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EXTENDED ABSTRACT

The spline-based models are widely used in practice
to estimate the term structure of interest rates from
a set of observed coupon-bond prices. The most
popular method can be traced back to McCulloch
(1971). Assuming that the price of a bond is equal
to the present value of its future coupon payments
and redemption, cash flows are regressed on a set
of basis functions to estimate discount functions.
Once the discount function is estimated, the zero-
coupon yield and the forward rate can be obtained by
transformations of the discount function. Though this
method was followed by a lot of researchers, some
serious drawbacks have been reported.

The most important problem is the instability of
estimated yield curves. As is widely known,
the discount function δ(t), the zero coupon yield
η(t) and the instantaneous forward rate f(t) are
closely tied with one another by explicit relationships.
McCulloch’s method gives approximated discount
function first, so the zero coupon yield curve and
the forward rate curve can be derived once δ(t)
is estimated. The problem is, however, seemingly
reasonable estimate of the discount function does
not always lead to acceptable shapes of yield
curves, especially for the forward rate curve. Some
researchers are concerned with the choice of basis
functions when defining a spline function, while
others question how to place knots efficiently.

The choice of basis functions and/or knot locations
undoubtedly affects the estimation results. However,
the present article focuses on a different point. It
is considered here that instability of the estimated
yield curves is caused by the ill-posed nature of the
regression spline, rather than by the inappropriate
choice of the basis function. By ill-posed it is
meant that a model may be over-parameterized
compared to the amount of sample information.
Without a addressing this ill-posed nature specifically,
any modification of the choice of basis functions,
approximating functional forms, or knots placement
may provide only minor improvements.

Throughout this article, a penalty term is added to
the original log-likelihood of a yield curve model,
that is, a penalized likelihood approach is adopted
for this treatment. In this sense, the work of Fisher,
Nychka and Zervos (1995) is the most closely related
and influential to this study. Those authors fitted
smoothing splines (with B-splines bases) instead of
regression splines. Moreover, Fisher, Nychka and
Zervos (1995) fitted smoothing spline to the zero
coupon yield and the forward rate as well as to the
discount function. Their simulation results suggest
that the best way to estimate yield curves is to place
spline bases on the forward rate curve. However,
splining the forward rate or the zero coupon yield is
not linear operation, hence the use of GCV or the
effective number of parameters in model selection
lacks its theoretical foundation.

This paper proposes a penalized likelihood approach
accompanied by generalized information criteria
(GIC) that determine the desired degree of smoothness
of yield curves in a data-dependent way. GIC,
proposed by Konishi and Kitagawa (1996), is an
extension of AIC, Akaike Information Criterion.
Originally AIC is proposed on the assumption that
the models to be compared are estimated by the
method of maximum likelihood. GIC is extended
to the cases where the models are not necessarily
estimated by ML. Model selection among penalized
(nonlinear) regressions comes within the range of
GIC. Our approach is theoretically valid even if the
regression functional is nonlinear with respect to the
unknown coefficients of basis functions, of which
typical case is ‘splining the forward rate’ or ‘splining
the zero coupon yield’ case. As will be shown in
Section 2, these cases are reduced to the problems of
nonlinear regression spline. The derived GICs enable
us to compare the models with various choices of
basis functions under different regression functional
forms in a unified manner. In addition, the number of
basis function can be chosen based in minimum GIC
method. Monte Carlo simulations reveal that choosing
the appropriate number of bases by GIC reduces MSE
rather than controlling a plenty of bases by a single
smoothing parameter.
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1 INTRODUCTION

There have been a number of studies attempting to
establish an excellent technique for estimating the
term structure of interest rates from a cross-section of
coupon bond prices. Under the assumption that the
price of a bond is equal to the present value of its
future coupon payments and redemption, McCulloch
(1971) regressed cash flows on a set of basis functions
to estimate discount functions. Once the discount
function is estimated, the zero-coupon yield and the
forward rate can be obtained by transformations of the
discount function.

Although the approach adopted by McCulloch (1971,
1975) was followed by several related studies, the
approach has been criticized on a number of points.
The central issue has been the instability of regression
spline. Hence, throughout this article, a penalty term
is added to the original log-likelihood of a yield curve
model, that is, a penalized likelihood approach is
adopted for this treatment. In this sense, the work of
Fisher, Nychka and Zervos (1995) is the most closely
related and influential to this study.

One important assertion made by Fisher, Nychka
and Zervos (1995) based on their simulation studies
is that smoothing splines could be used to spline
an arbitrary transformation of the discount function.
Their simulation results suggest that the best way to
estimate yield curves is to place spline bases on the
forward rate curve. As will be described soon below,
however, splining the forward rate or the zero coupon
yield is doubly nonlinear; the regression functional is
nonlinear with respect to the coefficients on the spline
bases, and the basis function is also nonlinear with
respect to maturity, t. For such a case, the use of
GCV or the effective number of parameters lacks its
theoretical foundation.

It is widely known that the discount function δ(t) and
the instantaneous forward rate f(t) are related by

f(t) = −δ′(t)/δ(t), (1)

where δ′(t) is the derivative of the discount function
δ(·) evaluated at the point t. The zero coupon yield
η(t) is tied to the discount function δ(t) by

η(t) = − ln(δ(t))/t. (2)

See for example Anderson, Breedon, Deacon and
Derry (1996) for the derivations of these relationships.
Hence, we do not have to start by approximating the
discount function δ(t). From equations (1) and (2), it
is recognized that if splines are placed on η(t) or f(t),
then δ(t) will be expressed as an exponential function
with an approximating function for η(t) or f(t) as its
argument. That is, splining the zero coupon yield or
the forward rate is equivalent to exponential splining
of the discount function.

By fitting a smoothing spline with cubic B-spline
bases, Fisher et al. compared all three options;
splining δ(t), η(t) and f(t), and determined the
roughness penalty using GCV in all three cases. From
a theoretical viewpoint, however, the application of
GCV is questionable except the case of splining
δ(t). As point out themselves (see footnote 10 and
appendix B in Fisher et al. 1995), GCV cannot be
applied unless the regressor is expressed as a linear
combination of basis functions. In other words,
a basis function can be nonlinear in t as is usual
with many nonparametric regression schemes, but the
regression functional should be linear with respect to
the unknown parameters for the use of GCV. Clearly
this does not hold in splining η(t) or f(t). Supposing
that the splined zero coupon yield ηs(t) is expressed
as ηs(t) =

∑
wkφk(t), where {φk(t); k = 1, 2, ...}

is a set of spline bases with coefficients wk, then
(2) implies that the splined discount function δs(t) is
expressed as δs(t) = exp(−t∑wkφk(t)). Here, δs
is clearly not linear in {wk}.

Sharing the motivation of Fisher et al., the aim of
the present study is to propose a theoretically valid
criterion that enables us to determine the desired level
of smoothness of yield curves in a data-dependent
way even when the regression functional is not
always linear with respect to the unknown parameters.
Therefore the models considered in this article are all
penalized or regularized in principle. In this treatment,
the generalized information criteria (GIC) introduced
by Konishi and Kitagawa (1996) are tailored to
various cases. Use of the GIC also makes it possible
to choose the optimal number of basis functions.
This is an important feature, as allowing excess knots
can lead to an undesirable shape of the forward rate
function. Selection of the appropriate number of basis
by an objective criterion is therefore desirable.

2 PENALIZED LIKELIHOOD APPROACH

2.1 Bond equation

Consider a set of n bonds traded on one day. Let pα be
the price of bond α, cα be its coupon payment, which
is paid at time tα1 ,...,tαLα

, let Rα be the redemption
payment, and let Lα be the number of remaining
payments. Following the theory of bond pricing
(McCulloch, 1971), we assume that the price of
a bond (plus accrued interest aα) is equal to the
present value of its future coupon payments and the
redemption, i.e., for α = 1, ..., n,

pα + aα = cα

Lα∑
k=1

δ(tαk ) +Rαδ(tαLα
) + εα, (3)

where δ(·) is the discount function, εα are
independent and normally distributed with mean of
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zero and variance σ2. The discount function δ(t) gives
the present value of a monetary unit, e.g., $1.00 after
t years. Most researchers follow McCulloch (1971)
in explicitly constraining cash flows from different
bonds due at the same time to be discounted at the
same rate, and estimate the discount function δ(·)
from which the other yield curves can be derived.

If splines are placed on the discount function, δ(·)
is expressed as a linear combination of a set of m
underlying basis functions, as follows.

δ(t; w) = 1 +
m∑

k=1

wkφk(t) = 1 + w′φ(t), (4)

where φ(t) = (φ1(t), ..., φm(t))′ is an m-
dimensional vector constructed from a set of basis
functions {φj(t); j = 1, · · · ,m}, and w =
(w1, ..., wm)′ is an unknown parameter vector to be
estimated. It follows from equations (3) and (4) that
the bond price model based on a linear combination of
basis functions is as follows.

fB(yα|tα; w, σ2)

=
1√

2πσ2
exp

{
− (yα − c′αΦαw)2

2σ2

}
, (5)

where tα = (tα1 , ..., tαLα
)′ is the vector of the points of

time at which payments occur, yα = pα+aα−Lαcα−
Rα, Φα = (φ(tα1 ), ...,φ(tαLα−1),φ(tαLα

))′ and cα =
(cα, ..., cα, cα +Rα)′, respectively. This specification
is very convenient for parameter estimation because
the functional form of (4) is linear with respect to the
unknown parameters.

A number of functional forms have been proposed
for the basis functions φj(t). See McCulloch (1971,
1975), Schaefer (1981), Mastronikola (1991), Steeley
(1991). Throughout this paper, we consider B-spline
only. Also note that the argument so far is still on
the framework of regression spline. We will soon
move on to smoothing spline in 2.3 after introducing
nonlinear spline models in the next section.

2.2 Nonlinear spline

It is also possible to place spline on zero coupon
yield or even on forward rate rather than on discount
function. Langetieg and Smoot (1989) fitted a
cubic B-spline to the zero coupon yield, a technique
they refer to as the exponential yields model. In
this model, {φk(t)}m

k=1 are cubic B-spline bases.
From equation (2), η(t) =

∑
wkφk(t) implies

δ(t) = exp(−t∑wkφk(t)). Hence, splining the zero
coupon yield is equivalent to fitting an exponential
spline model to the discount function:

δ(t; w) = exp

(
−t

m∑
k=1

wkφk(t)

)
. (6)

φ1(t)φ2(t)φ3(t)φ4(t)φ5(t)φ6(t)φ7(t) ψ1(t)ψ2(t)ψ3(t)ψ4(t)ψ5(t)ψ6(t)ψ7(t)

Figure 1. Basis functions for the B-spline and its
integral

They found that their model gave better results than
the exponential spline specification of Vasicek and
Fong (1982), and argued that it is not surprising since
the exponential transformation model can be viewed
as an approximation of the exponential yields model.

Fisher, Nychka and Zervos (1995) suggest the
placement of a B-spline on the forward rate curve:

f(t) =
m∑

k=1

wkφk(t). (7)

From the equation (1), (7) can be rewritten as

δ(t; w) = exp

{
−

m∑
k=1

wkψk(t)

}
(8)

where ψk(t) =
∫ t

0 φk(s)ds. The functional form in
(8) resembles the exponential spline specification (6),
but the choice of basis function is different. Figure 1
shows the definition of a cubic B-spline basis over six
equally spaced knots and the corresponding integral.
As is clearly seen from Figure 1, the difference
between (6) and (8) is that the basis functions are
monotone in the model (8). This monotonicity is
seemingly advantageous in approximating δ(t) which
is expected to be monotonically decreasing in t.

Combining the equation (3) with either (6) or (8) as a
discount function, we obtain a slightly different form
of the bond pricing model, as follows.

fE(yα|tα; w, σ2)

=
1√

2πσ2
exp

{
− (yα − c′αδ(tα; w))2

2σ2

}
,(9)

where yα = pα + aα, δ(tα; w) =
(δ(tα1 ; w), ..., δ(tαLα; w))′ is the discount vector,
and w = (w1, ..., wm)′ is an unknown parameter
vector to be estimated from the data. An important
point of (9), in comparison with (5), is that the
discount function is not a linear combination of basis
functions in fitting the B-spline for either η(t) or f(t).
We will return to this point when we construct the
model selection criterion.
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2.3 Penalized likelihood

Here we present the maximum penalized likelihood
method for estimating the unknown coefficients w
and σ2 in the bond price model (5) and (9). For
parameter estimation in the bond price model (5),
the maximum likelihood estimate of the weights is
given explicitly by ŵ = (B′B)−1

B′y, where B =
(Φ′

1c1, ...,Φ′
ncn)′, y = (y1, ..., yn)′. In practice,

however, the maximum likelihood method does
not yield satisfactory results because the parameter
estimates tend to be unstable and lead to overfitting.
For example, suppose there is a hump in the estimated
discount function, perhaps due to overfitting. No
matter how small the hump, the derived forward rate
may be negative at some maturity unless the discount
function is non-increasing everywhere. The same
problem can also arise in the nonlinear model (9) that
model only guarantees the positiveness of the discount
function.

These instabilities of the estimated yield curves all
originate from the ill-posed nature of the regression
spline, rather than from any inappropriate choice of
the basis function. To avoid overfitting, a penalty
term on the smoothness of the unknown coefficients
is introduced into the log-likelihood. Specifically, we
maximize

lλ(w, σ2) =
n∑

α=1

log f(·)(yα|tα; w, σ2)

− nλ

2

m∑
j=2

(Δ2wj)2, (10)

where λ is the smoothing parameter controlling the
smoothness of the discount function, and Δwk =
wk − wk−1 is the difference operator.

Given λ and m, the unknown parameters w and σ2

can be obtained as the solution of ∂lλ(w, σ2)/∂w =
0 and ∂lλ(w, σ2)/∂σ2 = 0. If these estimation
equations can be solved explicitly in terms of w and
σ2, then by replacing the unknown parameters with
the parameter estimates ŵ and σ̂2, we have the bond
price model constructed by the penalized likelihood:
f(·)(yα|xα; ŵ, σ̂2).

If the bond model belongs to the fB-class, it is always
possible to give the maximum penalized estimates
of w and σ2 explicitly. Using an (m − 2) × m
difference matrix D2 where D′

2D2 makes a certain
quadratic penalty matrix, the penalty term in (10)
can be represented by

∑m
j=2(Δ

2wj)2 = w′D′
2D2w.

Hence, for fixed λ and m, the maximum penalized
likelihood estimates of w and σ2 in the bond price
model (5) are explicitly provided by

ŵ = (B′B + nβD′
2D2)

−1
B′y,

σ̂2 =
1
n

n∑
α=1

{yα − c′αΦαŵ}2
, (11)

where β = λσ2. Clearly an fB-class model
requires quite simple linear operations, hence much
less computation is required. On the other hand,
if the bond models belong to the fE-class, explicit
estimators are no longer available. In such a case, a
numerical maximization procedure must be invoked.
In this article, the Newton-Raphson method based
on the first and second derivatives of the penalized
likelihood function is adopted for estimation.

An important remaining problem is the criterion by
which we should choose the smoothing parameter
λ and the number of basis functions m. Here, we
derive a criterion for evaluating the bond price model
from an information-theoretic point of view. Once
the criterion is established, the optimum roughness
penalty λ and number of bases m are determined by
searching the grid of (logλ, m).

3 INFORMATION CRITERIA FOR MODEL
EVALUATION

Akaike Information Criterion (AIC, Akaike (1974))
is proposed basically on the assumption that the
models to be compared are estimated by the method of
maximum likelihood. Konishi and Kitagawa (1996)
extended AIC to the cases where the models are
not estimated by ML, and proposed a framework
of Generalized Information Criteria (GIC). Model
selection among regularlized (nonlinear) regressions
comes within the range of GIC. Derivation of
information criteria reduces to how we estimate the
asymptotic bias of a certain statistical functional, that
is a penalized likelihood in our problem. Under the
assumption that the specified family of probability
distributions does not necessarily contain the true
model, Konishi and Kitagawa (1996) derived the
asymptotic bias as a function of the empirical
influence function of the estimator and the score
function of the parametric model.

Theorem 2.1 in Konishi and Kitagawa (1996) can
be restated in the following way depending on the
problem we consider. Whether the model is fB or fE ,
GIC will be given in the following form,

GIC(m,λ) = n log(2πσ̂2) + n+ 2tr
(
IGJ

−1
G

)
where σ̂2 is the estimate of residual variance. IG
and JG are the (m + 2) × (m + 2) matrices, and
IG is basically the product of the empirical influence
function and the score function, while JG is the matrix
of second derivative of the penalized likelihood.

If we fit the fB-class, then the solution to the model
(5) by maximizing penalized likelihood (10) leads

867



to (11). As for the explicit form of the penalty
term for this case, please refer to Imoto and Konishi
(2003). Note that, in our problem, it is the case of
‘approximating the discount function’, hence GCV is
also valid as well as GIC. However, when it comes to
the evaluation of fE-class models (9), the regression
functional is not linear with respect to unknown
parameters. Hence model selection by GCV the lacks
theoretical background for its applicability, while we
can still construct GIC for the regularized estimation
of the fE-class models.

When the fE-class models are estimated by the
maximum penalized likelihood, the matrices IG and
JG appear in the bias term take the following form,

IG =
1
nσ̂2

(
Φ′Λ/σ̂2 − λKŵ1′

n

q′

)
( ΛΦ, σ̂2q ) ,

JG =
1
nσ̂2

(
Φ′Φ −D + nσ̂2λK Φ′Λ1n/σ̂

2

1′
nΛΦ/σ̂2 n/2σ̂2

)
,

where K = D′
2D2, Λ is given by

Λ = diag [y1 − c′1δ(t1; ŵ), ..., yn − c′nδ(tn; ŵ)] .

1n = (1, 1, ..., 1)′, and q is an n-dimensional vector
with ith element

(yi − c′iδ(ti; ŵ))2 /2σ̂4 − 1/2σ̂2.

Φ andD are n×m andm×mmatrices which depend
on particular choice of the regression functional δ. If
we decide to place spline on zero coupon yield, our
choice of δ is (6). Then (i, j)th element Φij and Dij

is given by

Φij =
Li∑

k=1

ciδ(tik; ŵ)fj(tk)tk,

Dij =
n∑

α=1

[(yα − c′αδ(tα; ŵ))

× (
Lα∑
k=1

cαδ(tαk ; ŵ)fi(tαk )fj(tαk )(tαk )2)].

If we turn to place spline on the forward rate curve,
this means we employ (8). Then (i, j)th element Φij

and Dij is given by

Φij =
Li∑

k=1

ciδ(tik; ŵ)fj(tk),

Dij =
n∑

α=1

[(yα − c′αδ(tα; ŵ))

× (
Lα∑
k=1

cαδ(tαk ; ŵ)fi(tαk )fj(tαk )].

The values of the smoothing parameter λ and the
number of basis functions m are determined as the
minimizers of the GIC.

Note that for fitting the smoothing spline for δ(t), the
procedure suggested by Fisher, Nychka and Zervos
(1995) is entirely valid, and there is no problem
with the use of GCV. However, the use of GCV
for fitting an exponential spline or comparing curves
to be splined is no longer theoretically justified.
We inevitably resort to GIC when the regression
functionals take non-linear forms such as (6) and (8).
Of course, GIC can also be constructed in the linear
functional case (4), making it possible to compare the
linear with the non-linear models directly.

4 MONTE CARLO EXPERIMENTS

We start by specifying the true functional form of
the forward rate curve f(t) in the experiments. The
following functional form is set as the true term
structure of the instantaneous forward rate;

f(t) = β0 + β1 exp
(
− t

τ

)

+β2

[
t

τ
exp

(
− t

τ

)]
. (12)

This parameterization was proposed by Nelson and
Siegel (1987). In the simulation, we set β0 = 0.02,
β1 = −β0, β2 = 0.2 and τ = 10. Figure 2 shows
f(t) under this setting. By (1) and (2), we can derive
from f(t) the discount function δ(t) and zero coupon
yield η(t). As we omit the explicit form of δ(t) to
save space, please refer to Anderson et al. (1996,
p.41). Given δ(t), random samples were generated
from the true bond price model pα = Rαδ(tα) + εα

for tα = 30 × ((α − 1)/(n − 1)) and α = 1, ..., n.
For the error term εα, we consider an independent
normal distribution case, εα ∼ N(0, σ2), where σ =
0.1. The redemption payment Rα is assumed to
be 100, considering that the face value of Japanese
Governmental Bonds is Y=100.

The maturity interval [0, 30] is divided into equally
spaced intervals, and 100 time points are chosen: {tα}
with t1 = 0 and tn = 30. These time points are fixed
throughout the experiments. The price of artificial
zero coupon bonds is then generated according to the
bond equation. All yield curves (δ̂, η̂, and f̂ ) were
estimated in the end, regardless of the curve fitted, and
the bias from the true curves (δ, η, f ) were measured
at the fixed time points. The squares of the biases over
maturity were then averaged, and the mean-squared
error (MSE) of the ith experiment is defined as

Df
i = n−1

n∑
α=1

(f̂ (i)(tα) − f(tα))2.

The overall Monte Carlo mean D̃f = M−1
∑M

i=1D
f
i

for M Monte Carlo trials and its standard deviation
was then determined. D̃δ and D̃η were calculated in
the same way.
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Figure 2. Nelson-Siegel type forward rate

The results of the Monte Carlo simulations are
summarized in Table 1. The simulation results were
obtained by averaging over M = 100 repeated Monte
Carlo trials. The standard deviations (SDs) are given
in parentheses below the means. In the table, f/B
indicates that B-spline bases are placed on the forward
rate f(t). Similarly, η/B and δ/B indicate placement
of the B-spline on the zero coupon yield (η(t)) and the
discount function (δ(t)). The specification of the B-
spline here follows that of Steeley (1991), and Eilers
and Marx (1996), for example, and differs from the
definition given in Fisher et al. in that extra knots
are placed outside the actual maturity interval and
knots are not overlapped at the ends. All the models
are estimated by the maximum penalized likelihood
method stated in Section 2, and the smoothing
parameter λ is chosen according to GIC derived in
Section 3.MSE values in the table are read as follows:
for example, the MSE for the estimation of f(t)
via forward-rate-splining (f /B) is 7.67. Hence, on
average, the bound for the estimated forward rate
curve is approximately ± 2.77 basis points.

The simulation results here support one of the findings
in Fisher, Nychka and Zervos (1995); fitting a
smoothing spline for the forward rate curve (with B-
spline bases) provides the best performance, and it is
not recommended to estimate the discount function
first and then derive other yield curves. Although
the use of GCV in Fisher et al. has no theoretical
foundation, their findings were indeed correct on that
point. It should be noted, however, that GIC gives
a theoretically justified route to compare the various
yield curve models using a roughness penalty.

The GIC is used here to choose both λ and m. The
introduction of λ was aimed at resolving the ill-

Target func. δ(t) η(t) f(t)
f/B 2.92 1.36 7.67

(std. err.) (0.52) (0.25) (1.45)
η/B 19.22 4.87 154.96

(std. err.) (0.53) (0.23) (0.92)
δ/B 39.81 10.20 511.10

(std. err.) (0.56) (0.46) (0.82)

Table 1. Simulation results for selection of smoothing
parameter λ and number of basis functions m

Target func. δ(t) η(t) f(t)
f/B 4.60 1.80 29.7

(std. err.) (0.62) (0.44) (2.73)
η/B 19.31 5.12 189.62

(std. err.) (0.54) (0.24) (1.12)
δ/B 41.91 11.01 512.02

(std. err.) (0.58) (0.50) (0.82)

Table 2. Simulation results for selection of smoothing
parameter λ only (m set to one-third the sample size)

posed nature of the regression spline, and choosing the
optimal number of basis function m originates from
the experience that introducing excess basis functions
often leads to an unacceptable shape of the forward
rate curve, even though the discount function may
be reasonably shaped. On the other hand, in terms
of fitting the smoothing spline, one might suspect
that choosing the number of basis functions (m) may
be unnecessary because the large roughness penalty
value may automatically reduce the effective number
of parameters.

In light of this argument, similar experiments were
performed without choosing m. Instead, a fixed
number of basis functions equal to one-third of the
sample size was chosen; 33 in the experiments
here. The results in Table 2 show that all the MSE
values are larger than when an appropriate number of
basis functions are chosen (Table 1). Most notably,
choosing the number of basis function results in a
significant reduction of the MSE for f(t), particularly
when f(t) is splined directly (29.7 → 7.67 for
normal independent error). It therefore appears that
in all cases choosing the number of basis functions
improves the estimation.

5 CONCLUSION

A penalized likelihood approach was proposed for
estimation of the term structure of interest rates from
a set of coupon data. In the penalized likelihood
approach, the method for choosing the smoothing
parameter is important. If the nonparametric
regression functional is linear in its parameters, then
GCV can be used. However, if we want to spline the
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zero coupon yield or the forward rate, we inevitably
have to estimate exponential spline models, for which
GCV loses its theoretical basis. It was shown that
a customized version of the generalized information
criterion (GIC) can be constructed even for nonlinear
spline problems. Monte Carlo studies and analysis of
real data clearly showed that B-splining the forward
rate with a roughness penalty provides the most
accurate estimation of yield curves, confirming the
findings of Fisher, Nychka and Zervos (1995) by a
theoretically valid route. It was also verified that
choosing the optimal number of basis functions rather
than letting the single (smoothing) parameter control
the number of bases reduces the estimation error.
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