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ABSTRACT

This paper is concerned with the estimation of the
nominal yield curve by means of two complementary
approaches. One approach models the yield curve
directly while the other focuses on a model of the
forward rate from which a description of the yield
curve may be developed by integration of the forward
rate specification. This latter approach may be broadly
interpreted as a generalisation of the widely used
parametric functional form proposed by Nelson and
Siegel (1987) for yield curve estimation. Nelson
and Siegel describe the yield curve in terms of three
linear factors commonly referred to as the level factor,
the slope factor and the curvature factor, together
with a nonlinear factor, sayλ, which represents
a time-scale. In a recent paper, Diebold and Li
(2005) use the Nelson-Siegel method to fit the yield
curve for US bonds. In their application, the value
of λ (the parameter representing the time-scale) is
fixed, leaving only the level, slope and curvature
factors with which to capture the behaviour of US
yields. Although this approach has the advantage of
simplicity in terms of implementation, it is likely to
be suboptimal if the fit of the yield curve is sensitive
to the choice of the time-scale parameter.

In this article, a limited empirical calibration exercise
is performed using gilts yield curves published by the
Bank of England. The data set comprises weekly
yield curves for maturities from 1 to 19 years at 6-
monthly intervals for the time period January 1985 to
December 2004. In this exercise, the 3-factor Nelson-
Siegel form with λ assigned the value suggested
by Diebold and Li on theoretical grounds proved
inadequate to capture the variation in the shape of
the UK yield curve. In fact, there was no value of
λ for which the Nelson-Siegel specification provided
an adequate fit to the shape of the UK yield curve,
a finding which suggests that this model may not
be flexible enough to describe commonly occurring
patterns in observed yields.

This article presents two possible ways in which
the Nelson-Siegel model for fitting yield curves may
be generalised. These generalisations are based on

the Fourier-Laguerre representation of a continuous
function in(0,∞), and enjoy the advantage that they
retain the overall structure of the Nelson-Siegel model
and its ease of implementation. Both models describe
the yield curve as a sum of linear factors multiplying
nonlinear functions of maturity based on Laguerre
functions, all of which use a common value forλ.
Just as for the Nelson-Siegel model of yields, these
generalised models may be implemented within a
simple least-squares framework.

Both the yield-based and forward rate based models
are applied to the UK Gilts data for various numbers
of factors. Both 3-factor models exhibit the same
poor quality of fit as that experienced by the Nelson-
Siegel model. Both variants of the generalised 4-
factor model performed equally well when fitted to
UK yield curve, and both proved superior to the fit
of the Nelson-Siegel model. Rather interestingly, the
move to five factors did not significantly improve the
quality of the fit.

A matter of concern when using the Nelson-Siegel
model to fit yield curves is the sensitivity of the fit
to the value of the time-scale parameterλ. The value
of λ used in the Diebold and Li (2005) investigation
of the yield curve for US bonds was unsuitable for
the UK yield curve. In particular, the sensitivity of
the Nelson-Siegel model to the value ofλ was such
that the factors of the model could not compensate for
an inappropriate choice ofλ. On the other hand, the
improved fit to the UK yield curve achieved by the
generalised models with four factors is, in addition,
achieved with less sensitivity to the value ofλ. This
sensitivity to the value ofλ is further reduced with
five factors although, as commented previously, the
quality of the fit is not improved significantly.

Finally, although the optimal fit achieved by the
generalised model of yields is indistinguishable from
that based on the forward rate, the sensitivity of this
fit to the value ofλ is greater for the former than
the latter. It is conjectured that this difference stems
from the different behaviour of both models at long
maturities, and suggests that the model based on
forward rates is to be preferred.
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1 INTRODUCTION

The yield curve is the plot of the yield to maturity of
zero-coupon bonds against maturity. In practice the
yield curve is not observed but must be extracted from
observed bond prices for a set of (usually) incomplete
maturities. One approach to yield construction
is due to Fama and Bliss (1987) who develop a
piecewise constant representation of forward rates
from observed bond prices. These forward rates are
then used to generate a smooth yield curve in one
of two ways. The first fits a parametric functional
form to the unsmoothed forward rates and a smooth
yield curve is then computed. Alternatively, the
unsmoothed forward rates are averaged to obtain the
so-called unsmoothed Fama-Bliss yields to which
yield curve with prescribed parametric functional
form is then fitted.

One of the most widely used parametric functional
forms used in yield curve estimation was proposed
by Nelson and Siegel (1987). Essentially this form
describes the yield curve in terms of three factors,
which may be broadly interpreted as the level, slope
and curvature of the yield curve, and one further factor
that represents a time scale. In a recent paper, Diebold
and Li (2005) use the Nelson-Siegel method to fit
the yield curve for US bonds. In their application,
the value of the parameter representing the time scale
is fixed, leaving only three linear factors with which
to capture the behaviour of yields. Although this
approach has the advantage of simplicity in terms of
implementation, it is likely to be suboptimal if the fit
of the yield curve is sensitive to the choice of the time
scale parameter.

The main contribution of this paper is to propose
a general framework within which to represent
either the yield curve or the forward rate of
interest. This approach is based on the Fourier-
Laguerre representation theorem of functions defined
on (0,∞), and enjoys the crucial advantage that
it allows an arbitrary number of independent linear
factors to be introduced into the model of either the
yield curve or the forward rate. It will be argued
that these additional factors can play an important
role in reducing the sensitivity of the fit of the yield
curve to the choice of the time-scale parameter. The
simplicity of the Diebold and Li (2005) approach
is thus maintained, while none of the theoretical
properties of the Nelson-Siegel functional form are
compromised.

A limited empirical calibration exercise is performed
using gilts yield curves published by the Bank of
England. The data set comprises weekly yield

curves for maturities from 1 to 19 years at 6-
monthly intervals for the time period January 1985
to December 2004. The 3-factor Nelson-Siegel form
with the time-scale parameter fixed proved inadequate
to capture the variation in the shape of the UK yield
curve. The generalised 4-factor variant introduced
in this paper was superior in terms of fit. However,
the addition of further factors did not significantly
improve the quality of the fit, but instead reduced the
sensitivity of the fit to the choice of time scale.

The paper is structured as follows. Section 2
outlines the Nelson-Siegel functional form and a
generalisation to this model proposed by Svensson
(1995). The main theoretical contribution of this
paper is contained in Section 3 and the subsections
thereof. The Fourier-Laguerre representation is
developed directly for the yield curve and also for the
forward rate. Section 4 applies the Fourier-Laguerre
approach to UK Gilts data. A brief conclusion and
directions for future research are given in Section 5.

2 THE NELSON-SIEGEL MODEL

Let t be current time and letf(u) denote the forward
interest rate at time(t + u), then the current price of a
zero-coupon bond maturing at par at time(t + τ) is

P (τ) = exp
[
−

∫ τ

0

f(u) du
]
. (1)

The yield of the bond,y(τ), the price of the bond,
P (τ), and the forward rate,f(u), satisfy

y(τ) = − log P (τ)
τ

=
1
τ

∫ τ

0

f(u) du . (2)

The classical term-structure problem requires the
estimation of the smooth yield curvey(τ) from
observed bond prices. In recent years the method of
choice has been to compute the implicit forward rates
required to price successively longer maturity bonds at
the observed maturities. These are called unsmoothed
forward rates. The smoothed forward rate curve is
then obtained by fitting a parametric functional form
to these unsmoothed rates. One common choice
proposed by Nelson and Siegel (1987) is

f(u) = β1 + β2e
−λu + β3λue−λu. (3)

Alternatively, the unsmoothed forward rates can be
converted into unsmoothed yields by interpreting
equation (2) as an averaging procedure. By choice of
the parametersβ1, β2, β3 and λ, these unsmoothed
yields are now fitted to the functional form

y(τ) = β1 + β2

(1− e−λτ

λτ

)

+β3

(1− e−λτ

λτ
− e−λτ

) (4)
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which is the yield curve corresponding to the Nelson
and Siegel forward rate (3). The constant termβ1 in
this model is interpreted as thelevelof the yield curve,
that is, it is the limiting value of the yield curvey(τ)
asτ → ∞. Therefore the parameterβ1 is required to
be positive. The term

(
1− e−λτ

)
/(λτ) is interpreted

as theslopeof the yield curve. This function decreases
monotonically with maturity. Sincey(τ) → β1+β2 as
τ → 0+, then the instantaneous rate depends on both
the level and the slope of the yield curve. The term(
1 − e−λτ

)
/(λτ) − e−λτ is related to thecurvature

of the yield curve. The motivation for this claim is
based, first, on the observation that this function rises
with maturity and then falls asymptotically to zero
as maturity increases, and second, on the observation
that this function is essentially the gradient of the
slope function

(
1−e−λτ

)
/(λτ) in view of the identity

( 1− e−λτ

λτ
− e−λτ

)
= −τ

d

dτ

(1− e−λτ

λτ

)
.

In a recent paper, Diebold and Li (2005) argue that
the parametersβ1, β2 and β3 denoting respectively
the level, slope and curvature of the yield curve
may be treated as dynamic factors. Time series of
these factors are obtained easily by estimating the
Nelson-Siegel model (4) from unsmoothed yields data
for all available bond maturities on a given date.
The time series of observations on the parameters
β1, β2 and β3 are generated by repeating this
procedure for a sequence of dates. If the factors
can be forecast successfully, then bond prices can be
predicted successfully. Moreover, this strategy would
need to be more successful than focussing directly on
bond prices, or on forecasting the entire yield curve
itself (rather than the loadings on the factors thought
to underly the yield curve).

Clearly the efficacy of the Diebold and Li (DL)
approach will depend on how accurately the model
fits the yield curve at each date, and also on how
well the factors may be forecast from their resulting
time series. This paper focusses on the former
problem and highlights two potential limitations of
the DL approach. The first limitation concerns the
treatment of the parameterλ. DL set λ = 0.0609
so that the nonlinear Nelson-Siegel function may be
implemented as a linear regression. The motivation
for this choice ofλ is to ensure that

(
1−e−λτ

)
/(λτ)−

e−λ1τ reaches its maximum value at a maturity of 30
months in recognition of the fact that the yields of 2
year and 3 year bonds are generally acknowledged to
be important benchmark rates.

The second limitation of the Diebold approach is the
restriction on the number of factors. The three factor
approach advocated by Nelson and Siegel (1987)

has been extended by Svensson (1995) to a 4-factor
representation

f(u) = β1 + β2e
−λ1u + β3λ1ue−λ1u + β4λ2ue−λ2u

with corresponding yield specification

y(τ) = β1 + β2

(1− e−λ1τ

λ1τ

)

+β3

(1− e−λ1τ

λ1τ
− e−λ1τ

)

+β4

(1− e−λ2τ

λ2τ
− e−λ2τ

)
.

This specification is problematic. Not only are
there now twoλ parameters to estimate, but the
functional form suffers from the difficulty that it is
degenerate when the values of the parametersλ1 and
λ2 coincide. Whenλ1 andλ2 take different values, the
model specification leads to an underlying parameter
estimation problem that is no longer straightforward
since it now involves multi-dimensional minimisation.

Section 3 now provides an alternative interpretation
of the Nelson-Siegel model that can be extended
naturally to an arbitrary number of factors. This
generalisation can accommodate all possible yield
curve shapes, and also enjoys the advantage that the
individual factors in the model represent mutually
orthogonal contributions to the final specification of
the yield curve.

3 THE FOURIER-LAGUERRE APPROACH
TO MODEL SPECIFICATION

There are two ways to proceed; either model the
yield curvey(τ) and derive the forward rate from the
definition

f(τ) =
d

dτ

(
τy(τ)

)
, (5)

or follow the Nelson-Siegel approach in which the
forward rate is modelled and the yield curve derived
from this model using equation (2). While both
approaches yield a similar fit, it will become clear later
that the method that fits the yields directly is more
sensitive to the value ofλ than the approach based on
a model of the forward rate.

3.1 Preliminaries

The generic form for the function to be modelled
in this paper, namely the yield curve or the forward
rate, is motivated by a representation theorem which
asserts that ifφ(τ) is a continuous function in(0,∞)
satisfying

∫ ∞

0

eτ
[
φ(τ)− β1

]2
dτ < ∞ ,
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thenφ(τ) can be represented pointwise by the Fourier-
Laguerre series

φ(τ) = β1 + e−λτ
∞∑

k=0

ckLk(λτ) (6)

whereLk(x) is the Laguerre polynomial of degreek,
λ is a positive parameter andc0, c1, · · · are coefficients
to be determined (see, for example, Canuto, Hussaini,
Quarteroni and Zang, 1988). The specification ofφ(τ)
in equation (6) must be estimated from a finite number
of maturities of restricted duration, and therefore in
practice it is convenient to representφ(τ) by a sum of
(N + 1) Laguerre polynomials, say

φ(τ) = β1 + e−λτ
N∑

k=0

ckLk(λτ) , (7)

where the parametersλ, β1 and the coefficients
c0, . . . , c N are to be estimated from observations of
bond prices at various states of maturation.

The case in which the model is written for the
yield curve is considered separately from the case
in which the forward rate is the subject of the
model. Both approaches, however, are based on
Laguerre polynomials in whichLk(x), the Laguerre
polynomials of degreek, is defined conveniently by
Rodrigues formula

Lk(x) =
ex

k!
dk

dxk

(
xke−x

)
. (8)

3.2 Model of the yield curve

Suppose that the yield curve is modelled by the
parametric form

y(τ) = β1 + e−λτ
N∑

k=0

ckLk(λτ) , (9)

thenβ1, λ and the coefficientsc0, · · · , c N are chosen
to minimise

M∑

j=1

[
y(τj)− β1 − e−λτj

N∑

k=0

ckLk(λτj)
]2

(10)

whereτ1, · · · , τ M are a series of maturation times for
a given class of bond andy(τ1), · · · , y(τ M) are the
associated yields. Given the specification (9) ofy(τ),
the associated forward rate of interest is

f(τ) = β1 +
N∑

k=0

ck
d

dτ

(
τe−λτLk(λτ)

)
. (11)

in view of equation (5). Taking the Rodrigues formula
(8) as the definition ofLk(x), it can be shown that

d

dx

(
xe−xLk(x)

)
= e−x

[
(k+1)Lk+1(x)−kLk(x)

]
.

This result is now used in equation (11) to give

f(τ) = β1 + e−λτ
N∑

k=1

k
(
ck−1 − ck

)
Lk(λτ) (12)

after re-indexing the summation. To summarise,
in this approach the parameters of the yield curve
given by the specification (9) are estimated directly
from observations of bond prices at various states
of maturation, and the associated forward rate is
determined from equation (12) with known values for
β1, λ and the coefficientsc0, · · · , c N.

3.3 Model of the forward rate

Suppose now that the forward rate is modelled by the
parametric form

f(u) = β1 + e−λu
N∑

k=0

ckLk(λu) (13)

in which the parametersβ1, λ and the coefficients
c0, · · · , c N are to be estimated from observations of
bond prices at various states of maturation. The yield
curve is first calculated from the forward rate using
equation (2) to obtain

y(τ) =
1
τ

∫ τ

0

[
β1 + e−λu

N∑

k=0

ckLk(λu)
]
du

= β1 +
1
λτ

N∑

k=0

ck

∫ λτ

0

e−x Lk(x) dx .

(14)

When k ≥ 1, it follows directly from Rodrigues
formula (8) that

∫ λτ

0

e−x Lk(x) dx =
1
k!

dk−1

dxk−1

(
xke−x

)∣∣∣
x=λτ

.

Further progress takes advantage of the identity

1
k!

dk

dxk

(
xk+1e−x

)
= xe−x

k∑

j=0

Lj(x) ,

which in combination with equation (14) now leads to
the formula

y(τ) = β1 + c0

(1− e−λτ

λτ

)

+ e−λτ
N∑

k=1

ck

k

k−1∑

j=0

Lj(λτ) .

(15)

The final expression for the yield curve associated
with the forward rate (13) is obtained by reordering
the summation in equation (15) to get

y(τ) = β1 + c0

(1− e−λτ

λτ

)

+ e−λτ
N−1∑

j=0

( N∑

k=j+1

ck

k

)
Lj(λτ) .

(16)
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The parametersβ1, λ and the coefficientsc0, · · · , c N

are now estimated from observations of bond prices
by minimising the analogous form of expression (10)
but modified to suit the specification (16). Of course,
expression (16) is equivalent to the Nelson-Siegel
form for the yield curve whenj = 0 (c0 = β2 + β3

andc1 = β3), but in general it provides a framework
by which the Nelson-Siegel parametric form may be
generalised to an arbitrary number of factors.

3.4 Summary

Observed bond prices at various maturations are used
to construct an empirical yield curve. This yield curve
is either modelled directly or is modelled indirectly
by specifying a model for the forward rate of interest.
These approaches are not equivalent. The long term
interest rate is approached exponentially in the former
but algebraically in the latter.

4 EMPIRICAL ILLUSTRATION

The models for the yield curve and forward rate
proposed in Section 3 are now applied to gilts
data published by the Bank of England. The data
comprises weekly gilts yields for maturities ranging
from 1 year (12 months) to 19 years (228 months) at
intervals of 6 months, for the period from mid-January
1985 to the end of December 2004 (a total of 1042
weekly observations for each of the 37 maturities).
These data are the smoothed yields constructed by
the Bank of England from observed bond prices (see
Anderson and Sleath, 1999) for a description of the
procedures used to construct the Bank of England
yield curve). Figure 1 shows 5 representative yield
curves1.

The first empirical question that needs to be addressed
concerns the sensitivity of the Nelson-Siegel model to
the choice ofλ. Recall that Diebold and Li (2005)
setλ = 0.0609 as this ensures that the medium-term
factor

(
1− e−λτ

)
/(λτ)− e−λ1τ reaches a maximum

value at a maturity of 30 months. Figure 2 illustrates
the fit to the mean yield curve for three values ofλ

when applied to the Bank of England data. The fit
for λ = 0.01 is acceptable, but the quality of this fit
deteriorates rapidly asλ increases, and in particular,
the fit is poor forλ = 0.0609.

Another way to illustrate the sensitivity of the fitted
yield curve to the value of the parameterλ is to
examine the squared residuals obtained by fitting
equation (4) to the data. Figure 3 illustrates how the

1The data are for the weeks beginning 16 January 1985,
17 January 1990, 18th January 1995, 19 January 2000 and 29
December 2004.
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Figure 1. Yield curves constructed by the Bank of England
from observed bond prices are shown for various dates for
bonds with maturities from 1 year to 19 years.

0 48 96 144 192 240
7.2

7.3

7.4

7.5

7.6

7.7

Time to maturity (mths)

A
ve

ra
ge

yi
el

d
(%

)

True yield curve

DL (λ = 0.0100)

DL (λ = 0.0609)

DL (λ = 0.1000)

Figure 2. The mean yield curve (solid line) is shown
together with the mean yield curves calculated from the
model of Diebold and Li (DL) withλ = 0.0100 (dotted
curve), DL’s preferred choice ofλ = 0.0609 (dashed line)
andλ = 0.1000 (dot-dashed line).

root mean squared difference between the observed
mean yield curve and its model-based value depends
on the value ofλ for a 3-factor model of the yield
curve based on equation (9) withN = 1 (dashed line),
and a 3-factor model of the yield curve based on the
forward rate in equation (13) withN = 1 (solid line).

It is apparent from Figure 3 that the optimal value
of λ is very small and that the fit of the yield curve
deteriorates sharply asλ increases. It is therefore
reasonable to conjecture that treatingλ as fixed in the
estimation may be suboptimal. In effect, the model
requires the estimation ofλ, which in turn implies that
the model is, in fact, a 4-factor model. Based on this
evidence, the forecasting performance of a 3-factor
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Figure 3. The root mean squared difference between
the observed mean yield curve and its model-based value
calculated from a 3-factor model of the yield curve (dashed
line) and a 3-factor model of the forward rate (solid line)
is shown for values ofλ ranging from λ = 0.001 to
λ = 0.040. Averages are calculated over 37 maturities from
12 months to 228 months at intervals of 6 months.

model will almost certainly be severely compromised.

The next question to be addressed is whether or not the
introduction of additional linear factors can ameliorate
the effect of fixing the value ofλ. Figures 4 and
5 illustrate respectively how the root mean squared
difference between the observed mean yield curve and
its model-based value depends on the value ofλ in
the cases of a 4-factor (N = 2) model and a 5-factor
(N = 3) model of the yield curve (dashed line) and
forward rate (solid line).

The first important conclusion to emerge from this
work is that the extension of both models from a 3-
factor model significantly increases the quality of the
fit, reduces the sensitivity of the model to the value
of λ and induces the optimal value ofλ to increase.
These affects are most marked for the move from 3 to
4 factors. It appears that the 5-factor model does not
significantly improve the quality of the fit although
the sensitivity of the fit to the value ofλ is further
reduced. Note that in all cases the curvature of the
residual curve with respect toλ is always greater when
the model is written for the yield curve as opposed to
the forward rate. Therefore the quality of the fit to
observed bond prices at various states of maturation
is more sensitive to the value of the parameterλ

when the model is written for the yield curve as
opposed to the forward rate. Furthermore, the value
of λ which minimises the residual function is always
smaller when the model is written for the yield curve
as opposed to the forward rate. In retrospect, one
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Figure 4. The root mean squared difference between
the observed mean yield curve and its model-based value
calculated from a 4-factor model of the yield curve (dashed
line) and a 4-factor model of the forward rate (solid line)
is shown for values ofλ ranging from λ = 0.001 to
λ = 0.040. Averages are calculated over 37 maturities from
12 months to 228 months at intervals of 6 months.
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Figure 5. The root mean squared difference between
the observed mean yield curve and its model-based value
calculated from a 5-factor model of the yield curve (dashed
line) and a 5-factor model of the forward rate (solid line)
is shown for values ofλ ranging from λ = 0.001 to
λ = 0.040. Averages are calculated over 37 maturities from
12 months to 228 months at intervals of 6 months.

might argue that this result is predictable and is simply
a consequence of the difference between a yield curve
which decays exponentially to the long term interest
rate as occurs when the model is written for the yield
curve, and a yield curve which decays algebraically to
the long term interest rate as occurs when the model
is written for the forward rate. To accommodate
the effect of long maturities, the former needs a
smaller value of lambda than the latter to prevent
premature decay of exponential terms and allow the
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model specifying the yield curve to better incorporate
yield data from bonds with long maturities.

5 CONCLUSION

This article presents a generalisation of the Nelson-
Siegel model for fitting yield curves. The method
is based on the Fourier-Lageurre representation of
a continuous function in(0,∞) and preserves the
theoretical properties of the Nelson-Siegel approach.
Once the time-scale parameterλ has been fixed, the
model may be implemented in terms of simple least-
squares framework.

The method is applied to UK gilts data and a number
of robust conclusions emerge. The first of these is
that the root mean squared difference between the
observed mean yield curve and its model-based value
appears to be a unimodal function of the parameterλ.
This suggests that the optimal value ofλ can be found
by a simple search procedure. Onceλ has been fixed,
a 4-factor model is found to provide an acceptable fit
to the data and the additional of further factors does
not improve the quality of this fit. With respect to
quality of the fit, there seems little to choose between
modelling yields directly and modelling forward rates,
but the latter is preferable because the quality of the
fit is less sensitive to the choice ofλ. It is conjectured
that this result arises because the yield curve decays
algebraically to the long-term interest rate when the
model is written for the forward rate, whereas the
decay is exponential when the model is written for
yields.

The general approach to modelling the yield curve
proposed in this article has interesting implications
for future research. In terms of modelling the cross
section of yields, this method should be compared to
other smoothing procedures such as those based on
splines. In terms of forecasting yields, this method
lends itself to the dynamic factor approach proposed
by Diebold and Li (2005).
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