
Development of an automated testing tool for identifying
discrepancies between model implementations
1Freebairn, A., 1J. Rahman, 1S. Seaton, 1J-M. Perraud, 1P. Hairsine and 1H. Hotham

1CSIRO Land and Water, E-Mail: Andrew.Freebairn@csiro.au

Keywords: Model testing; Porting Models.

EXTENDED ABSTRACT

Software testing is an important and yet time-
consuming part of any model development effort.
When an existing model is ported to a new
platform, developers need to rigorously test the
new version for compliance with the existing
model.

This paper describes a testing tool (testbench)
used to streamline the porting of existing models
to a new code base. The tool automates the
comparison of the newly ported model against the
original, rapidly highlighting errors and giving the
developer confidence that the new source code is
working as expected. In addition to its utility in
porting, the test bench can also support regression
testing when further developing existing models.

The test bench takes as input a ‘trace file’, which
contains time series data for every input,
parameter, state variable and output of the
existing, legacy model. The tool feeds the inputs
and parameters from the trace file into the new
version of the model and compares values
predicted for each state variable and output with
those produced from the existing model. If any of
the state variables or outputs differ, it is
highlighted in a graph. This allows the model
developer to quickly see where variables differ
and to identify ‘patterns’ and therefore sources of
error in the newly ported model.

Figure 1: Testbench interface illustrating the
expected, modelled and their differences after

running.

Figure 2: An overview of the porting test
system.

The test bench is written using the reflection tools
in The Invisible Modelling Environment
framework TIME, allowing generalisation to
other models. This reduces the time and effort
required by developers to utilise the testbench for
their specific TIME model.

The development of the test bench is described in
the context of porting a water balance model from
a C++ Borland framework to a .NET framework.

Variables are compared at each time step

Model variables

Existing Data

Existing model Testbench

=?

Trace file

641

1. INTRODUCTION

All modellers of systems are subject to periodic
changes and upgrades of their modelling
environment. Furthermore, the models
themselves undergo expansions in functionality,
commonly with a requirement to maintain
backward compatibility with previous versions.
In this paper we describe a tool that automates
compliance testing when porting a model into a
new framework and discuss key steps to ensure
the original requirements are maintained and
further improvements of the model are achieved.

Software, including models, are ported between
environments to take advantage of new features,
be they at a low level, such as dynamic memory
allocation absent from older versions of Fortran,
or high level, such as the dynamic visualisation
capabilities of model development environments
such as TIME (Rahman et al. 2004).

Moving from one modelling environment to
another can result in the following problems.

1. Loss of analytical and end user
functionality familiar to existing users

2. Loss of runtime performance

3. Introduced error

A mature approach to testing is essential during
software porting to mitigate against these three
risks. This paper briefly discusses techniques of
end user testing, performance testing and
regressing testing for errors. The tool presented
here focuses on ensuring that the algorithms of
the model are preserved in the new
implementation and that errors have not been
introduced.

2. SOFTWARE TESTING
A thorough quality assurance program will
include:

• testing with users, to ensure that the
software meets their needs and is easy to
learn and use,

• testing of performance, in terms of a
software system’s demands on CPU,
memory and disk resources under
various usage scenarios, and

• testing for correctness, against some
objective measure such as a formal
specification, or in this case, ‘regression’

testing against results from another
implementation.

Some aspects of testing can be automated,
allowing tests to be undertaken repeatedly to track
a systems progression towards or away from
some goal.

The tool described here presents an automated
way to undertake correctness testing with respect
to results from a ‘trusted’ source.

Before describing the testing framework for
porting, brief descriptions of general software
testing practices are given. This will illustrate
where the testing framework fits within existing
practices.

2.1. End user testing

Usability testing requires end user to perform a
sequence of tasks that have been previously
outlined in an application’s specification. The
usability of the software is measured by users
ability to learn and perform these tasks, the speed
at which users are able to complete tasks and the
ability of tasks to be completed via differing paths
(flexibility, shortcuts for experienced users).

2.2. Performance testing

As part of the non-functional specification of
software, performance testing endeavours to
determine how the software performs tasks in
differing environments (hardware, operating
systems, and networks).

2.3. Correctness Testing

Software testing is a Quality Assurance (QA)
process that endeavours to verify that application
requirements are met and is a means to verify
correctness.

The following is an example of how a
requirement is tested using an automated test
harness. The requirement is that the calculator
can add two integers. The test class
(CalculatorTest) is part of a test suite that tests
each function of the calculator. The key line is
the assertion testing (in bold) that the addition of
one and one equals two.

642

Figure 3: Example of how a specific

requirement is unit tested using a test harness.

This illustrates the components of an automated
unit test:

1. A component (or unit) to be tested. In
this case, the Add method of the
Calculator

2. An action to be performed on the unit. In
this case, we invoke the Add method,
with the line: cal. Add(1, 1)

3. A check of the outcome of the action.
The “Assert” statement which in this
case checks that the result equals the
expected value of two.

Tests are used to investigate what happens in
normal and abnormal conditions. Testing the
range from normal to abnormal conditions
assesses robustness of the system. An addition to
the above example which tests for robustness is to
test that an exception is thrown when one or both
of the variables that are required to be added are
fractions and not integers.

A test is a controlled sequence of operations that
produces results that can be evaluated. The extent
to which the results match the specifications is a
measure of correctness. If the results compare
favorably with required outcomes the tests are
passed. A test driven approach never results in a
formal proof of correctness for a software
component. Rather, the level of trust in that
component grows based on the range of alternate
tests that it has been subjected to.

2.4. Practical benefits of automated testing

The example above makes use of the existing
NUnit (NUnit, 2005) framework for software unit
testing. Using NUnit, each module, sub-system
and whole system of code requires a series of
tests and data sets that test its specification. Once
tests are written they can, and should, be executed
regularly, whenever the source code changes.
The use of an automated testing framework such
as NUnit, provides advantages such as reliability,
repeatability, comprehensiveness, reusability, and
improved testing times. The following steps are a
brief guide to establishing a robust testing
methodology based on automated testing.

Define software specifications which include
functional and non-functional requirements.

Develop a test plan. Defining who will, what will
and how will the testing be performed.

Develop test cases. Individual tests should be
designed to cover each specification.

Execute tests. Using automated tools perform
unit and system tests. Use acceptance testing to
identify usability issues.

Evaluate results. Automated testing tools will
produce a list of functions/areas of code that are
incorrect and need fixing. Evaluating the
usability test will require testers to prioritize
solutions to users’ responses.

Respond to evaluation. Make recommendations
for changes to the code base based on the test
results.

3. TESTING FRAMEWORK

The following sections will address the specific
problem of developing a testing framework for
porting models through the use of a testbench.
This testing framework is differentiated from
lower level frameworks, such as NUnit, by
providing specific support for testing models
using time series and spatial data.

643

The testing framework developed for porting
consists of tools for reading inputs and
reconstructing models, mechanisms for supplying
data to the model and recording data, ability to
measure correctness, and tools for visualizing and
browsing results.

The aim of the testbench is to highlight
differences between the same variables of the
original model and the newly ported model.
Visualizing the results at every time step produces
a graph that illustrates magnitude and trends.
This directs users to possible sources of error.

The testbench is driven by a tracefile which
contains time series data for every input,
parameter, state variable and output of the
existing, legacy model. Each element is named
and configured to represent the model’s
configuration (see Figure 4). The trace has been
constructed from a physically based model
Macaque (Watson, 1997) (see case study) which
delineates hill slopes into Elementary Spatial
Units (ESU’s). Each unit (ESU, hill slope and
world (whole of catchment)) has a set of
parameters that is repeated each time step. Figure
4 illustrates one time step, which would be
repeated n times, where n equals the simulation
period divided by the time step. The catchment
illustrated in Figure 4 contains two hill slopes,
one which contains two ESUs and the other with
one. This information is used when
reconstructing the catchment in the testbench.

Figure 4: Representation of a trace file
configuration.

To ensure that the initial model’s stores are stable,
the trace file is produced after the first water year
has completed.

The testbench uses TIME’s introspection for
mapping the trace file parameters with those of
the new model (see Figure 5). Named variables

within the trace file are mapped to variables with
the same name or alias in the TIME model. This
relationship is then used once the model is
executed to play the values into the model and
record results. The tracefile parameter list that
defines the first time step is used to prime the
TIME model.

Figure 5: Representing the use of introspection
in mapping file elements to model objects.

The comparison of results is measured with a
tolerance that ensures that significant differences
are highlighted. An example is illustrated in
Figure 6.

Figure 6: Example of identifying significant
differences.

Users of the framework are presented with an
automatically generated interface (see Figure 7)
which is generated by “VisualTime” (Rahman,
2003). The interface consists of a list of
parameters from the source (original model),
result (new model) and the difference (result –
original). Associated with each parameter list is a
visual control which is used to view either a time
series or spatial map.

O
bject C

O

bject B

O
bject A

3r
d

Ti
m

e
st

ep

2n
d

Ti
m

e
st

ep

1s
t T

im
e

st
ep

p_slope

a_area

f_rain
etc…

p_slope

a_area

f_rain
etc…

Trace file

a_area

etc…

f_rain

etc…

Model objects
p_slope

etc…

p_slope

a_area

f_rain
etc…

hill slope 1

hill slope 2

esu 2

esu 1

World

esu 1

644

Figure 7: The testbench interface generated by VisualTime illustrating results of a test run.

4. CASE STUDY

The development of the testbench was initiated
during a project to port an existing model,
Macaque, from a legacy framework Tarsier
(Watson, 2003), to a new framework TIME.
Macaque is a physically based model, which
consists of a large number of variables and
hydrological algorithms. To ensure that the
porting process did not introduce errors in the
modelling behaviours, testing options where
explored. The first option considered was to
write unit tests for individual functions as well as
higher level system tests. This approach would
have required a very large effort of analyzing
individual functions to extract appropriate test
data sets. The second option was to compare the
final output of the existing model with the
model’s output. This simple option could identify
errors evident at the model outputs, but had very
little diagnostic power to help identify errors
within the model. The third option, the
development of a testbench, is the option
explained. This option was chosen as it allowed a
large degree of examination of internal model
variables and functions, with much less upfront
effort than hand coding individual unit tests.

Furthermore, the test bench could be used as a
learning tool to explore in detail the behaviour of
the hydrological processes being ported.. The test
bench highlighted the variables that potentially
initiated errors, and because its coverage included
all levels of the system, it enabled the
development of the core model logic to proceed
without a user interface.

4.1. The goals for porting

There were two main goals of this project. The
first was to develop a new interface that would
accommodate a larger user group. The second
was to take advantage of new software
frameworks and design patterns that enhanced
extensibility, maintainability and reusability.

4.2. The steps in porting

The architecture of Macaque was well designed
and the main modules cohesive. This made the
task of separating the required modules from the
original framework relatively easy.

The following points provide an overview of the
steps undertaken in the porting process.

645

1. Familiarization with both the model, the

existing framework and the language.

2. Obtaining a trace file of the existing model.
Testing the structure of the trace file to
ensure that it accurately represents the
current model.

3. Understanding existing limitations and
utilizing the new frameworks technology and
other software engineering techniques to
improve both the model and the use of the
model.

4. Rewrite the model into the new framework
leaving the essential algorithms intact.
Basically wrapping them in the new
architecture using software engineering
patterns. The core science may be ported
intact and tested before the interface or
persistence layers are developed.

5. Write a mechanism for reading the trace file
and reconstructing the model’s configuration
into the new framework.

6. Use the testbench to compare models.

4.3. Using the testbench in the porting
process to identify possible areas of fault

After running the testbench, two additional data
sets are produced, the results of the new model
and the differences between the old and new. By
synchronizing the outputs of each set, users are
able to compare results for a selected variable.
The magnitude and trends illustrated in the results
and differences indicates possible causes of error.
An example can be seen in Figure 7, the result
graph shows that the variable is constant. This
indicates potential error in the code and needs to
be investigated. Finding the selected variable in
code and seeing if the variables used to calculate
it are also in the difference list would be the first
step. If one or more of these variables are also
found to be incorrect the process is repeated until
the problem can be isolated to the code itself and
not an input to the calculation. Comparing the
code of the models would be the next step.
Sometimes the error is a problem with differences
in language use but usually it is an error with the
intended logic.

4.4. Selection of trace files

A single tracefile is unlikely to exercise every
facet of model behaviour (or misbehaviour),
although by testing many elementary spatial units
within a single whole-of-system tracefile, a wide
range of situations can be covered. Nonetheless

multiple tracefiles are necessary to gain
confidence in the model implementation. The
selection of trace files is based on similar
guidelines used in the selection of data for use in
unit tests. It is not possible to test all possible
variations of model configurations, however it is
possible to test the extents of use. With
knowledge of the behavioural extent of a system,
a range of tests can be derived. For example, with
a model that models hydrological processes
including snow pack and snow melt, separate
tracefiles might be selected to test scenarios with
no snowpack, part year snowpack and year round
snowpack.

5. CONCLUSIONS

The paper has described the motivation,
principles and methods of porting a module from
one modelling framework to another. The
advantages of a testing method are described and
illustrated with a case study.

The use of a software testbench is an efficient and
robust way of preserving model behaviour during
the porting process.

It is recommended that modellers undertaking the
porting process start by developing a good
understanding of the original model’s
specifications develop a testing plan and take
advantage of new technologies.

6. ACKNOWLEDGMENTS

The testbench has been developed with the
assistance of members of CSIRO Land and
Water’s Environmental Sensing, Predicting and
Reporting software engineering team, Fred
Watson and Murray Peel.

7. REFERENCES

Gamma, E., Helm, R., Johnson, R., and Vlissides,
J. (1994), Design Patterns: elements of
reusable object oriented software, Addison
Wesley.

Meyer, B. (1997), Object-Oriented Software
Construction: (2nd ed) Upper Saddle River,
N.J.: Prentice Hall

NUnit (2005), NUnit unit-testing framework,
http://www.nunit.org/ Last Accessed August
9, 2005.

Rahman, J.M, S.P. Seaton and S.M. Cuddy
(2004), Making frameworks more usable:
using model introspection and metadata to
develop model processing tool,

646

Environmental Modelling and Software, 19th
March, 2004, pp. 275-284.

Rahman J. M., S. P. Seaton, et al. (2003), It’s
TIME for a new environmental modelling
framework, Proceedings of MODSIM 2003,
(4), 1727-1732

Watson, F.G.R., R.A. Vertessy, & R.B. Grayson,
(1997), Large scale, long term, physically
based prediction of water yield in forested
catchments. Proceedings, International
Congress on Modelling and Simulation
(MODSIM 97), Hobart, Tasmania, 8-11
December, 1997, p. 397-402.

Watson, F.G.R. & J.M., Rahman (2003), Tarsier:
a practical software framework for model
development, testing and deployment.
Environmental Modelling and Software,
19:245-260.

647

