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EXTENDED ABSTRACT 
 
Eastern king prawns (Melicertus plebejus) are the 
primary species for significant commercial 
fisheries in New South Wales (NSW) and 
Queensland. There is assumed to be a single stock 
of eastern king prawns that is shared between these 
jurisdictions with a large migration of both larval 
and adult prawns across the state borders. The two 
states manage their exploitation of this species 
separately. Considerable assessment work has been 
undertaken on the Queensland fishery and the 
stock assessment of eastern king prawns has been 
identified as priority research in NSW. 
 
A Bayesian framework was selected to calibrate a 
delay-difference model of eastern king prawn 
stocks in NSW. This allowed the more extensive 
Queensland research to be incorporated whilst 
allowing for any unique circumstances in the 
southern part of the stock to be captured. This 
methodology enabled the quantification of the 
uncertainties in the dynamics of the fishery, which 
was reflected in the subsequent analysis. 
 
There are two primary goals of this analysis (or 
preliminary stock assessment). The first is to 
determine the current state and productivity of the 
stock. The second is to analyse the consequences 
of various management strategies for the stock. 
The Bayesian Approach is well suited to both 
these aims, particularly when there is significant 
uncertainty about the true population dynamics of 
the stock; gaps in the data; and multiple sources of 
information that are relevant. 
 
The Bayesian approach involves comparing the 
data from various population dynamics models 
with actual observed data to produce probability 
distributions of model parameters (posterior 
probability distribution functions or pdf(s)). This 
study applied the sampling/importance re-
sampling (SIR) method, which was numerically 
robust and straightforward to implement. 
 

The results of each model run were evaluated by 
the following criteria: spread of the posterior 
probability distribution functions and derived 
statistics; comparison of priors with the associated 
marginal posteriors; analysis of sensitivity of 
results to alternative priors; the performance of the 
model against simulated data; an analysis of 
residuals and correlation between fitted parameter 
values; information criteria; a consideration of the 
strength of the underlying science and a 
comparison against observable biological 
indicators. 
 
Various types of uncertainty were considered in 
this analysis including: process and observation 
error; uncertainty in model structure and 
uncertainty associated with the parameter values 
used in the prior probability distribution functions. 
Four alternative model structures were considered 
in this analysis and results indicated that the 
largest source of uncertainty is the structure of the 
model. 
 
For all models, the comparison of the parameter 
priors to their marginal posteriors indicated that 
the catch rate (catch/effort) data was not a 
particularly valuable source of information on the 
dynamics of the stock. This was caused by the lack 
of contrast in the catch and effort data and the 
natural variability in the system. 
 
One of the unavoidable consequences of this low 
contrast in the catch rate data was that it was not 
possible for any of the four models to determine 
absolute population levels or stock biomass. This 
is a common problem for most fish stocks and has 
led to a number of scientists cautioning against 
decisions based on absolute biomass levels. 
Fortunately, results show that the level of 
uncertainty in the relative biomass levels (such as 
the depletion ratio over the last 20 years) is much 
smaller than the uncertainty associated with an 
estimate of absolute biomass. 
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1 INTRODUCTION 
 
Eastern king prawns (Melicertus plebejus) are the 
primary species for significant commercial 
fisheries in New South Wales (NSW) and 
Queensland. The combined value of the landed 
catch in both states is over AUD$100 million per 
year (Queensland DPI 2005; DPI 2001; DPI 2004) 
with the majority caught in Queensland waters. A 
small recreational fishery in both states also 
harvests this species. The commercial and 
ecological importance of eastern king prawns has 
seen the development of a number of population 
models including Lucas 1974; Glaister et al. 1990; 
Gordon et al. 1995 and O’Neill et al. 2003. 
 
Both industry and fishery managers in NSW have 
identified the stock assessment of eastern king 
prawns as research priority (DPI 2001; DPI 2004). 
A dynamic model of population is an important 
component of such an assessment and is the 
motivation for the research presented here. An 
earlier model on the NSW component of the stock 
published by Gordon et al. 1995 was a spatial 
extension to a yield-per-recruit analysis. This 
deterministic model provided important insight 
into the trade-offs operating between individual 
growth, mortality and migration for the fishery 
along the NSW coast. In contrast, the modelling 
frameworks developed by O’Neill et al. (2005) 
used the more standard structures of a delay-
difference and length-structured models. Although 
O’Neill et al. (2005) considered examples from 
both the NSW and Queensland the emphasis of 
their study was the Queensland fishery. 
 
The biology and the life-history of eastern king 
prawns has been considered by Ruello (1975) and 
Glaister (1983) (amongst others). Such studies 
have shown that, although the morphology of the 
species varies little along the east coast of 
Australia, the demography of the species is very 
difficult to generalise. The growth, mortality and 
recruitment of this species appear to vary greatly in 
time and space. 
 
Data from the commercial fisheries in NSW are 
not as extensive as those available from 
Queensland, where the catch and effort 
information are better resolved. Furthermore, the 
extensive research into the efficiency or 
catchability of the fleet (O'Neill et al. 2003) has 
not been repeated in NSW. The dynamic models 
developed in NSW need to utilise the information 
available from Queensland but also re-orient the 
models toward the management of the fishery in 
NSW. This requirement suggested that a Bayesian 
framework would be appropriate to study the 
dynamics of this fishery in NSW. 

 
Although Queensland catch and effort data were 
not used, much of the research drawn upon to 
develop the informative prior probability 
distributions was derived from research conducted 
on the Queensland fishery. 
 
There are two primary goals of a stock assessment: 
(1) to determine the current state and productivity 
of a stock; (2) to analyse the consequences of 
various management strategies on the stock. The 
Bayesian approach is well suited to both these 
aims, particularly when there is significant 
uncertainty about the true population dynamics of 
the stock and there are multiple sources of 
information that are relevant. Only the first aspect 
of a stock assessment is presented here. 
 
2 METHODS 
 
The Bayesian approach involves comparing the 
output from various population dynamics models 
with actual observed data to produce posterior 
probability distribution functions (pdf). 
Conceptually the posterior pdf can be regarded as 
the combination of prior information and observed 
information. The relative density of a value in the 
posterior pdf provides the probability that the 
observed data was produced by the particular 
model and parameter set (incorporating the prior 
information) (Walters and Ludwig 1994).  
 
This study applied the sampling/importance re-
sampling (SIR) method to all the models. The SIR 
method is numerically robust and fairly 
straightforward to implement. Firstly, model 
parameter values are generated according to their 
probability within each parameter’s prior pdf and 
the model is run using these values to generate 
estimated catch rates for each year. These 
estimated catch rate values are then compared to 
the actual values using a log likelihood function. 
This process is done many times (15 million in our 
case) storing the parameter values of each run 
along with the results. The final posterior pdf is 
then fashioned by “re-sampling” (with 
replacement) from this large sample of runs based 
on an importance function. In our case the joint 
prior pdf was used as the importance function 
which meant that the re-sampling was determined 
by each run’s likelihood value. In this case, the 
higher the relative likelihood of a run, the better 
the run’s results matched the actual catch rate data, 
and the more frequently this run would be re-
sampled to become part of the posterior. For a 
more detailed explanation of these steps in the 
Bayesian SIR model fitting process see McAllister 
et al. (1994). 
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A delay difference model was used in this analysis. 
In terms of complexity, the delay-difference model 
lies between the simpler surplus production 
models and the more complex age- or length-
structured models. Delay difference models are 
able to provide some of the advantages of both of 
these alternatives types of models. Like an age-
structured model, the delay-difference model has a 
sound biological background (such as life history), 
allowing many parameters of biological 
significance to be estimated from direct 
observation. The delay-difference model also 
retains the simpler data requirements of the surplus 
production model but allows for the representation 
of time-lags in growth and recruitment. The model 
also enables predictions of average body weight 
(and therefore size), which is an important 
management indicator when age composition data 
are not available (Walters and Ludwig 1994). 
Delay-difference models are also numerically 
efficient; this aids their application within 
Bayesian analyses that usually require many 
millions of iterations.  
 
Delay-difference models are based on a general 
equation for population biomass that incorporates 
processes for survival, growth and recruitment. 
Equations 1 and 2 show the coupled difference 
equations for biomass and prawn numbers used in 
this study are: 
 

tkttttt RwBsNsB ++= −−−− 1111 ρα   (1) 

tttt RNsN += −1    (2) 

 

where Bt is the total prawn stock biomass at the 
beginning of month t for prawns that are aged k+1 
months and older; N,t is the total number of prawns 
in this stock at month t; wk is the average weight of 
prawns at age k; and Rt is the count of new recruit 
prawns entering the fishable stock at the month t. 
Parameters α and ρ are discussed below. 
 
Survival rate st at month t is determined by the 
instantaneous natural mortality rate (M) and 
emigration rate (G) to Queensland, as well as the 
harvest rate ht using Equation 3: 

)1()(
t

GM
t hes −= +−   (3) 

The harvest rate ht was calculated as ht=Ct/Bt (4), 
where Ct is the observed landed catch in NSW 
from all commercial fisheries. 
 
Growth of individuals is modelled using the 
recursive equation: 

1−+= aa ww ρα  (5) 

where α and ρ are the intercept and slope of the 
Ford-Walford plot for the prawn species and wa is 
the weight of a prawn at month a (see Hilborn and 
Walters 1992 for more details). The growth 
parameter α is not estimated by the Bayesian 
analysis but is instead derived from available 
empirical data on the prawn species including 
length-at-age plots and weight-length relationships 
found in Glaister (1983). 
 
In equations (1) to (5) no assumptions have been 
made about recruitment. A number of alternative 
representations of recruitment resulted in the 
creation of multiple model structures. Equations 
(1)-(5) are common to all four models developed 
in this study. 
 
For the “Base Model” the stock-recruitment 
relationship is based upon the Beverton-Holt 
model (see Haddon 2001). The stock-recruitment 
relationship is as follows: 
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The parameter z represents the steepness of the 
stock-recruitment relationship, and Asr and Bsr are 
the parameters of the Beverton-Holt stock-
recruitment relationship. The parameter k 
represents the number of months between 
spawning and recruitment into the fishable 
population. 
 
Bayesian analysis requires the use of the likelihood 
function to determine the “goodness of fit” of the 
model to the observation data. The use of the 
likelihood function thus requires a relationship 
between the indices of abundance from the model 
and the actual observed abundance from the 
observation data. It is assumed that the observed 
abundance index (in this study the Ocean Trawl 
Fishery catch per unit effort, CPUE or Ut) is 
directly proportional to the stock biomass, and is 
log-normally and independently distributed: 

),(~ 2σttt BqLognormalU  (9) 

where Bt is the absolute biomass by weight at time 
t, qt is the catchability coefficient at time t, and σ is 
the standard deviation of the log-transformed catch 
rates.  
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The base model also added seasonal variability to 
catchability term in the model to reflect the 
periodicity in the data. This seasonality was 
approximated with a sine wave: 

))]/[cos(1(min
c

t pftqq −+=  (10) 

where t is the numeric time period in months, f and 
p are the frequency and phase of the sine wave, 
and c is the pitch of the sine wave function. The 
frequency f  was set to 12/π in all cases, spreading 
one full wave over 12 months reflecting the annual 
catch rate cycles. The pitch parameter, c, provides 
a mechanism for altering the width of the sine 
wave that was set to 2 in all cases. This seasonality 
function parallels the recruitment pattern function 
used by O’Neill et al. (2005). 
 
Catchability is affected by changes in fishing 
power, such as gear and vessel changes and 
technological improvements. An extensive study 
on the changes in fishing power in the east coast 
prawn fisheries was conducted by O'Neill et al. 
2003. This study relied primarily on Queensland 
catch and effort data and database of technological 
changes but has been used here as a means of 
calibrating our NSW CPUE data. Accordingly a 
monthly growth in fishing power of 0.00041 
month-1 was applied over the last 20 years of 
observations.  
 
Three additional models were also considered in 
this study. Each model contained the same 
underlying delay-difference model (described 
above) but with different representations of 
recruitment. These alternative models were 
justified because of the serial autocorrelation 
identified in the CPUE time series. The presence 
of autocorrelation in the data violates the 
assumptions required for the use of the likelihood 
function. This autocorrelation was likely caused by 
process error, or a misrepresentation of the 
relationship specified to link consecutive time-
steps. Replacing, or amending, the stock 
recruitment relationship is the simplest way to 
improve this representation. 
 
The first derived model is the delay-difference 
with recruitment error model (RE model) which 
contains an additional 20 recruitment error 
parameters, one for each year of the observations. 
Each process error term is an exponent value 
applied to the estimated recruitment for each 
month in one year. Thus, rey is applied to each 
estimated recruitment value for month m, in year y. 

yre
ymym eRR ,,

)
= (11) 

The second model assumes (as per Glaister (1983), 
Schnute (1985) and Walters and Ludwig (1994)) 

that recruitment for prawns is primarily driven by 
the environment. This second derived model 
replaces the stock recruitment function associated 
with a constant recruitment with a stochastic term 
(the recruitment error exponents). We have termed 
this model the delay-difference with stochastic 
recruitment (SR) model and have replaced 
Equation 8 with the stochastic recruitment function 
given in Equation 12 

  yre
ym RR )( 0, = (12) 

where R0 is regarded as the virgin recruitment 
levels and rey is the exponent term applied to the 
estimated recruitment for each month in a year. 
 
The final derived model is the delay-difference 
with 2 Cycles (2C) model. This model is based on 
an analysis of the process error terms in the RE 
model which exhibit a long run cyclic pattern. 
Thus, this model contains both the short run 
seasonal catchability cycle as well as an additional 
long run recruitment cycle. This model is the same 
as the SR model except that the 20 recruitment 
error parameters are replaced with the cyclic 
recruitment function given in Equation 13. 

))]/[cos(½1.( 2
0 LRpLRftRRt −+= (13) 

where t is the numeric time period in months (1 to 
240), LRf and LRp are the frequency and phase of 
the long-run recruitment sine wave. The ½ term 
was employed to constrain the amplitude of the 
function. This equation replaces equation 12 in the 
SR model. 
 
Simulated catch rates are compared with 
observations from Jul-1984 to Jun-2004 (20 × 12 = 
240 months). Due to transient effects in the model, 
an iterative burn-in process was used to stabilize 
the simulation before comparisons with 
observations were made. The first year of 
compared data was therefore B1 (1984/85) not B0 
(which was only used to initialise the simulation). 
 
3 RESULTS 
 
A summary of the results from the assessment are 
shown below in Table 1. The table includes: the 
priors and marginal posteriors for the five main 
estimated parameters for which prior pdfs were 
used; the estimated biomass at the completion of 
the run (Bnow or the biomass in financial year 
2003/04); the biomass depletion ratio (Bnow/B1); 
the Average Stock Weight (avg.w) in the final year 
and two information criteria AIC (Akaike 
Information Criteria) and BIC (Bayes Information 
Criteria) (Kass and Raftery 1995). For these 
information criteria lower values indicate a better 
model. 
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Table 1 Results from running each model against the observed data using informative priors. 

 
Parameter

Prior
pdf

Value

Base 
Model

Est Value

RE 
Model

Est Value

SR 
Model

Est Value

2C 
Model 

Est Value

5.6E-07 Q1 1.7E-06 1.6E-06 1.9E-06 1.4E-06
q 1.4E-05 Mean 2.6E-06 3.0E-06 3.7E-06 2.5E-06

3.1E-06 Med 2.2E-06 2.3E-06 2.9E-06 2.0E-06
1.8E-05 Q3 3.1E-06 4.0E-06 4.9E-06 3.1E-06

0.81 Q1 0.81 0.81 1.00 1.00
z 0.87 Mean 0.88 0.87 1.00 1.00

0.87 Med 0.88 0.87 1.00 1.00
0.94 Q3 0.94 0.93 1.00 1.00
0.34 Q1 0.36 0.29 0.32 0.46

M+G 0.45 Mean 0.46 0.37 0.40 0.54

(month-1) 0.45 Med 0.46 0.34 0.39 0.54
0.57 Q3 0.56 0.44 0.46 0.61
0.99 Q1 0.95 1.00 0.99 0.98

rho 1.02 Mean 1.00 1.03 1.03 1.02

(month-1) 1.02 Med 1.00 1.04 1.03 1.02
1.06 Q3 1.05 1.08 1.07 1.05

5,740 Q1 9,988 6,697 5,852 8,432
B0 10,456 Mean 13,254 10,905 10,230 12,000

(tonnes) 10,460 Med 13,677 10,832 9,571 12,090
15,263 Q3 16,801 15,152 14,400 16,293

Q1 9,375 6,509 5,127 9,548
Bnow Mean 14,095 12,332 9,309 14,414

(tonnes) Med 13,056 11,053 8,462 13,926
Q3 17,188 16,678 12,829 18,847
Q1 1.00 0.86 0.88 1.12

Bnow/B1 Mean 1.00 0.87 0.89 1.14
Med 1.00 0.87 0.89 1.14
Q3 1.00 0.88 0.90 1.16
Q1 0.04 0.05 0.04 0.05

avg.w Mean 0.05 0.05 0.05 0.05

(kgs) Med 0.05 0.05 0.05 0.05
Q3 0.06 0.06 0.06 0.06

AIC Q1 -17 -96 -108 -77
BIC Q1 7 -2 -18 -49
MIR 0.00 0.02 0.01 0.01

CV(AIW) 0.00 0.00 0.01 0.01
MaxLL 

Bnow/B1 1.00 0.88 0.90 1.15  
 
The last three rows of Table 1 give diagnostic 
variables that are used to test the quality of the 
posterior. They are the maximum importance ratio, 
MIR (McAllister and Ianelli 1997), the coefficient 
of variation of the average importance weight, 
CV(AIW) (McAllister et al. 2001). A value of less 
than 0.05 for each of these variables indicates that 
the posterior contains an acceptable diversity of 
parameter sets. The final variable is the value of 
the Bnow/B1 for the run that achieved the 
maximum log likelihood, MaxLL Bnow/B1. This 
last posterior diagnostic is compared to the median 
and the first and third quartiles of the Bnow/B1 
posterior pdf to ensure that the maximum log 
likelihood does not occur on the edges of the 
posterior (Oh and Berger 1992).  

0.9 1.0 1.1 1.2 1.3

Base Model
RE Model
SR Model
2C Model

Pr
ob

ab
ili

ty

Bnow / B1Figure 1 Illustration of the posterior probability 
distributions of Bnow/B1 for the four models. 
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Figure 1 illustrates the marginal posterior 
probability distributions of Bnow/B1 of the four 
models using the prior pdfs given in Table 1. Note 
how the differing representations of recruitment 
cause a far greater divergence in the biomass ratios 
than the variability in the parameters estimates 
within a particular model. 
 
The small variability of the posterior for the Base 
model was consequence of the poor model fit (note 
the relatively large AIC and BIC values for this 
model). Only the RE, SR and 2C models gave a 
satisfactory fit to the data.  
 
4 DISCUSSION 
 
The Bayesian Sampling Importance/Resampling 
(SIR) algorithm applied here is a relatively simple 
and versatile Monte Carlo method for use in 
fisheries assessment. The method allows the use of 
prior pdfs for any number of model parameters 
enabling existing research on the species to be 
incorporated into the model fitting exercise. Such 
information not only provides information on 
parameter values but also levels of uncertainty or 
variability in these parameter values. Bayesian 
methods also provide us with a framework in 
which to compare multiple model structures 
allowing us to deal with the important problem of 
model uncertainty (Hilborn and Punt 2001).  
 
Comparing the model against simulated and actual 
data exposed a number of weaknesses in our 
Bayesian SIR approach. None of the models could 
be fitted to the data satisfactorily if completely 
uninformative priors were used. Solutions were 
found for each of our models using informative 
priors although we were required to fix a number 
of parameters (i.e. set completely informative 
priors) despite our knowledge of these parameters 
being imperfect. Finally, for the SR and RE 
models we also had to provide the recruitment 
error terms with partially informative priors.  
 
In short, the lack of contrast in the catch and effort 
observations meant that we had to point our 
Bayesian model in the right direction using 
informative priors. Increasing the number of 
iterations used in the SIR algorithm could 
ameliorate this issue. However, computational 
limitations prevented us from exceeding 15 million 
iterations despite our use of a method for reducing 
memory requirements by storing only each run’s 
random number seed instead of their complete 
parameter vectors (McAllister and Ianelli 1997). 
 
This analysis of the NSW eastern king prawn 
stocks illustrates the large degree of model 
structure uncertainty possible in such stock 

assessments. Each of the four models provides a 
very different posterior pdf of the management 
indicator Bnow/B1 (Figure 1). However, despite this 
uncertainty, none of the model structures suggest 
that the stock is in a severely overfished condition. 
 
One of the unavoidable issues resulting from the 
low contrast in the catch and effort data was that it 
was not possible for any of our models to credibly 
determine absolute biomass. This is a problem for 
many fish stocks; even those rich with 
observational data, and has led to a number of 
scientists cautioning against decisions or decision-
making frameworks that require absolute estimates 
of biomass (Hilborn 2002). These results have 
shown that the level of uncertainty surrounding 
management indicators based on relative biomass 
levels, such as the depletion ratio, is much smaller 
than that associated with an estimate of the 
absolute exploitable biomass.  
 
This research has a range of possible future 
directions. The Bayesian approach could be 
refined by improving the importance function or 
applying an alternative sampling methodology, 
such as adaptive importance sampling (Oh and 
Berger 1992). Including spatial processes and a 
length structure for the prawn population would 
increase the biological resolution of the models, 
but at the expense of an increase in the number of 
parameters. Incorporating the Queensland fishery 
would eliminate the need for an emigration term 
and may enable easier specification of a stock 
recruitment relationship (if it exists). 
 
There are also a number of avenues for further 
research into the consequences of alternative 
management of this stock. For example, simulation 
modelling could be utilised to evaluate the most 
efficient avenues for further research, such as 
whether research in biological parameters would 
bear more fruit than conducting independent 
surveys. The model could also be expanded to 
include socio-economic components to consider 
the possible consequences of alternative 
management strategies on the individuals and 
industries dependent on the prawn stock. The 
recently published work of Holland et al. (2005) 
demonstrated the values of coupling an economic 
component to a Bayesian stock assessment model 
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