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EXTENDED ABSTRACT 

Being simplified representations of reality, 
simulation models can never be perfect and their 
results are always somewhat uncertain. That is 
why quantification of model uncertainty is 
important during interpretation of simulation 
results in decision making process. Uncertainty 
describes deviations of simulated ecosystem’s 
characteristics from known or observed values. 
Several sources contribute to such deviations 
including those associated with main model 
components such as forcing functions, 
mathematical formulae, parameters and universal 
constants and intrinsic model features. Model 
uncertainty can be evaluated based on its linear 
estimate under the assumption that all sources of 
uncertainty are independent. Traditional 
approaches to investigating model uncertainty 
consider individual sources whose contribution to 
the uncertainty can be quantified for a given task. 
Although the result is incomplete it helps to 
improve the understanding of the model and 
increase the confidence in simulation results. 

One of the most investigated sources of model 
uncertainty is errors in a model’s supporting data. 
The paper describes this type of uncertainty and 
how it is transformed into simulation results. 
Propagation of this type of model uncertainty 
through the model was investigated based on a 
simulation model developed for water quality 
assessment in the mouth of a large river.  

The model was created using simulation 
framework which consists of at least two 
independent modules. Each module describes 
specific groups of processes, e.g., hydrological 
processes or hydrochemical and hydrobiological 
processes. Interactions of processes from different 
groups are modeled by passing simulation results 
from one module to another.  

The hydrodynamic module is built as channel – 
junction computational network based on 
equations of continuity and momentum in integral 
form. Each junction in this module corresponds to 
a homogeneous compartment of water quality 

module where chemical and biological processes 
take place. The water quality module describes 
phytoplankton dynamics, organic matter and 
nutrients transformation and uptake. These 
processes are modeled by ordinary differential 
equations. Channels carry interactions of 
compartments, that involve water and ingredients 
exchange. Simulations were aimed at detection of 
crucial parameters of the ecosystem and evaluation 
of uncertainty in simulation of phytoplankton 
biomass during vegetation. 

A sensitivity analysis was conducted to reveal the 
most critical parameters of hydrodynamic and 
water quality modules. It appeared that 
hydrodynamic module is sensitive to the lower 
boundary condition of the modeled portion of the 
river. Variations of this condition within 10% 
caused up to 60% variations in water redistribution 
between river branches. In general, it is expected 
that if model components are sensitive to some 
subcomponents, then model state variables are also 
sensitive to these components. Therefore, the high 
uncertainty of the hydrodynamic module raised an 
expectation that water quality characteristics in the 
investigated portion of the river, and particularly 
phytoplankton biomass, are also simulated with a 
high level of uncertainty caused by errors in lower 
boundary hydrodynamic condition. Simulation 
experiments showed, however, that propagated 
variations in water flow characteristics were 
reduced to 2% deviations of phytoplankton 
biomass in water quality module.   

The case study presented illustrates the ability of one 
module of the model to absorb the uncertainty of 
another module.  A similar effect can be observed 
for another dynamic model built upon differential 
equations, and applied within the same or similar 
framework. The structural stability of the module 
accepting parameters supplied by other modules 
(from the same model) can improve simulation 
results significantly. Results also suggest an 
approach to evaluation of model uncertainty that can 
be computationally efficient.  
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1. INTRODUCTION 

The term “uncertainty” in its broader sense is 
reserved in scientific literature to describe the 
imperfection of human knowledge about the 
reality. In this paper, the term “uncertainty” is used 
specifically with respect to simulation models and 
their properties. The research is based on the 
acceptance of two facts. First, that model 
uncertainty is unavoidable, and second, that 
uncertainty of results can be minimized by 
selecting the model with specific properties. 

Simulation models are powerful tools in 
investigation of natural systems, specifically 
predictions of natural disasters and evaluation of 
sustainable management decisions of various 
scales. Ecological models form a diversified set of 
techniques based on different mathematical and 
computational methods.  Methodologies for model 
application have also been proposed and 
successfully applied (Van Nes and Schefer, 2005; 
Argent, 2004). The experience in dealing with 
complex simulation models have brought up issues 
associated with model complexity and 
imperfection of the models and available 
observation data (Van Nes and Scheffer, 2005; 
Beck, 1999; Reichert and Omlin, 1997). 

The key question of any application of a 
simulation model is the extent to which users can 
trust the model and the results it produces. Model 
suitability is normally studied on the step of model 
validation. Along with qualitative assessment of 
how well the model describes cause-effect 
relationships of the real system, quantitative 
estimations of model suitability are highly desired.  
One of the possible articulations of the problem is 
an evaluation of model uncertainty. Intuitively, 
model uncertainty is understood as a possible 
deviation of predicted values of system 
characteristics obtained via simulations from their 
observed values.  

The evaluation of model uncertainty can be done 
in different ways, e.g., using Monte Carlo 
simulations (Waller et. al., 2003), Bayesian 
statistics (Borsuk et.al., 2004), or differential 
analysis (Turanyi and Rabitz, 2000). Selection of a 
method is predetermined by the type of a model 
being investigated. Numerous publications provide 
us with taxonomies of ecological simulation 
models based on various criteria (e.g. Strashcraba 
and Gnauck, 1985). Among main classification 
criteria one can find types of mathematical 
methods utilized, dynamic features of models, 
model spatial characteristics or intended nature of 
application. Considerable part of simulation 
models designed for an assessment of ecological 

conditions of natural objects and evaluation of 
various management strategies in terms of their 
sustainability is constructed based on differential 
equations.  The paper presents results of 
uncertainty analysis of a dynamic spatially 
distributed simulation model built for water quality 
assessment in streams and reservoirs. The state of 
aquatic ecosystem is described by a compartment 
model where ecosystem characteristics in each 
compartment are modeled using differential 
equations. The modeling framework adopted 
supports a wide range of simulation models that 
can be applied to numerous tasks of water resource 
evaluation and management. Therefore, 
conclusions derived from the investigated case 
study can be extrapolated onto other models of the 
same type employed under the same framework. 
The case study exploring causes of eutrophication 
in a branched river system demonstrates the 
propagation of uncertainty in model supporting 
data through the model and the transformation of 
the uncertainty in simulation results.   

2. ISSUES OF UNCERTAINTY ANALYSIS 

Commonly recognized sources of model 
uncertainty include main model components 
identified based on its mathematical formulation 
(Jorgensen and Bendoricchio, 2001) and the model 
itself as an abstract representation of reality. Model 
components include state variables, forcing 
functions, mathematical equations and formulae, 
parameters and universal constants. State variables 
represent quantitative characteristics describing 
ecosystem state. A set of such characteristics 
depends on an ecosystem modeled and a particular 
task utilizing the model. Forcing functions have an 
external nature with respect to state variables and 
affect state variables. Mathematical equations, 
formulae and methods are tools selected to 
describe processes associated with state variables 
and deemed important for practical application. 
These tools contain parameters or coefficients that 
may vary in time and space, but are independent 
from state variables. All five components cannot 
be determined precisely or unambiguously. Any 
attempt to assign a value or to specify a 
mathematical expression introduces an error thus 
influencing simulation results and contributing to 
the model uncertainty. 

Another commonly accepted source of uncertainty 
is an intrinsic model feature. As a simplified 
representation of reality, any ecological model 
never contains all characteristics of a real 
ecosystem and never describes all processes that 
take place in the ecosystem. In other words, the 
lack of our knowledge and expressiveness of 
selected tools also contribute to model uncertainty. 
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All these sources are sometimes enumerated under 
the term “epistemic” uncertainty that arises from 
the ignorance of a true fact or a value (Regan 
et.al., 2003). 

Given that model uncertainty is unavoidable, 
evaluation of its extent is required, and intuitive 
definition of model uncertainty mentioned above is 
of great help. Uncertainty from a particular source 
can be estimated based on an approximation of the 
deviation of output variables simulated with 
disturbed components from unperturbed state 
(Turanyi and Rabitz, 2000). Similar to 
computational methods, one can try to find upper 
boundary of possible deviations in simulation 
results from corresponding observed values, 
although the upper boundary may be never 
achieved. Then, enumeration of main sources of 
model uncertainty may give a straightforward 
algorithm for uncertainty evaluation, namely, to 
evaluate model uncertainty from each source 
separately, if it is possible, and add them 
altogether. Such an algorithm provides a linear 
estimate of model uncertainty and is widely 
applied when model uncertainty is investigated 
under the assumption that all sources of 
uncertainty are independent.  

Unfortunately, practical application of this type of 
algorithm to ecological models is very limited. 
Model uncertainty cannot always be apportioned to 
each source separately.  In this case, an attempt to 
evaluate uncertainty from each source separately 
results in overestimated values. Moreover, 
different sources of model uncertainty are not 
independent and therefore the total uncertainty is 
not an additive function of uncertainties from 
enumerated sources. Finally, not each source of 
model uncertainty can be evaluated. While 
intrinsic model uncertainty is very well 
understood, quantitative assessment of this source 
is hardly possible. 

Evaluation of model uncertainty is often conducted 
along with sensitivity analysis.  According to 
(Jorgensen and Bendoricchio, 2001) “sensitivity 
analysis attempts to provide a measure of the 
sensitivity of either parameters, forcing functions, 
initial values of the state variables or submodels to 
the state variables of greatest interest in the 
model.” Sensitivity analysis identifies specific 
model components whose contribution to model 
uncertainty dominates others. There are several 
approaches to estimate component sensitivity. The 
simplest one is a first order local sensitivity 
analysis which is based on the investigation of 
first-order partial derivatives. If more than one 
state variable is investigated, they may have 
significantly different scales. To compare the 

reaction of different state variables to perturbations 
in model components, the sensitivity is calculated 
based on relative deviations in parameter and state 
variable values. Mathematical definition of 
component sensitivity clears relationships between 
the latter and model uncertainty due to a certain 
model component. Component sensitivity can be 
interpreted as relative rate of the model uncertainty 
due to the component.  

Evaluation of model uncertainty caused by 
different sources improves the understanding of 
model features and lifts confidence in simulation 
results even if it cannot be done for all sources. 
Component uncertainty propagating through the 
model transforms into model uncertainty. The 
result of transformation is obviously 
predetermined by the model’s mathematical 
features. With this respect it seems reasonable to 
investigate specific features of a given model to 
obtain reasonable evaluation of at least some 
portions of model uncertainty. Estimates of 
uncertainty in model input data can be obtained 
relatively easy when the sampling and analytical 
procedures are known. Propagation of the input 
data uncertainty through the model and 
quantification of its contribution to model 
uncertainty seems to be important especially 
because it is expected that if model components 
are sensitive to some subcomponents, then model 
state variables are sensitive to these components 
(Jorgensen and Bendoricchio, 2001).   

3. CASE STUDY 

The study of uncertainty propagation and 
transformation through the compartment model 
was conducted based on the model developed for 
lower portion of one of the largest Eastern 
European rivers, the Don River. The Lower Don 
lies in the Rostov Region from Tsimlyansk 
Reservoir to Taganrog Gulf, with a watershed area 
of more than 160,000 km2 and a length of 313 km 
(Figure 1). The river width varies from 400 to 600 m 
in the lower part. Average water depth during low-
water season is 2-6 m in the main channel, and 
decreases to 0.7 m within the shoals.  High-water 
events increase water depth up to 9 m.  The mouth of 
the Don River lies downstream from Rostov-on-
Don. Its watershed covers an area of about 340 km2, 
and includes many branches and creeks, the biggest 
of which are Stary Don and Bolshaya Kalancha. 
This portion of the Don River is the main source for 
municipal and industrial water supply for the city of 
Rostov-on-Don (population over 1,000,000 people), 
and smaller towns situated on the river’s banks. 

Data from a routine water quality monitoring system 
were used to sketch water quality conditions in the 

2479



  

region. The hydrochemical composition of the water 
in this portion of the river forms under the influence 
of natural and anthropogenic factors. The water 
comes to the system from Tsimlyansk Reservoir and 
a few tributaries. As the water flows downstream, its 
chemical composition can be affected by the loading 
of both dissolved and suspended matter. The 
dissolved oxygen regime of the river is stable. The 
concentrations of heavy metals, phenols, and 
synthetic surfactants slightly exceed corresponding 
maximum allowable concentrations. Water quality 
problems of the Lower Don system are associated 
with the processes of eutrophication and 
contamination by organic matter. Besides, high 
turbidity may influence essentially the Don River 
ecosystem and hence slow down the self-purification 
processes. 

 

Figure 1. The studied portion of the Don River 

4. MODELLING FRAMEWORK AND 
INVESTIGATED MODEL 

Ecological models normally include state variables 
describing ecosystem characteristics and 
undergoing physical, chemical and biological 
processes. While partial differential equations 
allow modelers to describe chemical and biological 
transformations along with diffusion and advection 
processes at the same time (e.g., Markman and 
Erechtchoukova, 1983), the commonly accepted 
practice is to separate main groups of processes 
and to model them using individual modules. 
Interactions of processes from different groups are 
modeled by passing the simulation results from 
one module to another (Ambrose et.al., 1993). In 
the case of an aquatic ecosystem, water flow is the 
main transport mechanism playing a critical role in 
ecosystem’s dynamics and viability. That is why 
water flow characteristics are required for water 
quality simulation.  

The selected class of compartment models is based 
on the following framework. A water body is 
mapped into channel – junction computational 
network. Each junction is a homogeneous 
compartment where chemical and biological 

processes take place. These processes are 
described by ordinary differential equations. 
Channels carry interactions of compartments that 
involve water and ingredients exchange. Mass 
transport between compartments is calculated 
based on channel flows which are characterized by 
water discharges and/or velocities. Normally such 
data are available at certain points in the water 
body, but temporal and spatial frequencies of 
observed data are not sufficient to support such 
model. That is why water flow characteristics are 
also obtained from simulations based on 
hydrodynamic module. The resulting unsteady 
water flow characteristics for a certain period of 
time are used later for simulation of aquatic 
ecosystem characteristics. 

 

Figure 2. Simulation framework 

The framework described may include at least two 
modules: a module describing hydrodynamic 
processes and a module simulating chemical and 
biological processes. Depending on the task, the 
latter can be further divided into more or less 
independent modules (Figure 2).  The framework 
presents all the sources of model uncertainty as 
mentioned above, and raises the question of how 
the uncertainty propagates from one module to 
another and transforms through the entire model.  

The framework was adopted to simulate primary 
production growth in the mouth of the Don River 
described above. Simulations were aimed at 
detection of crucial parameters of the ecosystem 
and main source of phytoplankton biomass during 
vegetation. The model consisted of two modules 
that computed water flow and water quality 
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characteristics. The area of study was presented as 
a set of 21 homogeneous compartments – junctions 
with two branches in the mouth.  The 
hydrodynamic module was designed based on one-
dimensional equations of continuity and 
momentum in integral form. Numerical solution of 
the equations was obtained using branched 
junction network and applying four-point 
approximation scheme with some additional 
assumptions (Yereschukova, 1997). 

Total phytoplankton biomass was selected as a 
main indicator of the eutrophication process. Other 
water quality parameters selected as state variables 
include concentrations of organic nitrogen and 
phosphorus, inorganic phosphorus, ammonium and 
nitrate. The selected state variables were modeled 
using EUTRO module of WASP modeling 
package (Ambrose et.al., 1993). The model 
described nutrients dynamics based on Michaelis-
Menten kinetic equations including solar radiation 
and water temperature as forcing functions. 

The hydrodynamic module was calibrated for the 
summer low-water period. After that, the model was 
run with input data set corresponding to the spring 
high-water period and fall high-water period. Results 
showed a good fit with observation data. Thus, the 
difference between simulated and measured values 
of water stages did not increase in time and did not 
exceed 5% of water depth that varied between 4 m 
and 4.6 m at the observation site.   
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Figure 3. Water stages near Aksai 

Water discharges and stages were simulated for the 
period of time from May to October for the year with 
average hydrological regime. The results of 
simulation supported a conclusion that the module 
describes different hydrological events of the river 
with the required level of accuracy (Figure 3). The 
deviation of calculated values from observed data 
did not exceed guaranteed accuracy for the 
measurements. Higher deviations at the lower 
boundary of the portion of the river suggested 
looking into model uncertainty due to errors in 
boundary conditions. 

The water quality module was calibrated using 
observation data collected by routine monitoring 
system. Computed hydrodynamic characteristics of 
the water flow were passed to the water quality 
module. The model described seasonal dynamics of 
nutrients satisfactorily for the whole studied portion 
of the river. Total calculated phytoplankton biomass 
changed from a relatively small amount in spring up 
to 3 mg/l in summer, which corresponds to average 
measured values. Numerical stability analysis 
confirmed that selected basic solution is dynamically 
stable. To investigate sensitivity of this module the 
following parameters were selected: maximum 
growth rate, mortality rate, rates of decomposition of 
organic phosphorus and nitrogen, light saturation 
coefficient, carbon-to-chlorophyll ratio, and water 
flow. Results demonstrated that the model is 
structurally stable. At the same, time phytoplankton 
biomass is most sensitive to carbon-to-chlorophyll 
ratio and light intensity.  

5. UNCERTAINTY ANALYSIS 

Obviously, the constructed model has intrinsic 
uncertainty. It is expected to imitate only main 
features of ecosystem characteristics. Global 
constants, namely acceleration of gravity and 
Manning’s roughness coefficient are also included 
in the model. But these sources of model 
uncertainty are not considered in the study.  

The next source of the uncertainty – errors in 
initial values of state variables – needs to be 
discussed. The underlying Saint Venant equations 
form a dynamic system that cannot be solved or 
investigated analytically. The framework described 
above assumes only numerical analysis which is 
accomplished as a series of model runs with 
different initial values. According to the classic 
Lyapunov definition of stability, the unperturbed 
state of the system is stable if small perturbations 
of initial values of state variables result in small 
deviations of perturbed state from unperturbed one 
(Leipholz, 1970). Keeping in mind that numerical 
solutions accumulate computational errors, one can 
conclude that uncertainty and sensitivity analysis 
can produce valid results only for stable 
unperturbed states. In the case of unstable 
solutions, it is hard to distinguish between the 
impact of variations in parameter values and the 
effect of accumulated computational errors.  

To evaluate the propagation of errors in the lower 
boundary condition, the series of computation 
experiments were conducted based on full factorial 
design with deviations of ± 10% of the basic values 
obtained through observations. Results of module 
runs were compared using the measure of deviations 
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between basic solution and solutions with perturbed 
input data sets: 
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where δX  is the relative measure of changes in a 
state variable X, %, Xb(ti) is the value of the state 
variable at the time ti, obtained via simulations with 
basic input data, N is the number of time steps 
during the simulations, and Δp/p is the relative 
change in the parameter value. Δ is the absolute 
measure of deviations, and is calculated based on the 
following formula: 
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Here, X(ti) is the value of the state variable at the 
time ti obtained from simulations with modified 
input data. Results of the hydrodynamic module 
uncertainty due to the lower boundary condition 
presented in Table 1 correspond to a hydrological 
regime with average water discharge about 600m3/s. 

Table 1.  Uncertainty in water flow passing through 
the Stary Don branch. 

Run Water flow Q, 
% 

Δ, 
m3/s 

δQ, 
% 

(-,0) 36.7 30.8 135 
(+,0) 27.1 36.4 161 
(0,-) 28.0 30.1 133 
(0,+) 40.0 53.9 238 
(-,+) 43.2 72.2 337 
(-,-) 29.7 18.2 80 
(+,+) 34.4 14.7 65 
(+,-) 21.1 78.4 345 

The first position corresponds to the boundary 
condition of the Stary Don branch, the second to the 
Bolshaya Kalancha branch. Sign "-" means 
decreasing value by the 10%, "+" - increasing by the 
same amount, "0" - the same value as the basic input 
data set. It should be noted that, water flow 
characteristics at the upper and middle part of the 
Lower Don River are not so sensitive to the changes 
in the lower boundary condition. Deviations of 
simulation results on modified input data set from 
simulations on basic input data set increased, but not 
more than 5%.  According to the basic input data set 
the Stary Don branch gets 32.3% of water flow 
passing through the Lower Don River System. The 
formulae (1) and (2) have been applied to estimate 
changes in water distribution between branches 
caused by 10% change in the boundary condition. 
High values of δQ exceeding 100% indicate that 
uncertainty of downstream boundary condition is 

magnified by the module. This effect is more 
significant for the cases, when average water 
discharges are low. It was found during simulations 
that in July, when the average water discharge has its 
minimal value of 400m3/s, the relative measure of 
deviations δQ reaches its maximal value at 600%. 

Uncovered sensitivity of the hydrodynamic module 
to the low boundary water stages may cause an 
expectation that water quality parameters can be also 
considerably affected by the same conditions. This 
hypothesis has been investigated.  

The study showed how water flow influences the 
dynamics of ecosystem characteristics. Simulations 
revealed that average travel time in the Lower Don 
River system did not exceed 5 days which implies 
the dominated portion of phytoplankton biomass 
comes to the system from upstream. A sharp drop in 
water volume passing through the system during 
low-flow events in summer may increase travel time 
significantly. Simulation runs with input data 
corresponding average water discharge about 
400m3/s did not reveal dramatic increase in 
phytoplankton biomass compared to simulation with 
average water discharge of 600m3/s. The added 
biomass was less than 9%.  The only notable 
difference was in the time lag of reaching maximum 
concentrations and the beginning of rapid 
concentrations decrease in the fall. 

A series of simulation experiments were done to 
evaluate a propagation of hydrodynamic module 
uncertainty due to boundary conditions through 
water quality module. Water redistribution between 
main branches in the mouth of the river affected 
concentrations of phytoplankton biomass in these 
branches insignificantly. Having up to 60% of 
uncertainty in water discharge corresponding to 
water flow in the Stary Don branch, the maximum 
relative deviation of concentrations of phytoplankton 
biomass in this branch δPh was less than 20%. 
Therefore, water quality state variables were not 
sensitive to the uncertainty in low boundary 
hydrological condition. 

6. DISCUSSION 

The series of simulations demonstrated how 10% 
deviations of lower boundary hydrodynamic 
condition were transformed in 60% deviations of 
water discharge in the river branch and finally were 
reduced to 2% deviations in phytoplankton biomass. 
The result of uncertainty transformation deserves 
attention. In general, those modules that are sensitive 
to certain parameters are expected to pass the 
uncertainty on to other modules and to make model 
state variables also sensitive to the parameters, but 
simulation experiments did not support this 
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expectation.  From stability analysis perspectives 
(Leipholz, 1970), stability of a solution depends on 
parameters’ values. Changes in model parameters 
can trigger the alteration of a system state from 
stable to unstable causing significant increase in 
model uncertainty. This implication of stability 
theory is supported by simulation experiments, (e.g. 
van Nes and Scheffer, 2003). Model insensitivity to 
perturbations in parameter values means structural 
stability of the model within the given parameters 
domain.  

Simulation experiments showed that basic solution 
of the water quality module is stable and the area of 
attraction of this solution in parameter space is large 
enough to cover significant variations in computed 
values of water discharge and water depth. The 
model structure did not allow us to investigate 
parameter space analytically to determine the 
parameter values when the basic solution loses its 
stability, but computational experiments clearly 
indicated that these values are beyond the range of 
water flow characteristics observed in the given 
natural aquatic ecosystem. Simulation results 
indicated that water flow in the lower part of the 
River is still high, and hence travel time is 
insufficient for phytoplankton to grow notably in the 
system. It is simply washed out of the system 
regardless which river branch it follows. Such 
interpretation also supports the conclusion that the 
model is not sensitive to the lower boundary 
condition.  

7. CONCLUSION 

The case study presented illustrates the ability of one 
module of the model to absorb the uncertainty of 
another module. A similar effect can be observed for 
another dynamic model built upon differential 
equations and applied within the same or similar 
framework. Structural stability of a module 
accepting parameters supplied by other modules can 
improve simulation results significantly. The 
practical implication of the results consists in the 
top-down approach to conduct the uncertainty 
analysis. The approach, when the uncertainty of the 
final module is first evaluated based on an average 
estimation, is expected to be more computationally 
efficient and is the subject of further investigations.   
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