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EXTENDED ABSTRACT 

 

Figure 1: A Typical Iron Ore Production System. 

BHP Billiton has several iron ore mining 
operations in the inland Pilbara region of 
Australia. Iron ore is mined from open-cut pits, 
railed several hundred kilometres to two port 
processing facilities at Port Hedland. Here the ore 
is processed, blended and the lump product re-
screened ready for shipment, mainly to Asia. 
Customers use the ore as principal feed in steel 
production. Figure 1 shows a simplified ore flow, 
although many operational variations exist.  
 
The recent sharp increase in iron ore demand has 
required a review of capacity. To deliver 
increased tonnage of ore safely, at minimum cost 
and acceptable quality, processes need to be 
upgraded, existing mines and infrastructure 
expanded, and new mines brought on line. 
 
Expansion assessment requires informed choices 
involving alternative options of operation and 
infrastructure development that differ greatly in 
capital and operating costs. Multiple choices exist 
between alternative mining practices, ore 
processing, stockpiling, railing and ship loading 
operations. 
Any expansion option must be assessed to 
understand the effect on product quality. 

Customers assess quality by both cargo grade, and 
inter-cargo grade variability. As well as iron, 
several impurities, principally phosphorus, silica, 
and alumina are important. To gauge the effect of 
expansion options on shipped product quality, 
simulation models have been built, enabling mining 
and handling configurations to be studied, for 
appropriate time periods. 
 
Since ore production grade shows complex serial 
and cross correlations, totally synthetic data cannot 
be constructed. Production was therefore simulated 
from historic data of geologically similar ore, 
statistically adjusted to match potential operations. 
 
To help company personnel use the simulation 
models, they were written as Excel™ workbooks, 
driven by Visual Basic (VBA) macros, making full 
use of the provided graphical capabilities.  
 
The simulation models described in this paper have 
been extensively used to evaluate alternative 
expansion and development options. The company 
is using the results from the models to assess the 
effect on product quality for many processing and 
equipment options in determining it expansion 
direction.
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1. INTRODUCTION 

BHP Billiton Iron Ore produces approximately 
110 million tones per year of Brockman, Marra 
Mamba and Pisolite iron ore in two product types; 
lump (6 to 31mm) and fines (<6mm), from four 
separate mining areas in the Pilbara. 

The worldwide increase in demand for iron ore, 
and its expected continuance, has led the company 
to identify opportunities to increase tonnages. BHP 
Billiton Iron Ore has reviewed the operating 
principles of its entire value chain as well as 
conducting investigations into the potential 
upgrading of existing mines and infrastructure 
along with the development of new mines. 

Assessment of expansion options requires 
informed choices involving alternative modes of 
operation and development. These alternatives can 
differ greatly in expected capital and operating 
costs. Reviewing the many options that existed is 
very complex. Resource modeling, infrastructure 
and capacity modeling along with product grade 
quality modeling is needed to ensure delivery of 
the expanded tonnage of ore, safely, at minimum 
operating and capital cost and at an acceptable 
quality to the customer. 

Simulation modeling was chosen as the 
appropriate tool for the reviews because of the 
complex relationships in each alternative. For BHP 
Billiton Iron Ore, the operating and infrastructure 
changes to achieve tonnage were studied in one 
simulation system while the effect on product 
grade quality was simulated in separate model.  

This paper describes the simulations carried out to 
assess product grade quality. These simulations 
were based on infrastructure and capacity options 
identified from the tonnage simulations. They were 
set up so that the impact of changes to operating 
practices on product grade quality could also be 
assessed. 

Two particular operating models are referenced in 
this paper; the Mt Newman Joint Venture, a series 
of four mines generating a lump and fines product 
and the Yandi operation with two operating areas 
where only fines product was studied. 

1.1. Production Flow 

Figure 1 shows a simplified ore flow. However, 
many operational variations exist. 

At the mine, monthly mine plans take into account 
the cost efficient use of the resource. Ore blocks 
are blasted and assigned into floorstocks of 

consistent geology and composition using analysis 
from samples taken during the drilling of the blast 
holes. Each day, ore for mining is selected from 
blasted floorstocks taking into account the target 
grade requirements, the current deviation from 
target, and cost efficient mine development. 

In the case of the Newman area mines, partly 
processed ore from four mines is railed 400 
kilometers to the port where it is crushed, 
separated into lump and fines products and stacked 
onto stockpiles typically of 150 kilotonne capacity. 
The methodology used for stacking ensures 
optimum blending within a stockpile. Lump 
product is re-screened before ship loading. 

Ore from completed stockpiles is reclaimed and 
loaded onto ships through multiple ship loading 
berths and transported to customers. Everett (1996, 
2001) discusses methods of iron ore quality 
control. Kamperman et al (2002) describe 
application of these methods to BHP Billiton’s 
Yandi operation. 

1.2. The Cost of Quality 

The objective of the production process is to 
deliver the required ore tonnage safely, at 
minimum total cost and of an acceptable quality 
for the customer. 

Chemical quality is determined by iron content and 
the percentage of impurities such as phosphorus, 
silica and alumina. There are two key product 
chemical quality criteria: cargo grade and inter-
cargo variability. Customers require the product 
cargo grade to be as close as practical to target 
composition. In practice tolerances, reflecting 
process capability, are used to guide quality related 
decisions, at each stage in the production process. 

Any quality decision takes into account the amount 
of blending of ore that occurs throughout the 
whole production process. Excessive inter-cargo 
variation disadvantages customers, potentially 
affecting price and sales tonnages. This potential 
cost, containing an element of risk, is extremely 
hard to evaluate quantitatively. 

Blending and rehandling of ore can be a major 
contributor to operating cost. If carried out for 
product quality alone, there is a tradeoff between 
cost and quality. Mining equipment capacity and 
related production volumes, the methodology of 
use of this equipment, the amount of blasted ore, 
the volume of pre-crusher and post-crusher 
stockpiling are all examples of potential value 
tradeoffs against product quality. 
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2. SIMULATION METHODS 

BHP Billiton Iron Ore developed alternative 
production and handling concepts from mine to 
ship loading as potential expansion options. These 
changes were evaluated and developed through 
sophisticated simulations for the study of tonnage 
movement and to gauge the effect of process 
interactions and bottlenecks. These models, 
however, did not assess product quality.  

Rather than incorporate product quality into the 
tonnage simulation model it was decided to set up 
independent simulation models to explore the 
quality implications of the expansion options.  

2.1. Challenges to Simulating Grade 

It was important to understand the effects that 
operational or equipment changes had on cargo 
grade variability.  Generally two types of grade 
variability exist in the chemical composition of the 
ore (Figure 2): 

• Long-term variability as measured by 
trends of monthly or longer duration.  

• Short-term variability is generally 
measured by short period inter-cargo 
variability around the long-term trend and 
is little affected by the long-term 
variability.  

Figure 2: Long-term and short-term variability  

Figure 2 shows an example of long-term 
variability (black line) and the short-term 
variability around it (green line). Short-term 
variability was used as the metric to assess and 
compare simulation results as changes to the 
operating philosophy and equipment mostly 
influence short-term variability.  

Long-term trends are more controlled by long-term 
mine planning and marketing decisions which 
were outside the scope of the simulation models. 

2.2. Data Preparation 

Early investigations of the historical production 
data showed evidence of complex serial and cross 
correlation between the analytes of interest (mainly 
iron, silica, alumina and phosphorus). These 
correlations were ascribed to the orderly mining of 
blast blocks and the daily actions carried out by 
mine planning staff in response to grade.  

As it was not intended to change the mine planning 
process, it was necessary to maintain the existing 
serial and cross correlations in the input data for 
the simulation models. Historic data were used as 
the basis for generating the required input of future 
mining production into the simulation models. 
This decision presented three challenges:  

• Historic data contained long-term 
variation that could mask any incremental 
improvements identified in the 
simulations; 

• Opening of new mines where no historic 
data existed; and 

• Average grades of historic data did not 
match the planned grades of the future 
mining operations. 

2.3. Removal of Long Term Variability 

The long-term trend was filtered out of the data by 
taking Fourier transforms of the historic data to 
yield a frequency spectrum, removing the 
frequency range that relates to long-term 
variability, then again applying a Fourier transform 
to recover the filtered time series.  

Figure 3 shows the effect of filtering. The red dots 
result when the source data (blue dots) are filtered 
to remove the long-term variability. The smoothed 
blue and red lines show the filtering has removed 
the long-term variability, although the scatter of 
the individual data points is little changed. 

Figure 3: Removing Trends in historic data 
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2.4. Input Data for Existing Mines 

After long-term variation had been filtered out of 
the historic data, means and standard deviations 
were adjusted to create synthetic data to match 
future production. The data preparation model 
allowed the standard deviation of the data to be 
reduced, simulating increased effort within the 
mine to control short-term variability, through 
such activities as selective mining and precrusher 
stockpiling. 

2.5. Input Data for New Mines 

To prepare data for new mines, data were taken 
from existing mines of similar geology. Long-term 
trends were removed and synthetic production data 
created by appropriately adjusting the composition 
means and standard deviations to match the 
anticipated mine plans. The changes were based 
upon long-term plans for the proposed mines and 
identified similarities in mining and processing 
operation compared to current operations. 

2.6. Process Capability 

Once satisfactory input data streams had been 
created, the models were used to simulate the 
effects of different processing methods on grade 
variability. The simulation models were designed 
to investigate the effects of many process 
variables, such as changing the number and sizes 
of stockpiles, and the policies for distributing 
incoming ore to the available port stockpiles. The 
key output variable studied was inter-cargo 
variability, defined as its standard deviation. To 
ease interpretation, the performance of each 
simulation run was measured as the “Process 
Capability” (tolerance divided by twice the 
standard deviation). For a normal distribution, a 
unit Process Capability suggests that about 95% of 
shipments will be inside the tolerance limits. 

3. SIMULATION MODELS 

For the simulation modeling, the production 
system was broken down, as much as possible, 
into sub-systems, with the output of one system 
providing the input to the next.  

3.1. Computer Software 

It was decided to develop each simulation model 
as an Excel™ workbook, controlled by Visual 
Basic (VBA) macros. 

Many excellent computer software packages for 
simulation modeling exist (for example, Arena, 
Extend, GPSS and Simul8, and many others). A 

useful review of available packages is published 
biennially in OR/MS Today (Swain, 2003). 

In the authors’ experience, a dedicated simulation 
package requires dedicated specialists to run and 
interpret the data, and usually has accompanying 
cost and licensing restrictions. It therefore 
represents a barrier to practitioners who have to 
learn a new package if they are to manipulate the 
models independently. Developing the system in 
ExcelTM allowed hands-on use and exploration of 
alternative policies and scenarios by company 
officers with domain knowledge unavailable to the 
simulation provider. Graphing and analyzing run 
results was built in, so minimal assistance was 
required from the simulation provider once the 
models were built. 

For a model developer with a reasonable computer 
programming background, it is no more difficult to 
construct a simulation model as a spreadsheet 
workbook, run by VBA macros, than to do the 
same task with a dedicated simulation package. 
Moreover, the spreadsheet’s inherent data input 
and output reporting and graphing capabilities 
provide fuller facilities than are generally found in 
a simulation package. The practitioner not only has 
more ready acceptance and ease of use, but also, 
being familiar with spreadsheets and their 
potential, can suggest modifications and 
extensions of the simulation model. The VBA 
macro coding is hidden from the practitioner, who 
can use it by means of inbuilt buttons and menus. 

The simulation model comprised three VBA 
macros. The first macro reads in parameters to set 
up the simulation. The second macro runs the 
simulation the required number of time periods. 
The third macro uses Excel’s statistical and 
graphing power to report the simulation results. 

3.2. Spreadsheet Simulation Models 

The simulation models were used to study the 
effects of controllable variables (such as stockpile 
sizes and stockpiling methods) and uncontrollable 
variables (such as cargo sizes). 

A typical simulation model workbook comprises a 
number of worksheets, which serve to specify 
parameters and policy choices, display progress of 
the simulation, and report and graph the 
performance summary for any simulation run. 

For reproducible results, it was found that the 
model needed to simulate a year or more of 
production. The simulation was time-sliced rather 
than event-driven. The time interval was set to six-
hours.  
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At each time slot, ore was mined and trains loaded, 
while at the port trains arrive and are unloaded, 
crushed and stacked to stockpiles. In each interval, 
ships arrive, commence being loaded from an 
available stockpile (or wait if none are available) 
continue being loaded, and depart when full. 

As described in Figure 1, the product flow is from 
mine, to rail, to port, to ship. To assess the product 
quality, a simulation model was developed around 
mining and loading trains, with a second model 
developed for unloading the trains, operation at the 
port, and loading ships. 

 

Figure 4: The Simulation Models 

During simulation, a macro starts the simulation, 
setting system parameters and structure in 
accordance with the specified inputs. 

A second macro then loops once each time 
interval, adjusting the system states in response to 
the relevant flows and events. 

The user can make the model pause and display 
system states at a specified time interval and range. 
This function is used to check any unusual events 
identified in the simulation run.  

A third macro takes control at the end of the 
simulation, preparing graphs and tables to report 
system performance, as specified by the user. 

Typically, simulations are run to explore the effect 
of steadily changing the values of a particular 
parameter, or a set of parameters. 

Repeated runs can become tedious to set up and 
record and prone to input error. A “Master” model 
was developed, with an input sheet list enabling 
the most common simulation parameters to be 
changed, and an output sheet reporting the 
performance criteria of interest for the set of 
simulation runs. When the Master model is run it 
repeatedly drives the Mine and Port models, 
setting the parameters for each run.  

Figure 4 is a schematic representation of the 
simulation models. Red lines show the simulation 
sequence. The Mine and Port models can each be 
run individually, or either or both may be run for a 
sequence of runs, controlled by the Master model. 

4. PORT MODEL EXAMPLE 

4.1. Model Specification 

The Port model workbook contains six worksheets, 
to simulate and report stacking and reclaiming ore 
from train to ship. 

The “Input Rakes” sheet imports a set of 2,048 
train rakes from the “Output Rakes” sheet of the 
Mine model file. Graphs of cumulative standard 
deviation against frequency for each analyte, 95% 
confidence limits and Process Capability were 
plotted against cargo or single-site stockpile size. 
The incoming trains are from either of two pits that 
have a systematically different mean grade, to 
reflect planned trends in mining in the data 
preparation worksheets. 

Figure 5 shows the “Specify” sheet for Port 
loading where all of the parameters are set up. 
Settable parameters are contained in the yellow 
cells. In the example shown, ore arrives at a rate of  
40 million tonnes per year. Every six hours a train 
arrives. This model is designed to explore the 
suggested plan of up to four ship berths, with each 
berth fed from a stockpile of nominated capacity. 
The stockpiles can be fully Blended in Blended 
Out (BIBO). Alternatively, it can be built 
according to the system of First In First Out 
(FIFO). Stockpile sizes can be independently 
varied; in the case shown, they are 240kt and 360kt 
size. 
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Figure 5: The Port Model “Specify” Worksheet 

Trains and ships can arrive equally spaced, or at 
random. Trains can carry either 24 or 36kt of ore 
which are generated in the data preparation 
workbook. Cargo capacities can be from 36kt up to 
180kt. Each incoming train can be direct loaded 
(with settable probability) to a ship, or sent to a 
stockpile that is not currently being used to load a 
ship. The destination stockpile choice is based on a 
weighted composite of four settable options: 

• The least full stockpile (taking into 
account maximum possible). 

• The smallest current tonnage stockpile. 

• “Intelligent Stacked”, where the match to 
target of grade is most improved  by the 
incoming train estimated composition. 

• At random. 

The third option bases the destination decision 
either on the port grade (not known when deciding 
the destination), or on an artifact of chosen 
correlation to the port grade. This last method 
simulates the unavoidable uncertainty of the train 
grade before it is sampled at the Port. 

 

A “Progress” worksheet allows the system to be 
tracked, at set hours intervals (multiple of 6 hours) 
for a settable time range. This is useful for 
debugging, and also for better understanding the 
system behaviour. 

4.2. Outputs 

 The “Cargoes” worksheet reports graphically, for 
each analyte, the cargo compositions, and how 
they vary around target. For example, Figure 6 
shows that, for Fe, the Process Capability is 1.15.  

 

Figure 6: The “Cargoes” Report 

Ship  4

1

2048  Rakes, 12kt
890  Trains
224  Days 1 Equal Interval

40.3  Max Mt/year
40.0  Mt/year
99%  Train Slots

1

1 Random

0%  36 kt
0%  72 kt
0%  108 kt
0%  144 kt

70% Correct 100%  180 kt
30% Neighbour  Mean  180 kt
0% Random 96 hrs  to 1st Cargo

FALSE
40% Low Tonnage
30% Mine 0  Interval (hrs)
30% Grade Estimate 0.00  Start (day)
0% Random 0.00  End (day)

1
1 1

As Stress BIBO 1 Track Stress

Stockpiles Ship berths

Berth 2

240 kt

Ship Cargoes

Ship Arrival

Steady Cargo

Cargos

RandomBerth 1

Track GradeAs Grade

 Show Train Rakes

Allocation Weight
Track Progress

LIFO

 Build Stockpiles

240 kt Berth 4

360 kt

Run 1. 25% Direct Load

360 kt

Rake Grade Estimate

Trains

Equal Spaced

Direct Loading 
(when possible)

Berth 3

Ore Arrival
Menu

58.0
58.2
58.4
58.6
58.8
59.0

0 120 240

 +/- Ship Tolerance
 95% Confidence

Days

Fe Cargoes

Process Capability=1.15 (2% Out of Tolerance)

 

1256



The “Audit” worksheet reports the full simulation 
history, with product flows and stockpile and ship 
berth states for each time interval. Tonnage aspects 
of the simulation history are plotted to aid 
interpretation, and validate the parameter values 
selected on a particular run are feasible. For 
example, the tonnage history of a stockpile is 
graphed in Figure 7. 

Figure 7: Stockpile History 

4.3. Policy Evaluation 

Figure 4 showed how the Master model drives 
repeated runs of the Mine and Port simulation 
models. To investigate the effect of a policy 
parameter, its value is changed for successive runs. 
The Master model then reports summary measures 
for each run, which can be plotted to aid policy 
exploration. For example, Figure 8 shows how the 
Process Capability for one of the analytes relates to 
the change in Short Term Variability from the Mine 
while intelligent stacking is taking place at the Port. 
The simulation was run for several values of the 
mean grade difference between two source pits (Y1 
and Y2). 

Figure 8: Mine Short Term Variability and Mine 
Average Grade Separation 

4.4. Results 

As an example of the results, one simulation run 
established a scenario that yields shipped ore of 
acceptable quality at the planned production rate, 
provided the options below are followed: 

• 10% reduction of Mine short-term 
variability by selective mining or 
precrusher stockpiling. 

• 30% priority to the use of Intelligent 
Stacking at the Port (as discussed in 
Section 4.1). 

• Increased accuracy of train composition 
estimates from the mine. 

This solution was compared to the installation of a 
yard with blending stockpiles at the mine and a 
cost/quality risk analysis carried out. Without the 
simulation studies, many capacity-related options 
such as this would have been virtually impossible 
to evaluate. 

5. CONCLUSIONS 

The simulation models described provide an 
invaluable tool to help BHP Billiton Iron Ore 
examine the effect on product chemical quality of 
alternative potential development options, to meet 
the potential capacity expansion required for the 
rapidly increasing iron ore market. 

The particular benefit in using Excel™ based VBA 
simulation models is that it provides a familiar 
mode of working for the company personnel, 
enabling them to efficiently contribute domain 
knowledge during running of the simulations, 
without the assistance of the simulation developer. 
In addition, the use of ExcelTM allows easy 
interrogation of data and generation of reports. 
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