
Adding Grid Computing Capabilities to an Existing
Modelling Framework

1Davis, G.P., 1R.J. Bridgart, 1T.R. Stephenson, and 1J.M. Rahman

1CSIRO Land and Water, CRC for Catchment Hydrology, E-Mail: geoff.davis@csiro.au

Keywords: Grid Computing; Modelling frameworks.

EXTENDED ABSTRACT

Modelling frameworks are constantly being
developed and expanded to take advantage of new
computing technology. One such framework
undergoing expansion is The Invisible Modelling
Environment (TIME) (Rahman et al 2003). TIME
is a software development framework for
creating, testing and delivering environmental
simulation models.

With increasing demands being placed on
computer systems by complex models, a solution
was needed to address the problem of ever
increasing execution times.

A number of options were available to reduce
long runtimes in TIME. Considering the options,
a Grid Computing solution was chosen as the
most viable because it could provide the greatest
return on investment.

A computational grid can be formed by the
networking of existing personal computers and
the installation of specialist control software.
Existing local area and wide area networks can
also be utilised as part of a grid with no changes
to hardware configuration.

The nature of some of the processing being done
within the TIME engine lends itself to
performance optimisation through grid
computing. Tasks to be run on a grid need to be
able to be broken down into small sub-problems
and each of the sub-problems needs be a
computationally intensive operation rather than a
data intensive operation. The sub-problems also
need to be able to run in parallel rather than in
series as is generally the case for applications that
run on a single machine.

Although a number of grid computing technologies
exist, the Alchemi .NET Grid Computing
Framework was the framework of choice for TIME.
Alchemi is an open source software framework that
has been specifically designed for the fast and
efficient harnessing of the computational power of
networked machines. Although only in the early
stages of development when first adopted, its
flexibility and potential made it the best choice for
integration into TIME.

The Distributed Invisible Modelling Environment
(DIME) is the extension to TIME that allows users
to transparently distribute model execution over a
network. It is the component which links TIME and
Alchemi.

DIME includes support for the distribution of
global optimisation routines present in TIME and
for the batch processing of models.

The performance of the DIME component was
analysed at each functional stage of development
with particular attention to load and performance
testing.

The integrity of the grid was maintained through
load testing. Load testing involved modifying the
grid composition during execution and simulating
network failures to ensure stability.

The performance tests demonstrated the
effectiveness of distribution under certain
conditions. These kinds of tests are essential in
producing guidelines for when a grid should be
used for model processing. Although incomplete at
this stage, our preliminary performance results look
very promising.

620

1. INTRODUCTION

In recent years there has been considerable activity
in the development of model building frameworks
that take advantage of new technologies. One such
framework is The Invisible Modelling
Environment (TIME) (Rahman et al 2003).

TIME is a software development framework for
creating, testing and delivering environmental
simulation models. TIME differs from other
modelling frameworks in a number of ways,
particularly in its use of metadata to describe and
manage models. This gives flexibility to
components that manage data and models,
recognising that one approach does not necessarily
fit all applications. TIME includes a number of
tools, which operate generically on models,
including an automatic user interface generator and
various model tools. TIME is currently being used
to develop a range of modelling applications,
including a library of rainfall runoff models
(Perraud et al 2003) and a stochastic climate
library (Srikanthan et al 2005).

A solution was needed to address the problem of
long execution times, particularly during the
numeric optimization and sensitivity analysis of
model parameters.

There were a number of options available to
reduce long runtimes. Considering the options, a
Grid Computing solution was chosen as the most
viable because it could provide the greatest return
on investment. Another important advantage is that
a Grid would enable other external organisations
using TIME to create their own Grid to increase
performance. This would not have been possible if,
for example, our solution to long runtimes was to
purchase a supercomputer exclusively for the
CSIRO.

Grid computing uses the resources of many
separate computers connected by a network to
solve large scale problems. These are either for
large computationally intensive problems where
the grid is known as a Computational Grid or grids
to manage large amounts of distributed data known
as Data grids. Throughout this paper the term Grid
or Grid computing refers to Computational Grids
(Satoshi et al 2005).

This paper will discuss the alternatives considered,
the implementation details of the chosen solution
and the benefits that this new technology has
brought to the TIME framework.

2. PROBLEM DEFINITION

As model complexity increases so to does the
demand placed on computer systems which
implement them. This increase in demand
inevitably leads to longer runtimes and the slower
processing of model data. In this section we
describe some of the options available to
developers to increase the performance of their
modelling frameworks. We then detail the option
we selected to implement in the TIME framework.

2.1. Increasing performance

There are several alternative approaches when
attempting to increase the speed at which
computational tasks are executed. These
approaches fall into two broad categories—
software and hardware. Software solutions include
the choice of programming language, the compiler
used and algorithmic optimisation. Hardware
optimisation can take place at multiple levels;
within a single machine—CPU speed, Front Side
Bus (FSB) speed, RAM speed and onboard cache
size all have the potential to increase performance.
It is also possible to connect multiple machines
together to provide an increase in performance for
certain tasks. Supercomputers, Clusters and Grids
are examples of hardware architectures designed to
address the problem of performance improvement
through hardware optimisation.

The grid architecture (Foster and Kesselman 1999)
has several advantages over the supercomputer and
cluster, the foremost of which is cost. A
computational grid can be formed by the
networking of existing personal computers and the
installation of specialist control software. Existing
local area and wide area networks can also be
utilised as part of a grid with no changes to
hardware configuration. The number of computers
connected to a grid is dynamic and can be changed
at any time. Machines on the grid need not be
dedicated either—many grid systems are designed
to execute jobs using otherwise unused clock
cycles on client machines. The more computers
connected to the grid and the faster they are, the
more powerful the grid becomes.

2.2. TIME and Grid Computing

The nature of some of the processing being
executed within the TIME engine lends itself to
performance optimisation through grid computing.
Tasks to be run on a grid need to be able to be
broken down into small sub-problems and each of
the sub-problems needs to be a computationally
intensive operation rather than a data intensive
operation. The sub-problems also need to be able

621

to run in parallel rather than in series as is
generally the case for applications that run on a
single machine.

Various global optimisation routines are
implemented in TIME and some are suitable for
distribution on a grid. Multi-start routines which
consist of a number of independent searches can
easily be executed across a grid, with each search
being sent to a different machine for execution
rather than one processor sequentially executing
N-searches.

TIME has the concept of physical models which
consist of a series of variables (inputs, constants,
parameters and outputs) and a time step method
which, when invoked, advances the model’s state
by one time step. Being completely independent,
models of this type are highly suitable for batch
processing across a grid.

Sensitivity analysis, which involves numerous
independent model runs, is another area in which
distributed computing would decrease execution
times.

With the power of a computational grid, large
numbers of individual independent tasks can
potentially be executed with vast improvements in
processing speed. This has two obvious benefits in
that individual jobs can be executed faster or more
jobs can be executed in a given timeframe.

A coarse-grained approach to parallel processing
has been adopted in the TIME environment. This
kind of task separation takes place at the
application level, meaning that the program itself
is specifically designed to utilise the grid. Fine-
grain approaches attempt to break up the task for
parallel execution at a much lower level. This is
more difficult but advantageous, as it is not bound
to a specific application, thus can be used for a
wider range of tasks with little or no change to the
application.

3. EXISTING GRID TECHNOLOGIES

A number of grid computing technologies exist,
each using differing technology in all aspects of
their design from network communication to job
scheduling. Due to the availability of varying
technologies, it was deemed unnecessary to
develop an entirely new grid computing
framework for TIME. Two distribution
frameworks were identified as potential candidates
for use; Condor (2005) and Alchemi (2005).

3.1. Condor

Condor is a specialized workload management
system for compute-intensive jobs. It is a well
established product whose roots stem from the
Remote-Unix (RU) (Litzkow 1987) project which
has evolved into a cross platform distribution
framework. It offers a job queuing mechanism,
scheduling policy, priority scheme, resource
monitoring, and resource management capability.
In spite of its features and reputation, Condor was
not chosen. Its underlying technologies and native
language were seen as less suited for integration
with TIME than Alchemi’s.

3.2. Alchemi

The Alchemi .NET Grid Computing Framework
was the grid computing framework of choice for
TIME. Alchemi is an open source software
framework that has been specifically designed for
the fast and efficient harnessing of the
computational power of networked machines.
Although only in the early stages of development
when first adopted, its flexibility and potential
made it the best choice for integration into TIME.

The framework is written in the C# programming
language which is the same language
predominantly used in TIME. The Alchemi
software is designed for application level task
definition which is tied into applications through
the use of the object oriented programming
concept inheritance. The interface provided is
extremely simple to utilise in any existing C#
application. The architecture is such that jobs are
sent to a manager machine whose responsibility it
is to handle scheduling and manage the available
resources on the grid. Client machines, known as
executors, connect to the manager at will and in
doing so make themselves available for use by the
manager for executing jobs. By default, the
manager makes scheduling decisions based on the
availability of CPU resources of the executor
machines. The manager is also responsible for
handling exceptional circumstances such as when
executor machines unexpectedly disconnect either
on purpose or due to network failure. The Alchemi
framework is capable of handling all scheduling
and monitoring processes by default unless
otherwise specified by the client application.

Microsoft .NET Remoting is the transport
technology utilised by Alchemi to remotely
execute code on machines in the grid. Remoting is
a high level abstracted network communication
protocol designed to talk between application
domains, either within a machine, or over a
network. Another important feature of Alchemi is

622

its support for multi-clustering. This means that
multiple independent grids can be connected and
act as one at will, vastly increasing the available
power of the grid.

4. DIME

The Distributed Invisible Modelling Environment
(DIME) is the extension to TIME that allows users
to transparently distribute model execution over a
network. It is the component which links TIME
and Alchemi.

The most significant decision when developing
DIME was where DIME could best divide
processor intensive areas of TIME. It needed to be
at a point where the overall problem could be
broken down into small sub-problems. Each of the
small sub-problems needed to be a
computationally intensive operation rather than a
data intensive operation and the sub-problems also
need to be able to run in parallel.

4.1. Distributing model execution

The underlying logic of the TIME framework
resides within TIMECore. TIMECore provides the
Model class from which all the models are
extended as shown in Figure 1. In order to run
models a ModelRunner class is generally used.
TIMEShell and VisualTIME provide the ability to
execute a model from the command line and a
GUI, respectively. Both TIMEShell and
VisualTIME use the ModelRunner class to execute
the models. Figure 1 uses a UML diagram to
illustrate the basic layout of the important classes
used for model execution.

Figure 1. UML diagram of original TIME model
structure

ModelInstance represents a particular instance of a
developed model which inherits from the base
class Model such as a Rainfall Runoff model. The
basic model execution was chosen as a starting

point for adding distribution. The ModelRunner
class was the best point to add in the functionality
since it is a common class used by most
applications when running models. Directly adding
the distribution here would mean that TIME would
become tightly coupled with the Alchemi Grid API
since the ModelRunner would have to inherit from
the GridThread which is in Alchemi. This is a
significant drawback.

We decided to implement an interface that is
common to both ModelRunner and a grid based
equivalent. This would help to make the program
easier to understand and code. The interface class
implements all of the "signatures" for the methods
currently contained in ModelRunner and
ModelConfig.

The new GridModelRunner class inherits from
GridThread within Alchemi and instantiates an
instance of the standard ModelRunner. The
GridModelRunner also implements the interface
IModelRunner as shown in figure 2.

Figure 2. UML diagram of the addition of DIME
to TIME

This design implements the Alchemi GridThread
functionality through the ModelRunner without
making the ModelRunner dependant on Alchemi.

This solution means that the TIME framework is
in no way coupled to Alchemi and the DIME
functionality can be loaded at runtime through its
dynamic linked libraries.

In order to set the options for the Alchemi manager
some metadata was added to a new class called
DimeOptions (lower right corner in Figure 2). This
information will be extracted using reflection in
the VisualTIME Configuration GUI and integrated
into the standard configuration screen.

623

4.2. Distributing model optimisation

A second area that would potentially benefit from
distribution was model optimisation.

To understand how an optimiser works within the
TIME framework it is important to understand
how a model is run. A model takes a set of input
data and a set of parameters and produces output
based on all of the inputs and the parameters used.
An optimiser takes a set of input data and a set of
output data and attempts to determine which set of
parameters would best produce the output data,
given the input data.

In doing so, the optimiser must perform a
multitude of model runs, testing different
parameters during each run to find the optimal
parameter set. The optimisation process is
statistical in nature— the more optimisation model
runs that can be completed, the higher the
probability of obtaining the optimal parameter set.
Figure 3 shows the IOptimiser interface class
being executed by the Calibration Manager to run
optimisations locally.

When designing the distributed optimisers, three
realistic solutions to the problem of distributing
optimisers were found. The simplest and least
efficient would be just to use a GridModelRunner
object in place of the ModelRunner used by
OptimiserModelConfiguration, as shown in Figure
3. The advantage of this design is that it would be
very simple to implement and would work with
minimal effort. The downside is efficiency and
speed. This design would have caused a new job to
be sent off for each model run, which would have
resulted in a large amount of network traffic for
each model optimisation.

4.3. Categorise Search Optimisers

We estimated that conducting the distribution at a
higher level would minimise the network traffic
and increase the overall speed of the optimisation
process.

Given that there are two major types of optimisers
within TIME, single search optimisers and multi-
start optimisers, we considered splitting each of
the start points contained in a multi-start optimiser
into a single job. This would be possible as each
start point of a multi-search algorithm is
independent.

Our final design was an architecture that allowed
for the distribution of multiple optimisation runs
over the grid. This enabled both single search and
multi-search algorithms to be distributed over the

grid. Instead of running a single IOptimiser under
CalibrationManager; numerous IOptimisers are
added to a GridOptManager class which handles
all Alchemi grid functionality, shown in Figure 3.
This is a superior implementation and minimises
network traffic. The number of IOptimisers added
to the class is defined by the user in the
GenericCalibrationForm. Figure 3 shows the
integration of the new DIME architecture into the
TIME calibration system.

Figure 3. UML diagram of the DIME addition to
the TIME Calibration system

Under the new architecture, when the optimisation
is being distributed, the IOptimisers are passed to
the GridOptManager which then puts them into the
GridOptimiser class. The GridOptimiser class is
used as a shell to hold the IOptimiser and inherits
from GridThread (which enables the distribution of
objects in Alchemi). Once loaded with
IOptimisers, the GridOptManager then proceeds to
distribute all of its GridOptimsiers and await the
results. When the results are returned, the
GridOptManager sorts the results, and passes the
IOptimiser with the best parameter set back to the
GenericCalibrationForm for display.

4.4. Batch Runner

It was necessary to create a specialised batch
runner to handle the interaction with DIME and
Alchemi, since the ability to send a large number
of models to be run in parallel would become
common functionality, necessary for a number of
different applications such as sensitivity analysis.

The batch runner was set up to run many models at
once, either locally or over the grid. Its specific
requirements were to:

624

• allow fields to be set with lists or values

• determine combinations of model runs

• minimise network traffic.

The BatchRunner class was able to use
IModelRunner, rather than ModelRunner or
GridModelRunner, which enabled the
BatchRunner to be run locally or across the grid.

The main problem in developing BatchRunner was
in the class implementation. BatchRunner needed
to be able to operate on any model. As models can
have any number of inputs and parameters it was a
problem finding all possible combinations of
model inputs and parameters. We wrote a recursive
function to iterate through all combinations of
model inputs and parameters.

This provided an elegant solution to the problem.
The function ensures that we can determine all
possibilities of any number of changing variables.

The BatchRunner will fit into the exiting
architecture as shown in figure 4.

Figure 4. UML diagram of BatchRunner design

TIMEShell was modified to use the BatchRunner
and a new interface was written to allow
VisualTIME to use the BatchRunner and distribute
batch jobs.

5. ANALYSIS OF PERFORMANCE

The performance of the DIME component was
analysed at each stage of the development. Each
release was reviewed with particular attention to
load and performance testing (Bridgart et al 2004).

5.1. Load testing

The load testing involved having multiple users
and executors connecting to the one manager
submitting jobs, either completing or cancelling
jobs, disconnecting and reconnecting from the
grid, and running large jobs on all the available
executors. The largest grid assembled for testing

was a 32.1 GHz grid with 12 desktop machines
that were in use by the majority of their owners
while the load testing was taking place.

5.2. Performance testing

The purpose of the performance testing was to
quantify the level of improvements gained by
executing jobs over the grid.

Before performance testing began it was necessary
to have a consistent testing environment. A small
scale grid with five computers, not in use for any
other purpose, was set up as the testing grid. The
testing grid was in a standard working
environment with a total of 8.613 GHz capacity
(Davis 2004). There were five executors running
with the Alchemi manager running on a separate
machine. These tests were done using the
BatchRunner through TIMEShell.

The model used to test the batch runner system
was purpose built, designed purely to use
excessive CPU resources and reference small data
sets. The graph in Figure 5 shows the number of
model runs that were run both over the grid and
locally.

Figure 5. Performance Results (Davis 2004)

As can be seen in Figure 5, when more than 20
model runs were required, the initial overhead of
using the grid was outweighed by the benefits of
parallel processing gained by the grid. When
executing a low number of runs, the overhead of
using the grid exceeds the benefits, and as a result
it was more efficient to run low numbers locally
(Davis 2004).

The performance gains from using the grid were
significantly greater than first expected across all
tests. This includes the performance tests run on

625

the grid optimisers which, unlike the batch runner,
used real-life models and data. Gains were seen
with a lot fewer runs than predicted, thus the
overhead of using the grid was not as high as first
anticipated.

It is worth noting that in spite of these promising
results, the system has not yet been fully tested
over a wide range of models. Further analysis will
be required to develop strong guidelines for
modellers wishing to use the grid capabilities in
TIME regarding when it is appropriate to distribute
work.

6. CONCLUSION

The resulting extension to the TIME framework,
DIME, proved to be an effective and efficient
distribution system which was able to be
successfully deployed. The Alchemi API was
easily able to be utilised, due to its flexibility and
simple design. Given the nature of TIME and its
various components, the use of a computational
grid proved effective in reducing operational
runtimes. The system created not only addresses
the needs identified in this paper but has the
potential to be expanded into other areas of the
framework. Additions to the system can be made
as the framework is expanded and other areas are
identified as being computationally intensive.

The system has successfully grid-enabled TIME
without tightly coupling TIME to the Alchemi
API. The grid was shown to be robust and non-
intrusive when deployed under standard operating
conditions, allowing for the seamless decrease in
execution times for effected TIME applications.
This kind of project and research into distributed
computing presents opportunities for future
scientific applications.

Ongoing developments in these areas continually
increase the potential impact of environmental
simulations. Cost effective harnessing of existing
computer infrastructure enables an increase in
computational power, for larger and more complex
models. This can be a valuable resource which can
be utilised by the modeller.

7. ACKNOWLEDGMENTS

The DIME project was initially developed by
Software Engineering students from the University
of Canberra at the Commonwealth Scientific and
Industrial Research Organisation (CSIRO) for the
Cooperative Research Centre for Catchment
Hydrology (CRCCH). The distribution framework
is provided by Alchemi which is an open source
project developed at the University of Melbourne.

The DIME project is now being run by software
engineers at CSIRO.

8. REFERENCES
Alchemi (2005), Alchemi .NET Grid Computing

Framework. http://www.alchemi.net/ Last
Accessed August 6, 2005.

Bridgart, R.J., G.P. Davis, and T.R. Stephenson,
(2004), DIME: Final Report, Honours report,
University of Canberra,
www.toolkit.net.au/dime/dimeFinalReport.pdf
Last Accessed August 9, 2005.

Condor (2005), Condor: High Throughput
Computing http://www.cs.wisc.edu/condor/
Last Accessed August 9, 2005.

Davis, G.P. (2004), TIMEShell: Final Report,
Honours report, University of Canberra,
www.toolkit.net.au/dime/TIMEShellFinalRep
ort.pdf Last Accessed August 9, 2005.

Foster, I. and C. Kesselman, (eds.) (1999), The
Grid: Blueprint for a Future Computing
Infrastructure. Morgan Kaufmann: San
Francisco, CA.

Litzkow, M.J. (1987), Remote UNIX – Turning
Idle Workstations into Cycle Servers.
USENIX Conference Proceedings, summer,
1987, pp. 381-384.

Manish, R. and A. Craif, (2005), Scanning the
Issue: Special Issue on Grid Computing,
Proceedings of the IEEE, Vol. 93, No. 3,
March 2005.

Perraud, J.-M., G.M. Podger, J.M. Rahman, and
R.A. Vertessy, (2003), A new rainfall-runoff
software library, Proceedings of MODSIM
2003, (4), 1733-1738.

Rahman, J., S. Seaton, J-M. Perraud, H. Hotham,
D. Verrelli, and J. Coleman. (2003), It’s TIME
for a New Environmental Modelling
Framework, MODSIM 2003.

Satoshi, M., S. Sinji, A. Mutsumi, S. Satoshi, U.
Hitohide, and M. Kenichi, (2005), Japanese
Computational Grid Research Project:
NAREGI, Proceedings of the IEEE, Vol. 93,
No. 3, March 2005.

Srikanthan, R., F.H.S. Chiew and A.J. Frost,
(2005), Stochastic Climate Library User
Guide, CRCCH Toolkit,
www.toolkit.net.au/scl, Last Accessed August
2005.

626

