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EXTENDED ABSTRACT 
 
Spurious regression is a serious problem in 
empirical research when time series has unit roots.  
This problem might exist when we apply a 
regression procedure for pooling time series and 
cross-section data.  There are several models to 
pool time series and cross-section data in 
regression context, e.g. fixed effect or random 
effect model.  Recently, Entorf [1997] and Kao 
[1999] also pointed out that the spurious 
regression is still unsolved problem when we 
apply the least squares with dummy variable 
(LSDV) procedure for pooling time series and 
cross-section data. 
 
We have another procedure to pool time series and 
cross-section data especially for the case when 
their error terms are autocorrelated and cross-
sectionally heteroskedastic.  It was proposed by 
Kmenta [1986].  This procedure estimates 
autocorrelation coefficients for each time series 
and admit a heteroskedastic error terms for each 
series.  In the present paper, I investigate whether 
the spurious regression is a serious for this 
procedure or not. 
 
I conduct a Monte Carlo simulation to investigate 
the spurious regression in the time-wise 
autocorrelated and heteroskedastic procedure 
proposed by Kmenta [1986].   
 

We set the data generating process (DGP): 

is1s,iis vyy += − and is1s,iis wxx += − for 

N,...,1i =  and T,...,1s = , where the 

error terms ( )isis w,v  were generated from a 
bivariate normal distribution with independence 
across both individual and time period: 
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The results show that the spurious regression 
problem is serious in this procedure too.  In 
comparison to the LSDV procedure, the results are 
summarized as follows, 
 
1st: Kmenta’s procedure has larger probabilities 
when the estimated coefficient is statistically 
significant than the LSDV procedure. 
 
2nd: While the spurious regression problem in the 
LSDV procedure becomes more serious in 
accordance with the increase of the time length 
( T ), this problem in Kmenta’s procedure becomes 
less serious except the case when the sample size 
is very small ( TN ×  < 900). 
 
This result suggests that we should pay attention to 
the spurious regression problem even when we 
apply the Kmenta’s procedure for pooling time 
series and cross-section data. 
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1. INTRODUCTION 
 
Spurious regression is a serious problem in 
empirical research when time series has unit roots.  
Granger and Newbold [1974] consider the 
estimation of a simple regression using Monte 
Carlo simulation and Phillips [1986] investigated 
the asymptotic distributions of the Durbin=Watson 
ratio and t-value. 
 
This problem might exist when we apply a 
regression procedure for pooling time series and 
cross-section data.  There are several models to 
pool time series and cross-section data in 
regression context, e.g. fixed effect or random 
effect model (See also Baltagi, 1998).  Recently, 
Entorf [1997] and Kao [1999] also pointed out that 
the spurious regression is still unsolved problem 
when we apply the least squares with dummy 
variable (LSDV) procedure for pooling time series 
and cross-section data. 
 
We have another procedure to pool time series and 
cross-section data especially for the case when 
their error terms are autocorrelated and cross-
sectionally heteroskedastic.  It was proposed by 
Kmenta [1986] (See also Baltagi, 1998).  This 
procedure estimates autocorrelation coefficients 
for each time series and admit a heteroskedastic 
error terms for each series.  In the present paper, I 
investigate whether the spurious regression is a 
serious for this procedure or not. 
 
The paper is consisted as follows.  In section 2, the 
phenomenon of the spurious regression is 
summarized.  Time-wise autocorrelated and 
heteroskedastic procedure proposed by Kmenta 
[1986] is introduced in section 3.  In section 4, the 
results of the Monte Carlo simulation are reported.  
Finally, in section 5, I provide further discussion. 
 
 
2. SPURIOUS EFFECTS IN NONSENSE 

REGRESSIONS 
 

Granger and Newbold [1974] consider the 
estimation of a simple regression: 
 

sss xy ε+β+α=             (1) 
 
where s=1,…, T, and ys and xs are assumed to be 
generated as two independent random walks: 
 

is1s,iis vyy += −  and is1s,iis wxx += − . 
 
They found that the calculated t-value for β  in (1) 
is significant with relatively high frequencies, and 
that the Durbin=Watson (DW) ratio is low.  This 
regression is called a “spurious regression.” 

 
Phillips [1986] investigated the asymptotic 
distribution of the DW. ratio and t-value and 
obtained the following results: 
 
 DW. = Op(T-1), 
 
 t = Op(T). 
 
These results mean that the calculated t-values 
diverge, while the DW ratio converges to zero. 
 
Some of the asymptotic results of these nonsense 
regressions are intuitive and others are obtained 
theoretically.  However, their small sample 
properties are obscure in general cases.  In the 
present paper, we investigate the spurious 
regression in estimation of autocorrelated and 
cross-sectionally heteroskedastic procedure 
proposed by Kmenta [1986] for pooling time 
series and cross-section data. 
 
 
3. TIME-WISE AUTOCORRELATED 

AND CROSS-SECTIONALLY 
HETEROSKEDASTIC PROCEDURE 

 
Kmenta [1986] assumes the regression model: 
 

is
'
isis xy ε+β=   T,...,1s,N,...,1i == . 
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When we set vector y and matrix X as 
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and the error tem and coefficients as 
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we can rewrite the model  
 

ε+β= Xy  and ( ) Ω=εε'E : 
 
where 
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To estimate this model, we take the following 
steps.  First we apply the ordinary least squares 
method to all TN × observations.  We obtain 
unbiased and consistent coefficient, so we can use 
the residuals ise for estimating parameters in the 

variance-covariance matrix ( Ω ). 
 
In the present paper, we estimate iρ as follows, 
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Next, we transform the observations in accordance 
with the estimated correlation coefficients, 
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Applying the ordinary least squares to the 
transformed data, we obtain a consistent estimator 
and the residuals.  Using estimated residuals, we 
estimate the variance of isu : 
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Consistent estimator of 2

iσ can be estimated as 
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Using these estimates, we transform the 
observations: 
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Applying the ordinary least squares to the 
transformed data, we obtain a consistent, 
asymptotically efficient and asymptotically normal 
estimator estimator ( β̂ ) when the explanatory 
variables are exogenous. See Kmenta [1986].  We 
call this procedure the Kmenta’s procedure 
afterwards. 
 
 
 
4. MONTE CARLO SIMULATION 
 
In the present paper, to investigate the small 
sample properties of nonsense regression for 
pooling time series and cross-section data, we 
conduct a Monte Carlo simulation.  We adopt the 
data generating process (DGP): 

is1s,iis vyy += − and is1s,iis wxx += − for 

N,...,1i =  and T,...,1s = , where the 

error terms ( )isis w,v  were generated from a 
bivariate normal distribution with independence 
across both individual and time period: 
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This assumes strong exogenous and no serial 
correlation.  Random numbers ( )isis w,v  were 
generated by the GAUSS procedure RNDNS.  The 
data were generated by creating 1000T +  
observations and discarding first 1000 
observations to remove the effect of the initial 
conditions. 
 
Using generated data, we estimate the model: 
 

isisis xy ε+β+α=  
 
by the Kmenta’s procedure.  In the Monte Carlo 
simulation, 5000 replication was made. 

 
The results of the cases when TN =  are reported 
below.  Table 1 reports the mean and standard 
deviation of the estimated coefficient ( β̂ and 

SSD( β̂ )), the mean of the standard error of the 

coefficient (ESE( β̂ )) and the mean of the DW 
ratio. 
 
Table 1 Coefficients β̂ and DW ratio 
N(T) β̂  SSD( β̂

) 
ESE( β̂ ) DW 

10 0.00232 0.11809 0.01103 1.199 
20 0.00299 0.07960 0.00440 1.319 
30 0.00230 0.06538 0.00295 1.367 
40 0.00152 0.05608 0.00241 1.409 
50 -0.00035 0.04782 0.00213 1.442 
60 0.00122 0.04114 0.00193 1.471 
70 0.00037 0.03595 0.00178 1.498 
80 -0.00011 0.03241 0.00167 1.523 

 
The mean and standard deviation of the t-value 
( βt and SSD( βt ) ) and the probability when the 
estimated coefficient is significant 
(P( 96.1t >β )) are reported in Table 2. 

 
Table 2 t-value βt  

N(T) 
βt  SSD( βt ) P( 96.1t >β ) 

10 0.219 20.449 0.844 
20 1.094 24.936 0.916 
30 1.058 26.340 0.924 
40 0.963 26.453 0.932 
50 -0.367 24.597 0.927 
60 0.593 22.675 0.929 
70 0.105 21.193 0.914 
80 -0.076 20.341 0.918 

 
To compare these results to Kao’s results for the 
LSDV (least squares with dummy variables) 
procedure, the corresponding results in Kao [1999] 
are reported in Table 3 and 4.  
 
Table 3 Coefficients β̂ and DW ratio by 
Kao[1999] 
N(T) β̂  SSD( β̂

) 
ESE( β̂ ) DW 

10 -0.0028 0.2865 0.1495 0.6184 
20 0.0024 0.2039 0.0727 0.3057 
30 0.0012 0.1652 0.0479 0.2033 
40 0.0006 0.1423 0.0358 0.1519 
50 0.0001 0.1265 0.0286 0.1212 
60 0.0004 0.1160 0.0237 0.1009 
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70 -0.0006 0.1072 0.0203 0.0864 
80 -0.0001 0.1002 0.0178 0.0755 

 
Table 4 t-value βt  by Kao[1999] 

N(T) 
βt  SSD( βt ) P( 96.1t >β ) 

10 -0.0185 1.9603 0.3150 
20 0.0339 2.8375 0.4889 
30 0.0248 3.4693 0.5723 
40 0.0160 4.0065 0.6166 
50 0.0060 4.4392 0.6598 
60 0.0207 4.8987 0.6894 
70 -0.0365 5.3014 0.7096 
80 -0.0057 5.6369 0.7264 

 
Table 1 and 2 show that the spurious regression 
still unsolved problem in this procedure too.  As 
the number of observations ( TN × ) becomes 
large, the average of the estimated coefficient and 
its standard deviation converges to zero, which 
means consistency of the estimator.  The average 
of the estimated standard error of the coefficient 
also converges to zero.  In consequence, the 
average of the estimated t-value converges to zero 
but its standard deviation remains relatively large.  
These results lead the high frequency of the case 
when the estimated coefficient becomes 
statistically significant.  This phenomenon is used 
be called “spurious regression.” 
 
This problem is more serious than those in the 
LSDV procedure.  The reason why such a result 
arises is that the estimated standard errors are 
relatively small in Kmenta’s procedure while the 
estimated coefficients are similar in both cases.  
Furthermore, the average of the DW ratio is 
relatively large and becomes larger and larger in 
accordance with the number of the observations 
becomes large.  This result indicates that detecting 
the spurious regression from the DW ratio 
becomes hard.  This is an additional bothersome 
problem from an empirical researcher’s point of 
view. 
 
Another finding is that the spurious regression 
problem becomes less serious in Kmenta’s 
procedure in accordance with the increase of the 
observations except the case when the sample size 
is very small ( TN ×  < 900 ) while that problem 
in the LSDV procedure becomes more serious in 
accordance with the increase of the observations. 
 
The results of the cases when we fix 30N =  are 
reported in Table 5 and 6, and Kao’s 
corresponding results in Table 7 and 8. 
 
 
 
 

 
 
 
 
Table 5 Coefficients β̂ and DW ratio 

T β̂  SSD( β̂
) 

ESE( β̂ ) DW 

10 0.00100 0.06838 0.00349 1.254 
20 0.00204 0.06690 0.00309 1.310 
30 0.00230 0.06538 0.00295 1.367 
40 0.00112 0.06139 0.00297 1.407 
50 0.00028 0.05797 0.00298 1.443 
60 0.00352 0.05379 0.00300 1.468 
70 0.00046 0.50404 0.00297 1.495 

100 -0.00013 0.04130 0.00291 1.557 
150 -0.00021 0.02910 0.00279 1.631 

Table 6 t-value βt  

T 
βt  SSD( βt ) P( 96.1t >β ) 

10 0.876 30.415 0.913 
20 1.155 28.220 0.926 
30 1.058 26.340 0.924 
40 0.339 23.567 0.924 
50 -0.069 22.183 0.916 
60 1.117 20.142 0.912 
70 0.166 18.877 0.899 

100 -0.191 15.269 0.890 
150 -0.097 11.129 0.837 

Table 7 Coefficients β̂ and DW ratio by 
Kao[1999] 

T β̂  SSD( β̂
) 

ESE( β̂ ) DW 

10 0.0006 0.1669 0.0861 0.5686 
20 0.0022 0.1660 0.0593 0.2991 
30 0.0012 0.1652 0.0479 0.2033 
40 0.0004 0.1639 0.0413 0.1538 
50 -0.0001 0.1651 0.0368 0.1238 
60 0.0013 0.1643 0.0336 0.1033 
70 -0.0012 0.1647 0.0310 0.0890 

100 0.0026 0.1634 0.0259 0.0626 
150 0.0002 0.1647 0.0211 0.0418 

 
Table 8 t-value βt  by Kao[1999] 

T 
βt  SSD( βt ) P( 96.1t >β ) 

10 0.0104 1.9546 0.3130 
20 0.0397 2.8192 0.4858 
30 0.0248 3.4693 0.5723 
40 0.0131 3.9855 0.6218 
50 -0.0074 4.5078 0.6651 
60 0.0381 4.9167 0.6889 
70 -0.0419 5.3318 0.7103 

100 0.1072 6.3427 0.7548 
150 0.0802 7.8426 0.8022 
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Additional fact findings are as follows.  The 
effects of the time length ( T ) change are similar 
to those of the number of observations ( TN × ) 
change, e.g., the effects on the average of the 
estimated coefficient, its standard deviation, and 
the estimated standard error of the coefficient. 
In comparison to the results of the LSDV 
procedure, the effects of the time length ( T ) are 
similar to those of the number of observations 
( TN × ), e.g., the effects on the probability when 
the estimated coefficient is statistically significant. 
 
The results of the cases when we fix 30T =  are 
reported in Table 9 and 10, and Kao’s 
corresponding results in Table 11 and 12. 
 
 
Table 9 Coefficients β̂ and DW ratio 

N β̂  SSD( β̂
) 

ESE( β̂ ) DW 

10 0.00508 0.10191 0.00710 1.364 
20 0.00385 0.07581 0.00411 1.319 
30 0.00230 0.06538 0.00295 1.364 
40 0.00206 0.05849 0.00237 1.366 
50 0.00187 0.05270 0.00202 1.365 
60 0.00088 0.04844 0.00178 1.365 
70 0.00004 0.04476 0.00160 1.362 

 
 
Table 10 t-value βt  

N 
βt  SSD( βt ) P( 96.1t >β ) 

10 1.003 19.754 0.882 
20 0.909 23.250 0.909 
30 1.058 26.340 0.924 
40 1.168 28.680 0.936 
50 1.235 29.393 0.946 
60 0.553 30.341 0.942 
70 0.306 30.686 0.943 

 
 
Similar to the effects of the number of 
observations ( TN × ) and the time length ( T ), 
the average of the estimated coefficient and its 
standard deviation converge to zero, and the 
average of the estimated standard error of the 
coefficient also converges to zero as the number of 
cross-section observations become large. 
 
Table 11 Coefficients β̂ and DW ratio by 
Kao[1999] 

N β̂  SSD( β̂
) 

ESE( β̂ ) DW 

10 0.0029 0.2848 0.0832 0.2232 
20 0.0037 0.2005 0.0588 0.2080 

30 0.0012 0.1652 0.0479 0.2033 
40 0.0009 0.1425 0.0415 0.2007 
50 0.0001 0.1265 0.0371 0.1993 
60 0.0017 0.1163 0.0339 0.1983 
70 0.0020 0.1080 0.0313 0.1976 

 
 
 
Table 12 t-value βt  by Kao[1999] 

N 
βt  SSD( βt ) P( 96.1t >β ) 

10 0.0261 3.5000 0.5732 
20 0.0567 3.4577 0.5788 
30 0.0248 3.4693 0.5723 
40 0.0195 3.4532 0.5692 
50 0.0259 3.4306 0.5699 
60 0.0444 3.4478 0.5635 
70 0.0588 3.4613 0.5745 

 
In comparison to the results of the LSDV 
procedure, the changes of the number of cross-
section observations ( N ) have similar effects on 
the LSDV and Kmenta’s procedures, except the 
levels of some estimated statistics. 
 
 
5. CONCLUSION 
 
I conduct a Monte Carlo simulation to investigate 
the spurious regression in the time-wise 
autocorrelated and heteroskedastic procedure 
proposed by Kmenta [1986].  The results show 
that the spurious regression problem is serious in 
this procedure too.  In comparison to the LSDV 
procedure, the results are summarized as follows, 
 
 
1st: Kmenta’s procedure has larger probabilities 
when the estimated coefficient is statistically 
significant than the LSDV procedure. 
 
 
2nd: While the spurious regression problem in the 
LSDV procedure becomes more serious in 
accordance with the increase of the time length 
( T ), this problem in Kmenta’s procedure becomes 
less serious except the case when the sample size 
is very small ( TN ×  < 900). 
 
 
This result suggests that we should pay attention to 
the spurious regression problem even when we 
apply the Kmenta’s procedure for pooling time 
series and cross-section data. 
 
Finally, we should mention about the remaining 
problems.  First one is that in the present paper we 
did not investigate the effects of the alternative 
methods to estimate the serial correlation 
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coefficient.  We adopt the correlation coefficient 
between ise  and 1s,ie − .  For this estimation, we 
can take other methods: 
 
 
 
 
The ratio of autocorrelation coefficients: 
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the regression coefficient ise  on 1s,ie − : 
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These alternative methods might affect the small 
sample properties.  We should investigate this 
remaining problem in further investigation. 
 
 
 
6. REFERENCES 
 
Baltagi, B.H., Econometrics, Berlin: Springer-

Verlag, 1998. 
Choi, I., Spurious regressions and residual based 

tests for cointegration when regressors are 
cointegrated, Journal of Econometrics, 60, 
313-320, 1994. 

Entorf, H., Random walks with drifts: nonsense 
regression and spurious fixed-effect 
estimation, Journal of Econometrics, 80, 
287-296, 1997. 

Granger, C.W.J., and P. Newbold, Spurious 
regressions in econometrics, Journal of 
Econometrics, 2, 111-120, 1974. 

Kao, C., Spurious regression and residual-based 
tests for cointegration in panel data, 
Journal of Econometrics, 90, 1-44, 1999. 

Kmenta, J., Elements of Econometrics, MacMillan, 
1986. 

Phillips, P.C.B., Understanding spurious 
regressions in econometrics, Journal of 
Econometrics, 33, 311-340, 1986. 

2863


