
Languages and metamodels for modelling frameworks
1H. Harvey

1School of Civil Engineering and Geosciences, University of Newcastle upon Tyne, UK.
E-Mail: hamish@hamishharvey.com

Keywords: modelling, simulation, software, frameworks, languages

EXTENDED ABSTRACT

The problem of decision making in environmental
management is increasing steadily in complexity. A
variety of pressure is leading to a requirement to
consider the impacts of possible courses of action
on a much wider basis than heretofore. Modelling
and simulation is becoming ever more fundamental
to the decision making process. The models are
becoming more complex, as is the context in which
they are used. In flood defence asset management,
for example, we see deterministic models of water
flow being coupled with probabilistic models of
flood defence reliability, and the result set within
a calculation which derives distributed measures of
economic risk, attributing that risk to particular parts
of the flooding system.

Even to provide the deterministic modelling element
of next generation decision support systems a more
modular approach to software construction is needed
than that used to build the modelling systems of
the past. This is recognised in the effort being
invested in developing I will refer to here, somewhat
indiscriminately, as “software frameworks”.

The design of a software framework consists in large
part in the design of a language or of a set of
languages. Languages in general are media for the
expression of thought (and thus for communication)
but, as George Boole observed, they are much
more profoundly “instrument[s] of human reason”:
without them abstract thought is not possible. Formal
languages enable a level of precision in thought
and communication which cannot be achieved using
informal languages. With well designed notation they
also enable a level of concision which (Alfred North
Whitehead), “By relieving the brain of all unnecessary
work . . . sets it free to concentrate on more advanced
problems”. These benefits come at a cost, though,
of effort in formalisation of concepts, and barriers to
change once they are formalised.

All languages which control the behaviour of our
digital computers, which we may refer to as computer-
based languages, are necessarily formal languages.
Like all languages, computer-based formal languages
are tools for use by humans. They are media of
human–computer communication, tools by means

of which humans condition the behaviour of the
computer. They are also however, and with at
least equal importance, tools for human–human
communication and tools of thought.

Language design is difficult; it involves creating an
conceptual apparatus for thinking about a class of
problems. To avoid embedding assumptions, such
as abstractions similar to those provided by familiar
languages, requires great effort. The scope of such
a language must be very carefully chosen. Too
general, and the language will provide little advantage
of a general purpose programming language. Too
narrow, and the need to integrate frameworks, already
evident in papers in these proceedings, arises; this
is potentially more problematic than integrating
modelling systems in the first place. Changing a
language once it is in use leads to conflict between
conceptual parsimony—critical to its performance as
a tool of thought—and backward compatibility; too
often, parsimony loses.

The languages defined by modelling systems must
deal with concepts in at least two, sometimes three
distinct domains of abstraction. Since their purpose is
simulation, one of these is the domain of computation.
To this a system must add abstractions from either
a modelling paradigm (for example the stocks and
flows paradigm popular in operations research and
ecological modelling), or from an application domain,
or both. The raison d’être of a framework over
a monolithic modelling system is extensibility. A
framework allows functionality to be packaged in
software components, so adds a fourth, software-
architectural domain to the set of concepts to be
manipulated. Furthermore, the languages defined
by a framework must themselves be extensible, and
the software-architectural abstractions chosen have
implications for the design of all other domains.

These four domains are currently rarely considered
explicitly, let alone separated in implementation.
Frameworks often mix abstractions belonging to two
or more domains in a single language, even conflating
abstractions from different domains. The current glut
of modelling frameworks, of which often none quite
fit the task in hand, can in part be ascribed to this. The
treatment of each domain in a separate language in a
layered framework offers a route forward.

669

mailto:hamish@hamishharvey.com

1 INTRODUCTION

Abbott (1991) describes the development of hydraulic
modelling as it has proceeded through four genera-
tions. The latest, fourth generation corresponds to
the commercial “modelling system” which made the
power of computational hydraulics available even to
those not initiated in the arcana of its methods. By
providing hydraulic modelling facilities as a software
package, a whole new industry was spawned to
develop and support the use of such tools.

Fourth generation tools have been in use for the last
twenty-some years, and are now beginning to show
their age. Meanwhile, while hydraulic modelling
was undergoing refinement and commercialisation,
a number of complementary modelling communities
have grown up. Demand is now growing for
tools which enable the development of models
which integrate the productions of these various
communities in support of decision making in
environmental management.1 These demands are
driven by many factors, including developments
in public expectations for the management of the
environment, legislation, uncertainty theory, and
available computer power.

The scope of the required tools is such that it is
infeasible to develop them as monolithic applications.
As a result, interest in software supporting a modular
approach to environmental modelling has surged.
Several such facilities, which we will refer to
generally as “frameworks”, have been developed.
This diversity is to be expected at this relatively early
stage, as is the fact that the all of these frameworks
are quite limited in scope. As a result, new projects
are liable to consider the available options and then
decide to build another framework, finding that those
on offer all fall short in one way or another. It can only
be a matter of time before work begins on framework-
integrating frameworks, if it has not begun already.

The process of developing modelling tools and
systems before the rise of frameworks was, at the
software-architectural level, largely empirical, even
while the knowledge encapsulated within these tools
was firmly grounded in theory. The “casting about”
that is being exhibited in the field of framework
design, however, stands as early evidence that
this empirical approach is here less effective. A
primary reason for this lies in the most profound
difference between a monolithic modelling system,
however integrated, and a modelling framework: the
framework, being open to independently developed

1At the same time, there is an increasing though less widely
recognised need for tools which allow such models to be used
within a comprehensive decision analysis framework. The
conceptual framework developed in this paper extends readily into
this domain, but the issues involved will not be discussed here.

extensions, must contend with what in knowledge
representation circles is called an “open world”.
The developer of a monolithic modelling tool can
rely on perfect knowlege of all of the parts which
must function together as a system. The developer
of a framework, however, is limited to imposing
restrictions on the developers of components for that
framework, in order that something can be known
about those components.

The task of deciding what restrictions to impose,
however, is exceedingly difficult. Because each set
of framework developers have a different background,
they bring a different set of assumptions to the task,
for example about the nature of models and the uses
to which they will be put, and about the nature of
software components and the context in which they
will be deployed.

A more theoretical analysis of the situation can
pinpoint the source of some of the limitations of
current frameworks and help avoid the fossilization
of unchecked assumptions—and the corresponding
imposition of avoidable limitations—in frameworks
of the future. This paper offers the beginnings of such
an analysis, starting with the observation that every
modelling system implements one or more formal,
computer-based languages. These languages are
generally implicit in the design of the system, but are
manifested in the configuration files for the system
and, if it exists separately from these, in its user
interface.

Section 2 discusses the nature and roles of language,
while section 3 provides a brief summary of the
structure of formal languages. In section 4, a
number of properties with which languages can be
differentiated are introduced, including the distinc-
tion between imperative and declarative languages.
Declarative languages enable the representation of
concepts. Section 5 identifies a number of different
domains of abstraction from which these concepts
are drawn, and explores the structure of existing
classes of modelling system and framework using
the conceptual framework established. Section 6
concludes with a discussion of some implications of
the language-centric view of modelling frameworks.

2 LANGUAGE

Humans communicate by expressing ideas using
language. Everyday communication takes place
using spoken or written natural language, along with
gestures, body language and so on. Language is more
than a tool for communication, however. George
Boole (cited in Iverson, 1980) wrote, “That language
is an instrument of human reason, and not merely the
expression of thought, is a truth generally admitted.”
The capacity to form language is intricately bound up

670

with that for abstract thought.

Formal languages, such as the languages of math-
ematics, trade the flexibility of natural language
for increased precision. When participants in
communication share knowledge of such a language,
they can reliably and efficiently communicate any
complex concepts of the kind which that language
is optimised to express. The use of dedicated
notations, again as in mathematics, also enable a level
of concision which (Alfred North Whitehead), “By
relieving the brain of all unnecessary work . . . sets
it free to concentrate on more advanced problems”.
So the ability to invent specialised languages is the
foundation of our ability to manage complexity.

The computer is an uncompromisingly formal device,
and if it is to be a party to communication, then
the language in which that communication is to take
place, which we will refer to as a computer-based
language, must of necessity be a formal language.
The inflexibility of the computer in fact means that
computer-based languages must meet much more
demanding requirements than other formal languages.
The need to accommodate the limitations of the
computer, combined with the dramatic value to be
obtained from having the computer work on some
problem if that problem can be reduced, in whole
or in part, to calculation, tend to obscure the fact
that computer-based languages are still just as much
tools invented by and for humans as other formal
languages. Abelson and Sussman (1996) suggest
that, “Programs must be written for people to read,
and only incidentally for machines to execute.”
That is, programming languages must function as
media of human-human, as well as human-computer,
communication.

A language provids a set of concepts, or abstractions,
and the use of that language involves a commitment
to the description of the universe of discourse in terms
of those abstractions. In natural languages, cultural
differences in the classification of the things in the
world are reflected in language: consider that it can
be hard to say certain things in certain languages.
The Sapir-Whorf hypothesis2 states that our native
language, in providing a basic set of abstractions,
controls the way we divide the world into concepts.

The most readily identified computer languages are
programming languages. Considerable, if largely
anecdotal, evidence exists that programming lan-
guages also conform to the Sapir-Whorf hypothesis:
programmers experienced in substantially different
languages (structured and object oriented or, more
fundamentally, imperative, functional, and logic
programming languages) see the same problem

2http://www.wikipedia.org/ has an informative arti-
cle on the S-W hypothesis.

in very different ways. Natural language is
extraordinarily flexible, and humans are capable
of learning new concepts from definitions and
descriptions. In contrast, formal languages are rigid,
and, being external to their human users, resistant to
refinement through learning processes. Thus formal
languages limit what their users can express, impose
constraints on what we are likely to think, and do so
in an inflexible, unforgiving way. This is a significant
issue in process modelling; it in a decision making
context, where inflexibility can prejudice the decision
making process.

3 FORMAL LANGUAGE STRUCTURE

Formal languages have a well defined structure
which includes syntax (form, notation) and semantics
(meaning). Harel and Rumpe (2000) provide an
unusually clear exposition of these concepts, while
Van Roy and Haridi (2004) provide a more compre-
hensive account from the perspective of programming
language design. The syntax of a formal language
can be further subdivided into its concrete syntax—
the physical (usually visual) representation of
expressions—and its abstract syntax—their structure.
The semantics of a language is then defined in terms
of its abstract syntax.

More than one concrete syntax may be defined for a
given abstract syntax; textual and graphical concrete
syntaxes may both be defined, for example, with both
able to represent the same abstract structures. The
only concrete syntax which is necessary in a computer
based language is in fact the representation in memory
of the abstract syntax. Figure 1 shows two examples
of concrete syntax for a simple calculator language
which might both correspond to the same instance of
abstract syntax.

1: 3**2 + 4**2;
2: (+ (** 3 2) (** 4 2))

Figure 1. Examples of concrete syntax (line numbers
for reference only)

Figure 2. Depiction of corresponding abstract syntax

The notion of an abstract syntax is rather difficult to
grasp, but very important. It is difficult primarily
because, being abstract, instances of it can only ever
be represented using some concrete syntax. Figure
2, for example, shows an example of a third concrete

671

http://www.wikipedia.org/

syntax, in this case a graphical syntax, for the
same language. This graphical syntax conveys better
the structure of the abstract syntax used for most
expression-based languages.

The semantics of a formal language ascribe a single
meaning to every syntactically legal expression in the
language. Formal language semantics can be specified
in a number of ways, each being suited to different
types of language and useful for different purposes.
The combination of abstract syntax and semantics—
whether formally defined or informally intuited—is
often referred to as the metamodel of a language.
Most users of computer-based languages work on
the basis not of a detailed understanding of a formal
semantics, but of a more-or-less informal “feel” for
the meaning of the elements of the abstract syntax, for
the metamodel.

The power of language as a tool of thought is
shared between the metamodel and the concrete
syntax. The metamodel is fundamental; it provides
the abstractions with which users of the language
must work. The syntax is then a notation for
those abstractions. A well designed notation can
make the manipulation of complex ideas much easier.
It acts, as it were, as an amplifier of the power
of the abstractions.3 Iverson (1980) discusses the
importance of notation as a tool of thought in the
context of programming language design.

4 TYPES OF LANGUAGE

The most obvious examples of computer-based formal
languages are programming languages, but there exist
a great many computer-based languages which would
not normally be thought of in this way. Since every
computer-based language is used to condition the
behaviour of a computer in some way, however, the
distinction between those which do and those which
do not deserve the name “programming language”
could be seen as rather artificial.

Part of what lies behind this distinction is the
contrast between imperative and declarative lan-
guages. An imperative language is one which
primarily instructive, in which the language elements
constitute components which can be combined into
a script, which then directs the operation of a
machine. The semantics of the language elements are
defined in terms of the behaviour they will induce in
some machine. A declarative language is primarily

3Consider, as a simple example, the concepts of the set of natural
numbers and of set membership. These can be used independent of
any particular dedicated notation using natural language. They are
much easier to use, and to combine with other concepts into even
more powerful composites, when we can indicate that the value of
a variable x must be a member of the set of natural numbers by
simply stating “x ∈ N ”.

descriptive, or representational; the semantics of
elements are defined in terms of the things or concepts
they represent.

The languages most familiar in scientific and
engineering computing, including object oriented
languages, are imperative. Machine code is purely
imperative, and a computer can only be induced
to do something by triggering the execution of
an imperative program. Part of the power of
object orientated programming languages lie in the
fact that such languages encourage the treatment
of the computer’s memory in a representational
manner. These languages are themselves not
declarative, however: the programmer must still
write imperative code to explicitly construct such in-
memory representations.

An imperative program can read information encoded
in a declarative language and base its behaviour on
that information; similarly it can write an encoding of
computed results in a declarative form. The formats of
the configuration, input, and output files of modelling
and simulation software are declarative languages,
even if much of the information they hold is encoded
implicitly through position.

Computer-based language may be differentiated in
terms of their expressive power. Two concepts are
easily confused here, however. Given two languages,
one may be capable in an absolute sense of encoding a
wider range (or simply a different range) of concepts.
Alternatively, they may be exactly equivalent in this
absolute sense, but different in a relative, and possibly
subjective one: in that the human user finds it easier
to express a given concept in one than in the other.

Either or both of these two types of expressive power
may lie behind the designation of a language as
domain specific, as distinct from general purpose.
A domain specific language, or DSL, is a language
optimised for some particular purpose. This
optimisation may go so far as to limit the absolute
expressive power of the language, or it may simply
prioritise certain constructs of importance to the
domain at the expense of others. The configuration
file format of a one-dimensional hydraulic modelling
tool is a DSL for describing the abstractions involved:
river reaches and cross sections, for example. The
Modelica4 language and both the graphical and
equational languages of VenSim5 are DSLs for
expressing models in particular modelling paradigms.

Expressive power in its relative sense is related to
the idea of level of abstraction. In imperative pro-
gramming languages, level of abstraction runs from
machine code, through languages like FORTRAN, C,

4http://www.modelica.org/
5http://www.vensim.com/

672

http://www.modelica.org/
http://www.vensim.com/

and C++, to object oriented languages with automatic
memory management, and on. Declarative languages,
by “abstracting away” the computer as a calculation
device entirely, can be said to inhabit a higher level of
abstraction than any imperative language.

A language may or may not be extensible, which
property is a critical difference between the languages
defined by a modelling system and those of a
modelling framework. The latter must be extensible
because the framework is itself by definition
extensible. An extensible language should not be
confused with a language framework. XML is not a
language, it is not even strictly a language framework;
it is rather a syntax framework. Specific languages
based on XML may or may not be extensible;
the XML framework provides for the definition of
extension points but these must be explicitly used.

Languages may exhibit different types and degrees
of extensibility. Programming languages provide
an easily developed example: many structured
programming languages are extensible only by the
addition of functions or procedures; object oriented
languages allow the limited definition of new data
types; some functional programming languages
allow much more advanced type system extensions;
languages in the Lisp family are quite unique in
allowing syntax extension. A similar range of
possibilities exists with declarative languages.

A particular class of extensible, declarative languages
of increasing interest in model-based decision support
as in software engineering generally is that of
knowledge representation languages. Sowa (1999)
provides an extensive survey of the field of knowledge
representation.

5 DOMAINS OF ABSTRACTION

When designing a modelling framework, what are
the languages which are defined, and what sets of
abstractions should they provide? An examination
of modelling systems and frameworks reveals at
least four distinct groups of such abstractions: those
belonging to the domains of software architecture,
computation, modelling, and application. These
domains represent different types of knowledge and
a modelling framework will draw on one or more of
them depending on its purpose.

Modelling systems built for specific purposes often
provide a user interface defined at least partly in
terms of application domain concepts. The user of
a one-dimensions hydraulic modelling system defines
a network of pipes and channels using a map-based
interface, for example. Indeed it is this presentation of
application domain concepts in the interface—making
computational hydraulic knowledge accessible to

specialists in the application area—that characterises
the fourth generation hydraulic modelling tools
mentioned in section 1. Such tools internally define
a metamodel, which is then expressed in the concrete
syntaxes of the graphical and textual devices used in
the user interface and the configuration file formats for
the tool. This is an application domain language.

Modelling languages which are independent of
application domain make manifest the abstractions
of a particular modelling paradigm or consistent set
of modelling paradigms: they are modelling domain
languages. VenSim, for example, offers graphical and
equational languages in which to define models using
the stocks and flows paradigm of system dynamics
modelling, while Modelica supports the description
of models using differential, algebraic, and discrete
equations.

The abstractions of both of these domains are essen-
tially representational. Computer-based modelling,
meanwhile, is largely directed towards the simulation
of the resulting models. Every modelling system must
therefore define a mapping from either application
or modelling domain abstractions into computational
abstractions.

As we move from monolithic modelling sys-
tems to extensible modelling frameworks, software-
architectural abstractions to do with the modu-
larisation of software are introduced. “Plug-in
components” of any kind, to be useful, must introduce
functionality defined in terms of abstractions in one
or more of the other three abstraction domains. The
languages dealing with these domains must therefore
be extensible, and these extensibility mechanisms
must be designed together with the component
architecture.

While these various domains can be distinguished,
they are rarely if ever used in isolation. Most
modelling software defines abstractions in at least
the computational and one of the representational
domains. Perhaps the only exception is in the
earliest simulation activities, which were undertaken
by writing custom, one-off simulation programs.
In this case, the programmer translates manually
from a—mathematical, so formal and declarative,
but not computer-based—model to a simulator
expressed using the abstractions provided by the
chosen programming language (usually FORTRAN).
The resulting software contains only what might be
called the “fossilized remains” of the application
and modelling abstraction domains: for example
references in the names of functions, constants and
variables.

All but the most primitive application-specific
simulation software can simulate a class of systems.

673

Such software is defined primarily in terms of
computational abstractions. A specific simulator
is created by combining the software with a
configuration specifying the particular system to
simulate in terms of application domain abstractions.
Modelling domain abstractions are present only in
fossilized form, having been used by the programmer
in the process of writing the software. Much software
developed in academia falls in this class, as do
fourth generation computational hydraulic modelling
systems.

Modelling languages such as Modelica and the
VenSim language mentioned above, which are
quite independent of application domain, have by
definition metamodels which include only modelling
domain abstractions. The tools which implement
these languages define a mapping between these
abstractions and computational domain abstractions,
allowing translation according to this mapping to
generate a simulator. No application domain
abstractions are present in such languages; the names
used by the model developer to label instances of the
modelling abstractions serve as surrogates.

Many application-specific modelling systems are
not extensible, and the languages they define are
correspondingly fixed. Modelling languages are
generally extensible in a limited way. New instances
of modelling constructs can be defined as composites
of existing instances, for example. This object
level extensibility is equivalent to the definition of
new functions in a standard programming language.
It does not allow the addition of new modelling
abstractions. By supporting plug-in components, a
modelling framework can enable this and many other
types of extension.

6 IMPLICATIONS

The foregoing analysis provides some insight into
the current state of modelling framework design, and
suggests directions for future development. Most
importantly, while it is generally recognised that
carefully defining the scope of a framework before
starting work on it is important, this is not simply
a matter of being careful not to “bite off more than
we can chew”, or of limiting the cost of framework
development. A firm basis is needed on which to
decide questions of scope. Viewing framework design
as a language design problem helps provide this basis.

The term “component” is in common use, but
means very little. The vague idea that it conveys
must be solidied through very many decisions, from
the abstract to the implementational levels. A
common use of plug-ins in a modelling framework
is in defining computational modules. This form
of extensibility is of particular significance when

a lot of legacy simulation code exists. The
nature of components at the software-architectural
and computational levels can have profound impacts
at higher levels, however. The concept of a
component in many modelling frameworks—imbued
with the character of the often object-oriented, always
imperative implementation language—is that of a
machine. For composing simulators this may suffice,
but it is not clear that it provides a sound conceptual
basis on which to build a new generation of model-
based decision support tools.

Scope should be chosen to maximise the conceptual
parsimony of the languages defined by the framework.
As Einstein said, “Everything should be made as
simple as possible, but no simpler.” The second clause
of this paraphrase of Ockham’s Razor is crucial:
it is the difference between naive simplicity and
parsimony. The most powerful, flexible languages are
those with a few core abstractions, carefully chosen
for orthogonality. Languages generally become
less flexible and less powerful with the addition of
features, unless those features are defined in terms of
such a core. The need for parsimony is partly because
these languages are to be used by humans as tools of
thought. The properties of complex languages can be
effectively impossible to reason about. Even for the
designers of a language, parsimony is the only way to
ensure coherency and completeness.

The arbitrary circumscription of scope is to be
avoided. Limiting scope in this way can make
powerful abstractions impossible to find, and results in
the creation of multiple frameworks with overlapping
purposes. When the facilities of two or more of these
frameworks are needed, two options exist: to develop
another framework with the union of their capabilities,
or to integrate the existing frameworks. This
integration problem is even more severe than that of
integrating simulation software, and is likely to result
in a hybrid monster cut through with inconsistencies,
overlapping abstractions, and limitations. As the
problems we contend with get more complex, and
more facilities must be integrated within a single
tool, this issue will become ever more important.
As an example, many current modelling framework
designs do nothing to support, or even in some cases
actively inhibit, the sorts of calculations involved in
quantitative risk analysis.

The domains of abstraction identified above provide
a conceptual framework within which to identify sets
of abstractions which are complete and parsimonious.
Their recognition allows us to reason about language
scope “vertically” as well as “horizontally”. Separa-
tion of concerns, a fundamental tenet of programming,
suggests that abstractions from the different domains
should be treated in separate languages or language
“layers”, with explicit mappings defined between

674

abstractions in these layers.

In the layered set of languages suggested by this
view, the abstractions of various modelling paradigms
would be defined by providing mappings from the
language encoding these abstractions into a language
encoding a set of computational abstractions. These
would be general enough to allow one computational
language to be used as the target for many
modelling paradigms, and even for the more general
computational tasks involved in model application.
This greatly eases integration, and allows a single
set of paradigm-agnostic model analysis tools to be
developed. Domain abstractions can be mapped into
modelling paradigm abstractions or, as appropriate,
directly into computational abstractions. The
latter case arises when an established computational
hydraulic code is integrated with the framework,
in which case the relevant modelling paradigm
abstractions are “fossilized” in the legacy code.

Abstractions from different domains are often
conflated in thinking about modelling systems and
frameworks and mixed in their implementation. The
failure to separate these layers, and to ensure the
parsimony of each layer, leads to frameworks which
have unexpected limitations, often as a result of
embedding the tacit assumptions of their developers.
This in turn leads to the current situation where
potential framework users evaluate and reject all of the
increasingly large number of available frameworks,
choosing instead to develop another.

These languages or language layers must be defined
in some way. Whereas in modelling systems the
languages defined are largely internal to the system,
in a modelling framework they are tools of component
developers and integrators. A common approach is to
build on the facilities provided by the implementation
programming language. This approach was taken
by the OpenMI framework developers, using the
C# language. In contrast the Integrated Modelling
Architecture (IMA) (Villa, In press) implements a
declarative language, building on rather than in the
implementation language (C++). The IMA modelling
language is an ad hoc language with an XML-
based concrete syntax. Framework developers are
beginning to explore the possibilities offered by logic-
based knowledge representation languages, which
have strong advantages in allowing all domains
of abstraction to be defined as well segregated
components of a single language.

Whichever approach is taken, the framework de-
veloper should be aware that with a choice of
language platform comes a set of ontological
commitments (Davis et al., 1993). In simple terms,
this means that the language platform imposes some
underlying abstractions, and limits the developer to

defining languages which involve specialisations of
these. With imperative (including object oriented)
languages, for example, these commitments tend to
lead to a conception of a modelling framework which
is biased towards the process of simulation, rather
than the essentially human process of modelling and
model use. Many KRLs, meanwhile, do not support
the representation of uncertain quantities.

In taking up this language-centric perspective on mod-
elling frameworks, excessive formalisation should be
avoided. While everything to be manipulated by
computer must be formalised, informal representa-
tions are capable of vastly greater subtlety than any
formal structure. Formalisation is difficult, and should
only be undertaken if the rewards are commensurate
with the effort involved (the reward for formalising
a model, the ability to simulate it, clearly often is).
The risk in excessive formalisation when modelling is
conducted in support of decision making is to severely
prejudice the decision making process.

References

Abbott, M. B. (1991), Hydroinformatics: Information
Technology and the Aquatic Environment, Avebury
Technical, Aldershot, UK.

Abelson, H., and G. J. Sussman (1996), Structure
and Interpretation of Computer Programs, MIT
Electrical Engineering and Computer Science, The
MIT Press, second edition.

Davis, R., H. E. Shrobe, and P. Szolovits (1993),
What is a knowledge representation?, AI Magazine,
14(1), 17–33.

Harel, D., and B. Rumpe (2000), Modeling
Languages: Syntax, Semantics and All That
Stuff, Part I: The Basic Stuff, Technical report,
Mathematics & Computer Science, Weizmann
Institute Of Science, Mathematics & Computer
Science, Weizmann Rehovot, Israel.

Iverson, K. E. (1980), Notation as a tool of thought,
Commun. ACM, 23(8), 444–465, doi:10.1145/
358896.358899.

Sowa, J. F. (1999), Knowledge Representation:
Logical, Philosophical, and Computational Foun-
dations, Course Technology.

Van Roy, P., and S. Haridi (2004), Concepts, Tech-
niques, and Models of Computer Programming,
The MIT Press.

Villa, F. (In press), A semantic framework and soft-
ware design to enable the transparent integration,
reorganization and discovery of natural systems
knowledge, Journal of Intelligent Information
Systems.

675

	Introduction
	Language
	Formal language structure
	Types of language
	Domains of abstraction
	Implications

