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EXTENDED ABSTRACT

This paper considers the panel probit model with
spatial dependency from a Bayesian point of view.
We consider Markov chain Monte Carlo methods to
estimate the parameters of the model. Our approach
is illustrated with simulated data set. Furthermore, we
explore the spatial interaction of business cycle across
47 prefectures from the period 1991 to 2000 in Japan.
Spatial dependency can be found in business cycle in
Japan.

The probit model has been widely used in qualitative
data regression, especially in microeconometrics or
business cycle analysis. It is also extended to panel
probit model. Maddala (1977) gives excellent surveys
of panel probit model. Although the probit model is
useful for qualitative data analysis, it is difficult to
estimate by maximum likelihood, when we use the
panel data as is pointed out by Bertschek and Lechner
(1998). Therefore, alternative estimation methods like
GMM methods are proposed.

Since the seminal work by Anselin (1988), the
spatial dependency becomes the concern of economic
activity. Therefore, the problem of spatial dependency
in probit model has been examined by some
researchers, both analytically and empirically. As it is
difficult to estimate by maximum likelihood method,
all of the models are estimated by Markov chain
Monte Carlo (MCMC) following LeSage (2000).
Holloway et al. (2002) applies the LeSage’s (2000)
spatial probit model to HYV rice adoption. Smith and
LeSage (2004) also proposes the spatial dependency
with individuals in each location and apply to the 1996
presidential election results for 3110 US counties.

In business cycle analysis, it is very important
to capture the turning point. Therefore, several
models are proposed: probit and logit model
(Maddala (1992)); sequential probability recursion
model (Neftci (1982)); Markov switching model
(Hamilton (1989)); dynamic Markov-switching factor
model (Watanabe (2003)). If we consider this
fact that the spatial dependency is the concern of
economic activity, we also have to consider the spatial

1The research for this work was supported by Grants-In-Aid for
Scientific Research (A)(1) 15200022.

interaction in examining business cycle. But there do
not exist such panel models with spatial dependency.

From a Bayesian point of view, Kakamu and Wago
(2005) examine a spatial panel model. This paper
considers the properties of panel probit model with
spatial dependency extending Kakamu and Wago
(2005) following LeSage (2000). This paper also
applies to business cycle in Japan from the period
1991 to 2000 across 47 prefectures. From our
empirical results, we can find (1) if the unemployment
rate rise, the probability of business rising fall, (2)
there exists spatial dependency, (3) the potential
probability is different among each prefectures and
we can capture the changes in probability of business
cycle in each prefectures.

From the results for the simulated data, we found
serious spatial correlation biases and the importance
of spatial correlation. As for the real data example,
we considered the business cycle in Japan. From the
results, we can find (1) if electricity demand, sum of
annual sales of industrial goods and balance at the
bank rise, the probability of business rises, (2) there
exists spatial dependency, (3) the potential probability
is not different among each prefecture and (4) we can
capture the changes in probability of business cycle in
each region.

Finally we will discuss our remaining issues. In
this paper, we proposed spatial panel probit model.
But if the period becomes long, it takes very long
time to estimate the model analytically. Therefore,
we can only capture the changes in probability and
cannot examine the turning point of business cycle
empirically. It is also important to consider the
efficient method to estimate the long run panel data.
But we think this is the first step to examine the spatial
interaction in econometrics using panel data.

This paper is organized as follows. In the next
section, we summarize the spatial panel probit model
and discuss computational strategy of the MCMC
methods. In Section 3 our approach is illustrated with
simulated data set. Section 4 presents the empirical
results based on the business index records across 47
prefectures from 1991 to 2000 in Japan. Section 5
summarizes the results with concluding remarks.
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1. INTRODUCTION

The probit model has been widely used in qualitative
data regression, especially in microeconometrics or
business cycle analysis. It is also extended to panel
probit model. Maddala (1977) gives excellent surveys
of panel probit model. Although the probit model is
useful for qualitative data analysis, it is difficult to
estimate by maximum likelihood, when we use the
panel data as is pointed out by Bertschek and Lechner
(1998). Therefore, alternative estimation methods like
GMM methods are proposed (Bertschek and Lechner
(1998); Greene (2004) and so on).

Since the seminal work by Anselin (1988), the
spatial dependency becomes the concern of economic
activity. Therefore, the problem of spatial dependency
in probit model has been examined by some
researchers, both analytically and empirically. As it is
difficult to estimate by maximum likelihood method,
all of the models are estimated by Markov chain
Monte Carlo (MCMC) following LeSage (2000).
Holloway et al. (2002) applies the LeSage’s (2000)
spatial probit model to HYV rice adoption. Smith and
LeSage (2004) also proposes the spatial dependency
with individuals in each location and apply to the 1996
presidential election results for 3110 US counties.

In business cycle analysis, it is very important
to capture the turning point. Therefore, several
models are proposed: probit and logit model
(Maddala (1992)); sequential probability recursion
model (Neftci (1982)); Markov switching model
(Hamilton (1989)); dynamic Markov-switching factor
model (Watanabe (2003)). If we consider this
fact that the spatial dependency is the concern of
economic activity, we also have to consider the spatial
interaction in examining business cycle. But there do
not exist such panel models with spatial dependency.

From a Bayesian point of view, Kakamu and Wago
(2005) examine a spatial panel model. This paper
considers the properties of panel probit model with
spatial dependency extending Kakamu and Wago
(2005) following LeSage (2000). This paper also
applies to business cycle in Japan from the period
1991 to 2000 across 47 prefectures. From our
empirical results, we can find (1) if the unemployment
rate rise, the probability of business rising fall, (2)
there exists spatial dependency, (3) the potential
probability is different among each prefectures and
we can capture the changes in probability of business
cycle in each prefectures.

This paper is organized as follows. In the next
section, we summarize the spatial panel probit model
and discuss computational strategy of the MCMC
methods. In Section 3 our approach is illustrated with
simulated data set. Section 4 presents the empirical

results based on the business index records across 47
prefectures from 1991 to 2000 in Japan. Section 5
summarizes the results with concluding remarks.

2. THE SPATIAL PANEL PROBIT MODEL

2.1. Joint Posterior Distribution

First of all, to derive the joint posterior distribution
to implement Bayesian analysis, we will consider the
likelihood function of spatial panel probit model. Let
yit denote a binary 0/1 response on ith unit and tth
period, let Y = (y11, y21 · · · , yit, · · · , yNT )′ denote
the collection of responses of all ith unit and tth period
and let θit denote the spatial interaction effect of ith
unit and tth period. According to the panel probit
model (see e.g. Maddala (1977)), the probability that
yit = 1 conditioned on parameters αi, β, a set of
covariates xit and spatial interaction θit, is given by
Pr(yit = 1) = Φ(αi + xitβ + θit) where Φ(·)
denotes the cumulative distribution function of normal
distribution. Therefore, the likelihood function is as
follows;

p(Y |α, β, X, θ) =
N∏

i=1

T∏
t=1

Φ(αi + xitβ + θit)yit

{1 − Φ(αi + xitβ + θit)}1−yit ,

where α = (α1, · · · , αi, · · · , αN )′, X = (x′
11, x

′
21,

· · · , x′
it, · · · , x′

NT )′ and θ = (θ11, θ21, · · · , θit, · · · ,
θNT )′. But it is difficult to estimate by maximum
likelihood since we cannot identify the spatial
interaction dependency by itself.

Then, we consider the spatial autoregressive process
following LeSage (2000). To specify the spatial
dependency, θit, we introduce the latent variables1

Z = (z11, z21, · · · , zit, · · · , zNT )′ such that;

zit =
{ ≥ 0, if yit = 1

< 0, if yit = 0.

Suppose also that the N × N weight matrix W and
spatial interaction effect ρ are constant in each period.
Then, the spatial dependency can be expressed as
θit =

∑N
j=1 ρwijzjt and the spatial panel probit

model will be written as;

zit = αi + x′
itβ +

N∑
j=1

ρwijzjt + εit,

εit ∼ N(0, 1) (1)

where wij means the ijth element of the weight
matrix. Therefore, the cumulative distribution

1See Taner and Wong (1987).
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function becomes as follows;

Φ(αi + xitβ +
N∑

j=1

ρwijzjt) =
∫ ∞

−∞

1√
2π

exp

[
− (zit − αi − xitβ −∑N

j=1 ρwijzjt)2

2

]

× 1[0,∞)(zit)dzit,

1 − Φ(αi + xitβ +
N∑

j=1

ρwijzjt) =
∫ ∞

−∞

1√
2π

exp

[
− (zit − αi − xitβ −∑N

j=1 ρwijzjt)2

2

]

× 1(−∞,0)(zit)dzit.

where 1[0,∞)(zit) and 1(−∞,0)(zit) denote the
indicator functions which takes 1 if zit ∈ [0,∞) and
zit ∈ (−∞, 0), respectively.

Since we adopt a Bayesian approach, we complete
the model by specifying the prior distribution over the
parameters. In addition, as Kakamu and Wago (2005)
suggests the hierarchical Bayes model to estimate
the spatial panel model, we will also consider the
following hierarchical priors;

p(β, ρ, α, α0, ξ
2) = p(β)p(ρ)p(α,α0, ξ

2)

p(α, α0) =

{
N∏

i=1

p(αi|α0)

}
p(α0|ξ2)p(ξ2)

where α0 and ξ2 means the average of α and the
variance. And prior distributions are as follows;

p(β) ∼ N(β∗, A−1
∗ ),

p(α0|ξ2) ∼ N(μ∗, ξ2/N∗),

p(αi|α0, ξ
2) ∼ N(α0, ξ

2),

p(ξ2) ∼ G−1(ν∗/2, λ∗/2),

p(ρ) ∼ U(λ−1
min, λ−1

max),

where G−1(a, b) denotes an inverse gamma distribu-
tion with parameters a and b. λmin and λmax denote
the minimum and maximum eigenvalues of W . As
is shown in Sun et al. (1999), it is well known that
λ−1

min < 0 and λ−1
max > 0 and ρ must lie in the

interval. Therefore, we restrict the prior space as
ρ ∈ (λ−1

min, λ−1
max).

Given a prior density p(β, ρ, α, α0, ξ
2), the joint

posterior distribution can be expressed as

p(β,ρ, α, α0, ξ
2, Z|Y, X, W )

∝ p(β, ρ, α, α0, ξ
2) (2)

×
N∏

i=1

T∏
t=1

f(yit|β, ρ, αi, α0, ξ
2, Z, y−it, xit, W )

where y−it = (y1t, · · · , yi−1t, yi+1t, · · · , yNt) and
where

f(yit|β, ρ, αi, α0, ξ
2, Z, y−it, xit, W ) =

∫ ∞

−∞

1√
2π

exp

[
− (zit − αi − xitβ −∑N

j=1 ρwijzjt)2

2

]

× {yit1[0,∞)(zit) + (1 − yit)1(−∞,0)(zit)dzit}.

2.2. Posterior Simulation

Since the joint posterior distribution given by (2)
is much simplified, we can now use MCMC
methods. The Markov chain sampling scheme can
be constructed from the full conditional distributions
of β, ρ, αi (i = 1, · · · , N), α0, ξ2, zit (i =
1, · · · , N, t = 1, · · · , T ).

2.2.1. Sampling ρ

From (2), the full conditional distribution of ρ is
written as

ρ|α, β, Z, Y, X, W ∝ |IN − ρW |T exp
(
− e′e

2

)
where

e = (IT ⊗ (IN − ρW )Z − Δα − Xβ),

and IN is N×N unit matrix and Δ = (

T︷ ︸︸ ︷
IN , · · · , IN )′,

which we cannot be sampled by standard methods.
Therefore, we adopt the Metropolis algorithm (see
e.g., Tierny (1994)).

The following Metropolis step is used: Sample ρ from

ρ = ρ∗ + cφ, φ ∼ N(0, 1),

where c is called tuning parameter. Next, we evaluate
the acceptance probability

α(ρ∗, ρ) = min
(

p(ρ)
p(ρ∗)

, 1
)

,

and finally set ρ = ρ with probability α(ρ∗, ρ),
otherwise ρ = ρ∗. It should be mentioned that the
proposal value of ρ is not truncated to the interval
(λ−1

min, λ−1
max) since the constraint is part of the target

density. Thus, if the proposed value of ρ is not within
the interval, we will adopt the rejection sampling (see
LeSage (2000) and Smith and LeSage (2004)).

2.2.2. Sampling the Other Parameters

If α and ρ be given, then as Z∗ = AZ − Δα become
constant, where A = IN ·T − IT ⊗ ρW , it is reduced
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to linear regression model. Therefore, for β, it can be
easily obtained that

β|α, ρ, Z, Y, X, W ∼ N(β̃, Σ̃)

where

β̃ = (X ′X + A∗)−1(X ′Xβ̂∗ + A∗β∗),

β̂∗ = (X ′X)−1X ′Z∗,

Σ̃ = (X ′X + A∗)−1.

Given β, ρ and Z , (1) becomes

zit − (xitβ +
N∑

j=1

ρwijzjt)

︸ ︷︷ ︸
eit

= αi + εit, (3)

εit ∼ N(0, 1).

We can regard αi as a data generated from N(αi, ξ
2).

Therefore, full conditional distribution of αi follows;

αi|α0, ξ
2, β, ρ, Y, Z, X, W ∼ N(α̂i, ξ̂

2),

where

α̂i =
ξ−2α0 + T ēi

ξ−2 + T
,

ēi = T−1
T∑

t=1

eit,

ξ̂2 = (ξ−2 + T )−1.

Full conditional distribution of α0 and ξ2 can
be regarded as the mean and variance of normal
distribution of the posterior distribution using {αi}N

i=1

as data. Therefore they follow;

α0|α, ξ2 ∼ N

(
μ̃,

ξ2

N̂

)
,

ξ2|α ∼ G−1

(
ν̂

2
,
λ̂

2

)
,

where

μ̃ =
N∗μ∗ + Nᾱ

N̂
,

ᾱ = N−1
N∑

i=1

αi, ν̂ = ν∗ + N,

λ̂ = λ∗ + ν∗s2
α + N∗N(μ∗ − ᾱ)2/N̂,

N̂ = N∗ + N, s2
α = ν−1

∗
N∑

i=1

(αi − ᾱ)2.

Finally, full conditional distribution of Z follows;

Z|β, ρ, α, Y, X, W ∼ MTN(μ, V ) (4)

where

V = (A′A)−1, μ = V A′(Δα + Xβ).

MTN(μ, V ) denotes a multivariate truncated normal
distribution with mean μ and scale matrix V . Here,
we use the property that (A′A)−1 = IT ⊗ {(IN −
ρW )′(IN −ρW )}−1, we can save the calculation time
a little.

3. NUMERICAL EXAMPLE BY SIMULATED
DATA

To illustrate the Bayesian approach discussed in the
previous section, zit (i = 1, · · · , 50 t = 1, · · · , T )
and αi (i = 1, · · · , 50) were generated from the
distribution

zit = αi + 1.0x1it + 1.0x2it +
50∑

j=1

ρwijyjt + uit

uit ∼ N(0, 1),

where

yit =
{

1, if zit ≥ 0
0, if yit < 0 ,

and from the distribution αi ∼ N(2, 2), respectively,
where x1it, x2it were normal variables with mean
−1. To see the effect of values of ρ, we consider
the three cases of ρ values 0.3, 0.6, 0.9. Although
we also considered the cases of negative value of ρ,
the results obtained were similar to those given here.
Therefore we report only the case of positive values of
ρ to save the space. To see the effect of length of time
periods, we also consider the three cases of the length
of period T = 5, T = 10 and T = 15. For the prior
distributions, the hyper-parameters are set as follows;

β∗ = 0, A∗ = 100−1 · Ik, μ∗ = 0,

ν∗ = 2, λ∗ = 0.01, N∗ = N − 1

Since it is interesting to see the effect of ignoring
spatial interaction, we estimated the model with the
restriction ρ = 0 as well as the model without
the restriction. With the simulated data, we ran
the MCMC algorithm, using 20000 iterations and
discarding the first 5000 iterations. The chain was
considered to have practically converged after 5000
iterations based on a diagnostic proposed by Geweke
(1992). All results reported here were generated using
Ox version 3.4 (See Doornik (2001)).

Table 1 shows the posterior estimates of the
parameters2. From Table 1, we can find that as
the value ρ increases, distinct differences appear
in posterior means, especially in the estimates of
β. For the restricted model, we can see serious
spatial correlation biases, that is, the posterior mean
of β decrease. The unrestricted model exhibits

2In this case we show that the case of T = 10. Because as is
shown in below, we can find that our estimator hardly depend on
the length of period.
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better estimates of the parameters compared with the
restricted model. Thus it is important to take the
spatial correlation into account.

Table 1. Simulated Data

Spatial panel probit model with the restriction ρ = 0

true value ρ = 0.3 ρ = 0.6 ρ = 0.9

α0 2 1.2120 0.7735 0.6868
(0.3021) (0.0426) (0.0394)

β1 1 0.7118 0.6409 0.3044
(0.0752) (0.0724) (0.0626)

β2 1 0.7006 0.6737 0.4609
(0.0743) (0.0713) (0.0642)

ξ2 2 0.7611 1.1832 1.7338
(0.0440) (0.2946) (0.4728)

Spatial panel probit model without the restriction
true value ρ = 0.3 ρ = 0.6 ρ = 0.9

α0 2 1.0882 0.9831 1.1755
(0.2742) (0.2258) (0.3094)

β1 1 1.1245 0.9270 1.0021
(0.1470) (0.1157) (0.1808)

β2 1 1.0506 0.9452 1.2644
(0.1313) (0.1118) (0.1951)

ξ2 2 5.6786 3.9357 6.5967
(1.7638) (1.1213) (2.2897)

ρ 0.1738 0.5783 0.9147
(0.1473) (0.0719) (0.0120)

Posterior means and standard deviations (in parentheses) are shown.

We can also find that the posterior mean of ρ has bias
and it becomes larger when ρ becomes small. The
approximate posterior distributions of ρ are shown in
Figure 1. From the figure, it can be seen that the
posterior distributions exhibit the skewness for large
values of ρ. Furthermore, we can observe that the
posterior modes are closer to the true values than
posterior mean.
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Figure 1. The approximate posterior dist. of ρ

Finally, as is shown in Maddala (1977), the biases
in constant terms are serious problem in estimating
panel probit models. From Table 1, we can also find
the under bias of α0. But surprisingly the mean of
αi without restriction is around the true value. Then,
Figure 2 shows the relationship between true values

and estimated coefficients in each length of periods
with ρ = 0.6. From the figure, we can observe that the
posterior modes improve in many units as the length
of period becomes longer. But if we see Table 2,
which shows the correlation of constant terms, the
correlation improve from T = 5 to T = 10 and
we can find similar correlation between T = 10 and
T = 15 with true value. This result implies that
10 period is enough to estimate the parameter by our
method.
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Figure 2. The Constant Terms in each unit

Table 2. Correlation of Constant Terms

true value T=5 T=10 T=15

true value 1.000
T=5 0.861 1.000
T=10 0.941 0.801 1.000
T=15 0.944 0.824 0.868 1.000

4. EMPIRICAL EXAMPLE

As an example of real data set, we will consider the
business cycle across 47 prefectures (N = 47) in the
period from 1991 to 2000 (T = 10) in Japan. As
dependent variable, we use the data of the increase
and decrease of real gross regional product (GRP)
from Vital Statistics prepared by the Cabinet Office
of Japan, where 1 if GRP increases and otherwise
0. As explanatory variables, we use , electricity
demand from electricity project handbook prepared
by Ministry of Economy, Trade and Industry, sum
of annual sales of industrial goods from survey of
industrial statistics by Ministry of Economy, Trade
and Industry and balance at the bank from Monthly
Report of Financial Statistics by Bank of Japan. All
the data are changed into per capita data and we take
the rate of increase. Finally, as a weight matrix, we use
the matrix proposed by Kakamu et al. (2005), which
considers the connection of economic activities3.

3All except one (Okinawa) Japanese prefectures are situated on
the four major islands, Hokkaido, Honshu, Shikoku and Kyushu.
But these four islands are connected by train and roads, despite
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Using the same hyper-parameters as in the previous
section, we ran the MCMC algorithm using 20000
iterations and discarding the first 5000 iterations.
As in the previous simulated data example, the
convergence of the MCMC simulation was checked
by the Geweke’s diagnostic.

Table 3 shows the estimation result. The estimation
result gives us three major implications. First,
electricity demand, sum of annual sales of industrial
goods and balance at the bank affect to the rise and
fall of business index. We can find if the variables rise,
the probability of business index increases. This result
suggests that it is effective to think of these policy for
business policy.

Table 3. Empirical Result

Estimates St. Dev.
α0 −0.023 (0.055)
Electricity Demand 10.151* (2.230)
sum of annual sales 8.062* (1.453)
of industrial goods
Balance at the bank 8.797* (2.022)
ρ 0.368* (0.060)
ξ2 0.008 (0.010)

a. Posterior means and st. dev. (in parentheses) are shown.

b. * means the 95% credible interval does not include zero.

Second, we can find spatial interaction in business
cycle in Japan, since the parameter ρ is estimated
0.368 positive and significantly. This result suggest
that if we work out a regional business policy, we
cannot ignore the neighbor regions business.

Third, we can find that the potential probability in
each prefecture is different. Figure 3 shows the
distribution of constant terms in each prefectures.
From the figure, we can find that it shows positive
value only in Shimane. Conversely, Shiga, Kumamoto
and Tochigi shows high negative values. But we
cannot find the relationship between the order of
constant terms and other economic situation like GRP.
Therefore, it may mislead to wrong economic policy
that we use the GRP as a policy index. In addition,
if we take into account that the constant terms are not
significant by the test of credible interval, there is no
potential probability difference among prefectures.

Finally, we can see the difference of changes in
probability in each prefectures, especially among 7

the fact that islands are separate geographical entities. But for
example, the most northern island Hokkaido is connected by the
Seikan railway tunnel to Honshu. And Honshu is connected by
the Awaji and Seto Bridge to Shikoku, and the southern island
of Kyushu is also connected by the Kanmon Tunnel and Bridge
to Honshu. Therefore, Okinawa is the only prefecture which is
independent of all other prefectures.
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Figure 3. The Constant Terms in each prefecture

regions. Figure 3 shows the changes in probability in
probability. From the figure, we can find the similar
tendency in each region except for Kyushu region.
For example, we can see the fall of probability in
1998 and rise in 1999. It may be the reason that
the spatial dependency affects to the similarity of the
business cycle in each region. But we can also find the
difference among regions. Although the stable with
probability period continued from 1994 to 1997, the
probability in Kansai region is not so high compared
with other regions. Especially, the probability in
Osaka is around 0.5.

5. CONCLUSIONS

This paper has examined the panel probit model with
spatial dependencies from a Bayesian point of view.
We expressed the joint posterior distribution, and
proposed MCMC methods to estimate the parameters
of the model. We have illustrated our approach using
simulated and real data.

From the results for the simulated data, we found
serious spatial correlation biases and the importance
of spatial correlation. As for the real data example,
we considered the business cycle in Japan. From the
results, we can find (1) if electricity demand, sum of
annual sales of industrial goods and balance at the
bank rise, the probability of business rises, (2) there
exists spatial dependency, (3) the potential probability
is not different among each prefecture and (4) we can
capture the changes in probability of business cycle in
each region.

Finally we will discuss our remaining issues. In
this paper, we proposed spatial panel probit model.
But if the period becomes long, it takes very long
time to estimate the model analytically. Therefore,
we can only capture the changes in probability and
cannot examine the turning point of business cycle
empirically. It is also important to consider the
efficient method to estimate the long run panel data.
But we think this is the first step to examine the spatial
interaction in econometrics using panel data.
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Figure 4-1:The changes in the probability
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