yt/σ2
t . (19)

under the null hypohtesis.

Then the LM test statistic forµ = 0 and λ = 0 is
expressed as

S1 = v′1I−1v1, (20)

where

v1 =
(

0,0,0,
∂ log fλ (ỹT)

∂λ
,

∂ log fλ (ỹT)
∂ µ

)′
(21)

evaluated atµ = 0 andλ = 0 andI is the5×5 Fisher
information matrix consisting of

Ii j = E
[−∂ 2 log fλ (y1, . . . ,yT)/∂ζi∂ζ j

]
,

(ζ1, . . . ,ζ5) = (α β σ2 λ µ).

It should be noted here thatp in (17) and (15) is
cancelled out in the test statistic, because it appears
in multiplicative form in the score functions and the
Fisher information is variance-covariance matrix of
the score functions. The first three elements ofv1 are
zero because the ML estimates ofα,β ,σ2 are defined
by the solution of

∂ log f (ỹT)
∂α

= 0,
∂ log f (ỹT)

∂β
= 0,

∂ log f (ỹT)
∂σ2 = 0.

Using the BHHH method (Berndt et al. 1974) an
elements of the Fisher information matrix is estimated
as

T

∑
t=1

∂ log f (yt |ỹt−1)/∂ µ×∂ log f (yt |ỹt−1)/∂α,

for example, as suggested by Hamilton (1996). He
also suggested that the first derivative functions of the
log likelihood ofyt conditional onỹt−1 with respect to
λ andµ can be evaluated using the formulas

∂ log fλ (yt |ỹt−1)
∂λ

=
∂ log fλ (ỹT)

∂λ
− ∂ log fλ (ỹt−1)

∂λ
,

(22)

∂ log fλ (yt |ỹt−1)
∂ µ

=
∂ log fλ (ỹT)

∂ µ
− ∂ log fλ (ỹt−1)

∂ µ
,

(23)

where the unconditional log likelihood ofy1, . . . ,yt

on the right-hand side is evaluated by applying the
numerical integration routine used in obtaining (15)
and (17). The first derivatives of the conditional
log likelihood with respect toα,β and σ2 can be
evaluated easily by differentiating the conditional log
likehood function, which is reported in filtering of the
nonlinear state-space model.

2 TESTING FOR JUMPS IN VOLATILITY
CORRELATED WITH JUMPS IN RETURNS

In this section we derive a Lagrange multiplier test
to detect jumps in volatility assuming that jumps in
returns occur concurrently with jumps in volatility.
The null hypothesis is the SV model with jumps in
returns and the alternative hypothesis is the SV model
with correlated jumps in returns and volatility (SVCJ)
.

2.1 Model

The stochastic volatility model with contemporane-
ously correlated jumps in returns and volatility have
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the following state-space representation:

yt = σtut +et , (24)

θt = α +βθt−1 +σvt +ηt , (25)

σ2
t = exp(θt). (26)

We assume that jumps in returns and volatilityet and
ηt occur concurrently with probabilityp and that,
conditional on the event that jumps occur, these jumps
follows bivariate normal distribution with restriction
ηt > 0. Then the distribution of jumps in volatility
follow half-normal distribution, namely the positive
part of normal distribution. We will see that this
assumption is more convenient than the exponential
distribution employed in Eraker et al.(2003) and other
papers. For the sake of algebraic convenience we
here express the joint density of jumps in returns and
volatility conditional on the event that jumps occur as

φλ (et |ηt)φκ(ηt), (27)

where

φκ(ηt) = 2(2πκ)−
1
2 exp

(
−η2

t

2κ

)
, ηt > 0, (28)

φλ (et |ηt) = (2πλ )−
1
2 exp

(
− (et −µ−ρηt)2

2λ

)
.

(29)

Then the density function ofy1, . . . ,yt with correlated
jumps in returns and volatility is expressed as

fκ(ỹt) =(1− p) f (ỹt)

+p
∫

gκ(yt ,θt |θt−1) · · ·gκ(y1,θ1|θ0)dθ ,

(30)

where

gκ(yt ,θt |θt−1) =
∫

g(yt −et |θt)h(θt −ηt |θt−1)

φκ(ηt)φλ (et |ηt)detdηt .

(31)

and the measurement and transition equations,
g(yt |θt) and h(θt |θt−1), are defined by (4) and (5),
respectively.

2.2 Test Statistic

We here obtain the LM test statistic for the null
hypothesis of SVJ, namely forκ = 0 in (28) against
the alternative of the SVCJ model with unknown
parametersα,β ,σ2,λ ,κ ,µ , p andρ . Under the null
hypothesisκ = 0, we haveηt ≡ 0 identically, so that a
test statistic that includesρ cannot be defined sinceρ
is unidentifiable and cannot be estimated consistently
under the null hypothesis. However, we show that
the LM test statistic of our problem is well defined

because correlationρ is cancelled out in the LM test
statistic so that the distribution of the test statistic is
independent of unidentifiedρ.

First, from the likelihood function of SVCJ given in
(30) we have

∂ fκ(y1, ...,yT)/∂κ

=p
∫ ∂gκ(yT ,θT |θT−1)

∂κ
gκ(yT−1,θT−1|θT−2) · · ·gκ(y1,θ1|θ0)dθ + . . .+

p
∫

gκ(yT ,θT |θT−1) · · ·gκ(y2,θ2|θ1)
∂gκ(y1,θ1|θ0)

∂κ
dθ .

Noting that the first derivative of the conditional joint
density of jumps with respect toκ is

∂φκ(ηt)
∂κ

= (1/2)φκ(ηt)
(

η2
t

κ2 −
1
κ

)
= (1/2)

∂ 2φκ(ηt)
∂η2

t
,

we have that

∂
∂κ

gκ(yt ,θt |θt−1)

=
∫

g(yt −et |θt)h(θt −ηt |θt−1)φλ (et |ηt)
∂

∂κ
φκ(ηt)detdηt

=
1
2

∫
g(yt −et |θt)

∂ 2 [h(θt −ηt |θt−1)φλ (et |ηt)]
∂η2

t
φκ(ηt)detdηt ,

from the formulas of Dirac’s delta function (47).

Note that we have

∂ 2

∂η2
t

[h(θt −ηt |θt−1)φλ (et |ηt)]
∣∣∣∣
ηt=0

=h(θt |θt−1)φλ (et |0)
[
(θt −α−βθt−1)2

σ4 − 1
σ2

]

+2h(θt |θt−1)φλ (et |0)
(

θt −α−βθt−1

σ2

)(
et −µ

λ

)
ρ

+h(θt |θt−1)φλ (et |0)
[
(et −µ)2

λ 2 − 1
λ

]
ρ2.

Then the first derivative of the likelihood of̃yT with
respect toκ evaluated atκ = 0 is written as

∂ fκ(ỹT)
∂κ

=
p
2

T

∑
t=1

∫ [
(θt −α−βθt−1)

2

σ4 − 1
σ2

]
fλ (ỹT)dθ

+ pρ
T

∑
t=1

∫ (
θt −α−βθt−1

σ2

et −µ
λ

)
fλ (ẽT , θ̃T , ỹT)dθde

+
p
2

ρ2
T

∑
t=1

∫ [
(et −µ)2

λ 2 − 1
λ

]
fλ (ẽT , ỹT)de,

(32)

where the joint density function is defined by

fλ (θ̃T , ỹT)≡
∫

fλ (ẽT , θ̃T , ỹT)de

≡
∫

g(yT −eT |θT)hTφλ (eT) · · ·g(y1−e1|θ1)h1,0φλ (e1)de.
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Note that the first term of (32) is zero since it is
proportional to the equation that defines the maximum
likelihood estimator ofσ2 of SVJ, if we evaluate
the term by substituting the maximum likelihood
estimator of SVJ, since

∂hT

∂σ2 =
1
2

[
(θt −α−βθt−1)

2/σ4−1/σ2
]

hT .

The third term is also zero because this is proportional
to the equation that defines the maximum likelihood
estimator ofλ of SVJ. Then, the hypothesis thatκ = 0
can be tested by checking whether

∂ log fκ(ỹT)
∂κ

∣∣∣∣
κ=0

=pρ
T

∑
t=1

∫ (
θt −α−βθt−1

σ2

)(
et −µ

λ

)

fλ (ẽT |θ̃T ,de fλ (θ̃T |)dθ

(33)

is sufficiently far from zero; the conditional density of
jumps in returns defined by

fλ (ẽT |θ̃T , ỹT) =
fλ (ẽT , θ̃T , ỹT)

fλ (θ̃T , ỹT)

is written as the product offλ (et |θt ,yt), t = 1, ...,T,
which is a mixture density ofN(µ̃t , σ̃2

t ) andδ (et) with
weightsωt ≡ w1t/(w1t + w2t) and1−ωt , as will be
seen in Appendix, where

w1t = p(2π)−
1
2 (σ2

t +λ )−
1
2 exp

(
−1

2
(yt −µ)2

λ +σ2
t

)
,

w2t = (1− p)(2πσ2
t )−

1
2 exp

(
− y2

t

2σ2
t

)
,

µ̃t =
λyt +σ2

t µ
λ +σ2

t
, σ̃2

t =
σ2

t λ
λ +σ2

t
.

(34)

Thus, integrating outet in (33), we finally have

∂ log fκ(y1, . . . ,yt)/∂κ

=
pρ

λσ2

T

∑
t=1

∫
(θt −α−βθt−1)(ωt µ̃t −µ) f (θ̃T |ỹT)dθ .

(35)

In this case the Lagrange multiplier test is one-sided,
and the test statistic is defined by the

∂ log fκ(ỹt)
∂κ

divided by the estimated standard deviation, which is
the square root of the corresponding element of the
inverse of the Fisher information matrix with respect
to α, β , σ , µ, λ , p, and κ . The derivation of
the Fisher information of the SVCJ model using the
BHHH method is similar to that of the SVJ model. In
the deriving the test statistic the nuisance parameter
ρ is cancelled out by standardization so that the
Lagrange multiplier test statistic is independent of the
unidentified parameterρ under the null hypothesis.

3 TESTING FOR JUMPS IN VOLATILITY
INDEPENDENT OF JUMPS IN RETURNS

We consider the problem of detecting jumps in
volatility in the framework of the SV model with
independent jumps in returns and volatility. It is
shown that the Lagrange multiplier test statistic cannot
be defined in this setting, because the estimated score
statistic is zero identically.

3.1 Model

This subsection defines the stochastic volatility model
with independent jumps in returns and volatility,
which is denoted by SVIJ hereafter. The measurement
and transition equations of SVIJ are given as follows:

yt = σtut +et , (36)

θt = α +βθt−1 +σvt +ηt , (37)

whereet and ηt are jumps in returns and volatility,
respectively, whose magnitude and arrival time are
both independent. Jumps in returns occur with
probability p in the same manner as given in (2.3)
and jumps in volatility occurs with probabilityq and
the size of jumps in volatilityηt follows a half-normal
distribution. This model is different from the setting
in the previous section in that the jumps in returns and
volatility occurs independently and their jump sizes
are correlated. However, we have the same result that
the test to detect jumps in volatility cannot be defined
even if there is no jumps in returns; we have only to
replacegλ ( ) with g( ) in the following algebra.

The density function ofθt conditional onθt−1 is
expressed as

hτ(θt |θt−1) = (1−q)h(θt |θt−1)

+q
∫ ∞

0
h(θt −ηt |θt−1)φτ(ηt)dηt ,

(38)

where the conditional density ofηt when a jump
occurs is

φτ(ηt) =
2√
2πτ

exp

(
−η2

t

2τ

)
. (39)

The likelihood function the SV process with
independently arriving jumps in returns and volatility
is expressed as

fτ(ỹT) =
∫

gλ (yT |θT)hτ(θT |θT−1)

· · ·gλ (y1|θ1)hτ(θ1|θ0)dθ ,
(40)

wheregλ (yt |θt) is defined in (10).
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3.2 Test Statistic

We here consider the LM test statistic for the null
hypothesis of SVJ, namely forτ = 0 in (39), against
the alternative of the SVIJ model with unknown
parametersα,β ,σ2,λ ,µ , and τ. We show that the
derivative of the logarithm of the likelihood of SVIJ
(40) with respect toτ is identically zero so that the LM
test for the null of SVJ against SVIJ cannot be defined.
In this subsection we evaluate expressions atτ = 0
unless otherwise stated, while the other parameters
α ,β ,σ2,λ ,andµ are estimated by ML.

From (40), we have

∂ fτ(ỹT)
∂τ

=
∫

gλ (yT |θT)
∂hτ(θT |θT−1)

∂τ
· · ·gλ (y1|θ1)hτ(θ1|θ0)dθ

+ · · ·+
∫

gλ (yT |θT)hτ(θT |θT−1) · · ·gλ (y1|θ1)
∂hτ(θ1|θ0)

∂τ
dθ .

(41)

We have that

∂hτ(θt |θt−1)
∂τ

=
q
2

h(θt |θt−1)

[
(θt −α−βθt−1)

2

σ4 − 1
σ2

] (42)

at τ = 0, from the equality

∂φτ(ηt)
∂τ

=
1
2

∂ 2φτ(ηt)
∂η2

t
(43)

and (47) of the formulas of Dirac’s delta function.

Then, atτ = 0, we have that

∂ log fτ(ỹT)/∂τ |τ=0

=
q
2

T

∑
t=1

∫ [
(θt −α−βθt−1)

2

σ4 − 1
σ2

]
fλ (θ̃T |ỹT)dθ .

(44)

This estimated score is identically zero and hence
cannot be used as a test statistic, since it is
proportional to the equation that defines the ML
estimator ofσ2 of SVJ.

4 APPENDIX

4.1 Dirac’s Delta function

Dirac’s delta functionδ (·) is a degenerate density
function with all probability mass at 0. It can be easily

shown by integration by parts that
∫

k(x)δ (x)dx= k(0), (45)
∫

k(x)
d
dx

δ (x)dx=− d
dx

k(0), (46)

∫
k(x)

d2

dx2 δ (x)dx=
d2

dx2 k(0) (47)

for an arbitrary regular functionk(x). Detailed
discussion about Dirac’s delta function can be found
in most textbooks of the Fourier transformation. See
Bracewell (1999), for example. The normal density
function with infinitely small variance, such asφκ(ηt)
when κ is infinitely small, is a typical example of
Dirac’s delta function. For the usage of Dirac’s
delta function in different contexts, see Peers (1971),
Kobayashi (1991), and Kobayashi and Shi (2005).

4.2 Conditional Distribution of Variables of SV
with Jumps in Returns

The purpose of this subsection is to derive the
conditional density ofet giveny1, ...,yT andθt in (33).
In our problem,yt andθt have all information aboutet

and hence

f (et |ỹt ,θt) = f (et |yt ,θt).

We also have that

f (et ,yt |θt) = f (et) f (yt |et ,θt)

=[pφ(et ; µ ,λ )+(1− p)δ (et)]φ(yt −et ;0,σ2
t )

=pφ(et ; µ ,λ )φ(yt −et ;0,σ2
t )+(1− p)φ(yt ;0,σ2

t )δ (et).
(48)

where φ(x; µ,σ2) denotes normal density function
with meanµ and varianceσ2. After some algebra,
we have that

f (et |θt ,yt) =
f (et ,yt |θt)

f (yt |θt)

=
w1t(2πσ̃2

t )−
1
2 exp

(
−(et − µ̃t)

2/(2σ̃2
t )

)
+w2tδ (et)

w1t +w2t
,

(49)

where

µ̃t =
λyt +σ2

t µ
λ +σ2

t
, σ̃2

t =
σ2

t λ
λ +σ2

t
,

w1t = p(2π)−
1
2 (σ2

t +λ )−
1
2 exp

(
−1

2
(yt −µ)2

λ +σ2
t

)
,

w2t = (1− p)(2πσ2
t )−

1
2 exp

(
− y2

t

2σ2
t

)
.

5 EMPIRICAL EXAMPLES AND MONTE
CARLO EXPERIMENT

We first calculate our test statistics for the daily
return of the S&P index from 1 January 1985 to 15
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December 1988 (T=1000). The sample size is 1000.
The estimatedβ is 0.958, and the LM test statistic for
SV against SVJ is 8.91, which is bigger than upper
five percentile ofχ2(1) so that the null hypothesis of
no jumps in returns is rejected at significance level
0.05. On the other hand, the value of the LM test
statistic for the same series from 15 December 1988
to 1 December 1992 (T=1000) is 2.34 so that the null
hypothesis of no jumps in returns cannot be rejected.
This contrasting result is natural because the former
sample includes Black Monday, October 19, 1987.

We have performed a small Monte Carlo experiment
with sample size 1000 and number of iterations 400
only for the LM test for SV against SVJ because one
iteration of the LM test for SVJ against SVCJ takes
several hours even using GAUSS.

Figure 1 shows the histogram of the empirical
distribution of the LM test statistics for SV against
SVJ when α = 0,β = 0.9,σ = 0.4 in the data
generation process (1).
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Figure 1. Empirical Distribution of the LM Test
Statistic for SV against SV with Jumps in Returns,
α = 0,β = 0.9,σ = 0.4, T=1000, Number of
Iterations=400

As far as Figure 2 shows, the deviation the
actual distribution from theχ2(2) distribution is not
substantial.
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