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EXTENDED ABSTRACT 
 
The internals models amendment to the Basel 
Accord allows banks to use internal models to 
forecast Value-at-Risk (VaR) thresholds which 
are used to calculate the required capital banks 
must hold in reserves as a protection against 
negative changes in the value of their trading 
portfolios. As capital reserves lead to an 
opportunity cost to banks it is likely that banks 
could be temped to use models that underpredict 
risk and hence lead to low capital charges. In 
order to avoid this problem the Basel Accord 
introduced backtesting procedure whereby banks 
using models that led to excessive violations 
would be penalised through higher capital 
chares. This paper investigates the performance 
of five popular volatility models that can be used 
to forecast VaR thresholds under a variety of 
distributional assumptions. The results suggest 
that within the current constraints and penalty 
structure set out in the Basel Accord the lowest 
capital charges arise when using models that lead 
to excessive violations, suggesting the current 
penalty structure is not severe enough. 
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1 Introduction 
 
On June 26, 1974 Herstatt, a German bank, had 
received large payments of DEM in Frankfurt in 
exchange for USD payments that were to be 
made in New York later that day due to time 
zone differences. However, before the USD 
payments were made, Herstatt was forced into 
liquidation by German regulators. The Herstatt 
fiasco led the G-10 countries to form a 
committed called the Basel Committee on 
Banking Supervision which was initially 
intended to deal with the role of regulators in 
cross-jurisdictional situations and investigate 
ways of harmonizing international banking 
regulations.  
 
In 1988 the Basel Committee issued the Basel 
Capital Accord, which prescribe minimum 
capital requirements that Authorized Deposit 
Taking Institutions (ADI’s) must meet as a 
protection against credit risk, this became law in 
all G-10 countries by 1992 with the exception of 
Japan that was granted an extended transition 
period.  
 
In 1993 the Basel Accord was amended to 
require ADI’s to also hold capital in reserve 
against market risk based on the Value-at-Risk 
(VaR) approach. Value-at-Risk is a procedure 
designed to forecast the maximum expected loss 
over a target horizon, given a statistical 
confidence limit (see Jorion (2000) for a detailed 
discussion of VaR methods). Initially, the Basel 
Accord stipulated a standardized approach which 
all institutions were required to adopt in 
calculating their VaR thresholds. This approach 
suffered from several deficiencies, the most 
notable of which were its assumption of no 
diversification benefits which led to 
conservatism (or lost opportunities) and its 
failure to reward institutions with superior risk 
management expertise. In view of these 
drawbacks a further amendment, called the 
Market Risk amendment, was proposed in 1995 
and subsequently adopted in 1996. 
 
The Market Risk amendment to the Basel accord 
allows Authorized Deposit Taking Institutions 
(ADI’s) to use internal models to measure and 
forecast market risk The forecasted market risk, 
or volatility, forms a basis for the calculation of 
the Value-at-Risk. However, in order to maintain 
discipline and ensure that ADI’s have in place 
adequate models of market risk a backtesting 
procedure is used to count the number of times 

the actual losses exceeded the forecasted VaR 
over the previous 250 business days. As VaR 
models are designed to provide 99% coverage 
(or lead to violations 1% of the time) the Basel 
accord specifies penalties that increase the 
required capital charge if too many violations are 
detected.  
 
A three-zone approach is used to measure the 
accuracy of the forecasting model as shown in 
table 1. ADI’s that fall in the Green zone are 
deemed to have models that are adequately 
accurate and do not incur penalties from 
regulators. Once in the Yellow zone regulators 
will impose a penalty which will increase the 
required capital charge and will be required to 
justify the excessive number of violations, the 
greater the number of violation the more likely it 
is that ADI’s will be penalized and required to 
revise their model. Finally, once an ADI enters 
the Red zone the model used is deemed to be 
unacceptably inaccurate and the ADI will be 
required to adopt a more stringent model that 
will lead to fewer violations and larger capital 
charges.  
 
Within the constraints of the Basel accord ADI’s 
should choose the model that leads to the lowest 
possible capital charge, conditional on the model 
not leading to the ADI falling in the Red zone (or 
upper Yellow zone). Such approach will ensure 
that the opportunity cost associated with capital 
charges are minimized while maximizing the 
benefits associated with minimal regulatory 
intervention, furthermore ADI’s that have good 
risk management systems in place will benefit 
from a superior reputation, lowed cost of debt 
and perhaps stronger demand for its deposit 
facilities.   
 
 

Table 1: Basel Accord Penalty Zones 

Zone 
Number of Violations Increase in 

k 
Green 0 to 4 0.00 

Yellow 5 0.40 

 6 0.50 

 7 0.65 

 8 0.75 

 9 0.85 
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Red 10+ 1.00 

Note: The number of violations is given for 250 business 
days. 
 

This paper evaluates the VaR forecasting 
performance of five popular conditional 
volatility models namely the ARCH model of 
Engle (1982), GARCH model of Bollerslev 
(1986), EGARCH model of Nelson (1991), the 
GJR model of Glosten Jagannathan and Runkle 
(1993) and the restricted EWMA model 
proposed by RiskmetricsTM (1996) which is the 
industry standard (see McAleer (2005) for a 
detailed discussion of conditional volatility 
models).  
 
For the purpose of forecasting VaR thresholds it 
is necessary to assume a distribution for the 
returns so that the appropriate critical values can 
be chosen. In this paper three distributional 
assumptions are made namely that returns are 
normally distributed, that the returns follow a t-
distribution where the appropriate degrees of 
freedom are estimated and that the returns follow 
a generalised error distribution (GED) where the 
appropriate GED parameter is also estimated. 
Finally, as an alternative to assuming a particular 
distribution the critical values are also obtained 
through bootstrapping. 
 
 
2 Data 
 
The data used in this paper is a long series of the 
S&P500 index daily returns ranging from 14 
January 1986 to 28 March 2005. The S&P500 
index was chosen as it is commonly regarded as 
the industry proxy for US stock market 
performance.  
 
Figure 1 plots the S&P500 index returns for the 
period. As can be seen the series displays 
considerable clustering that needs to be captured 
by an appropriate model. Figure 2 plots the 
histogram of returns and gives the descriptive 
statistics. The S&P500 has a mean return of 
0.035%, maximum of 8.709% and minimum of -
22.833% which occurred during the 1987 stock 
market crash. Furthermore, the series is 
negatively skewed, has extremely high excess 
kurtosis and the Jarque-Bera statistic strongly 
rejects the null hypothesis of normality. 
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Figure 1: S&P500 Returns
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Series: S&P500
Sample 14/01/1986 28/03
    /2005
Observations 5010

Mean       0.034672
Median   0.026053
Maximum  8.708879
Minimum -22.83303
Std. Dev.   1.082489
Skewness  -2.079982
Kurtosis   47.19183

Jarque-Bera  411284.0
Probability  0.000000

Figure 2:  S&P500 Returns Histogam and Descriptive Statistics

 
 

3 Models 
 
2.1 EWMA 
 
RiskmetricsTM (1996) developed a model which 
estimates the conditional variances and 
covariances based on the exponentially weighted 
moving average (EWMA) method, which is, in 
effect, a restricted version of the ARCH( ∞ ) 
model of Engle (1982). This approach forecasts 
the conditional variance at time t as a linear 
combination of the lagged conditional variance 
and the squared unconditional shock at time 

1t − . The EWMA model calibrates the 
conditional variance as: 
 

2
1 1(1 )t t th hλ λ ε− −= + −  (1) 

 
where λ  is a decay parameter. RiskmetricsTM 

(1996) suggests that λ  should be set at 0.94 for 
purposes of analysing daily data. 
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2.3 ARCH 
 
Engle (1982) proposed the Autoregressive 
Conditional Heteroskedasticity of order p , or 
ARCH( p ), model as follows: 
 

2

1

p

t j t j
j

h ω α ε −
=

= +∑ . (2)  

 
For the case 1p = , 10, 0ω α> >  are sufficient 
conditions to ensure a strictly positive 
conditional variance, 0th > . The ARCH (or 1α ) 
effect captures the short run persistence of 
shocks. 
 
2.4 GARCH 
 
Bollerslev (1986) generalized ARCH( p ) to the 
GARCH( ,p q ) model, which is given by: 
 

2

1 1

p q

t j t j t i
j i

h hω α ε β− −
= =

= + +∑ ∑ . (3) 

 
For the case 1p = , 1 10, 0, 0ω α β> > ≥  are 
sufficient conditions to ensure a strictly positive 
conditional variance, 0th > . The ARCH (or 1α ) 
effect captures the short run persistence of 
shocks, and the GARCH (or 1β ) effect indicates 
the contribution of shocks to long run persistence 
( 1 1α β+ ).  
 
In ARCH and GARCH models, the parameters 
are typically estimated using the maximum 
likelihood estimation (MLE) method. In the 
absence of normality of the standardized 
residuals, tη , the parameters are estimated by 
the Quasi-Maximum Likelihood Estimation 
(QMLE) method (see, for example, Li, Ling and 
McAleer (2002)). 
 
2.5       GJR 
 
Glosten, Jagannathan and Runkle (1992) 
extended the GARCH model to capture possible 
asymmetries between the effects of positive and 
negative shocks of the same magnitude on the 
conditional variance through changes in the debt-
equity ratio. The GJR( ,p q ) model is given by: 
 

2 2
1 1

1 1
( )

p q

t j t j t t i t i
j i

h I hω α ε γ η ε β− − − −
= =

= + + +∑ ∑  (4) 

 
where the indicator variable, ( )tI η , is defined 
as:  
 

{1, 0
0, 0( ) t

ttI ε
εη ≤

>= . (5) 

 
For the case 1p = , 1 1 10, 0,  0,ω α α γ> > + >  

1 0β ≥  are sufficient conditions to ensure a 
strictly positive conditional variance, 0th > . 
The indicator variable distinguishes between 
positive and negative shocks, where the 
asymmetric effect ( 1 0γ > ) measures the 
contribution of shocks to both short run 
persistence ( 1 1 / 2α γ+ ) and long run persistence 
( 1 1 1 / 2α β γ+ + ). 
 
Several important theoretical results are relevant 
for the GARCH model. Ling and McAleer 
(2002a) established the necessary and sufficient 
conditions for strict stationarity and ergodicity, 
as well as for the existence of all moments, for 
the univariate GARCH( ,p q ) model, and Ling 
and McAleer (2003) demonstrated that the 
QMLE for GARCH( ,p q ) is consistent if the 
second moment is finite, 2( )tE ε < ∞ , and 
asymptotically normal if the fourth moment is 
finite, 4( )tE ε < ∞ . The necessary and sufficient 
condition for the existence of the second moment 

of tε  for the GARCH(1,1) model is 1 1 1α β+ < .   
  
Another important result is that the log-moment 
condition for the QMLE of GARCH(1,1), which 
is a weak sufficient condition for the QMLE to 
be consistent and asymptotically normal, is given 
by 2

1 1(log( )) 0tE α η β+ < . The log-moment 
condition was derived in Elie and Jeantheau 
(1995) and Jeantheau (1998) for consistency, and 
in Boussama (2000) for asymptotic normality. In 
practice, it is more straightforward to verify the 
second moment condition than the weaker log-
moment condition, as the latter is a function of 
unknown parameters and the mean of the 
logarithmic transformation of a random variable.  
 
The GJR model has also had some important 
theoretical developments. In the case of 
symmetry of η t , the regularity condition for 
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the existence of the second moment of GJR(1,1) 
is 1 1 1 / 2 1α β γ+ + <  (see Ling and McAleer 
(2002b)). Moreover, the weak log-moment 
condition for GJR(1,1), 

2
1 1 1(log[( ( )) ]) 0t tE Iα γ η η β+ + < , is sufficient 

for the consistency and asymptotic normality of 
the QMLE (see McAleer, Chan and Marinova 
(2002)).  
 
2.6 EGARCH 
 
Nelson (1991) proposed the Exponential 
GARCH (EGARCH) model, which is given as: 
 

1

log( )
p

t i
t i

i t i

h
h
εω α −

= −

= +∑ .  

           
1 1

log( )
qr

t k
k j t j

k jt k

h
h
εγ β−

−
= =−

+ +∑ ∑  (6) 

 
As the range of log( )th  is the real number line, 
the EGARCH model does not require any 
parametric restrictions to ensure that the 
conditional variances are positive. Furthermore, 
the EGARCH specification is able to capture 
several stylised facts, such as small positive 
shocks having a greater impact on conditional 
volatility than small negative shocks, and large 
negative shocks having a greater impact on 
conditional volatility than large positive shocks. 
Such features in financial returns and risk are 
often cited in the literature to support the use of 
EGARCH to model the conditional variances.  
 
Unlike the EWMA, ARCH, GARCH and GJR 
models, EGARCH uses the standardized rather 
than the unconditional shocks. Moreover, as the 
standardized shocks have finite moments, the 
moment conditions of EGARCH are 
straightforward and may be used as diagnostic 
checks of the underlying models. However, the 
statistical properties of EGARCH have not yet 
been developed formally. If the standardized 
shocks are independently and identically 
distributed, the statistical properties of EGARCH 
are likely to be natural extensions of (possibly 
vector) ARMA time series processes (for further 
details, see McAleer (2005)). 
 
4 Forecasts 
 
A rolling window approach is used to forecast 
the 1-day ahead 1% VaR thresholds using the 
five  conditional  volatility  models  described  in  

Table 2: Forecast Results 
GARCH 

 Distributional Assumption 
 Normal t-dist GED Bootstrap

Number of 
Violation 47 13 22 21 

Capital Charge 7.928 10.353 8.308 8.591 
Proportion of Time 

Spent out of the 
Green Zone 

42% 0% 9% 6% 

Risk Metrics 
 Distributional Assumption 
 Normal t-dist GED Bootstrap

Number of 
Violation 59 14 35 31 

Capital Charge 7.882 10.095 8.271 8.483 
Proportion of Time 

Spent out of the 
Green Zone 

57% 0% 19% 12% 

EGARCH 
 Distributional Assumption 
 Normal t-dist GED Bootstrap

Number of 
Violation 42 15 28 25 

Capital Charge 7.536 9.710 8.123 8.301 
Proportion of Time 

Spent out of the 
Green Zone 

35% 0% 15% 8% 

ARCH 
 Distributional Assumption 
 Normal t-dist GED Bootstrap

Number of 
Violation 80 11 43 42 

Capital Charge 8.099 11.542 8.542 8.448 
Proportion of Time 

Spent out of the 
Green Zone 

67% 3% 41% 41% 

GJR 
 Distributional Assumption 
 Normal t-dist GED Bootstrap

Number of 
Violation 45 13 30 27 

Capital Charge 7.656 9.818 8.307 8.509 
Proportion of Time 

Spent out of the 
Green Zone 

30% 0% 21% 15% 

 Notes:  
1) The daily capital charge is given as the negative of the higher of the previous 
day’s VaR or the average VaR over the last 60 business days times (3+k), where 
k is the penalty. 
2) The expected number of violations is 30 at the 1% level 
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section 1. A rolling window approach is one 
where the first n observations are used to 
estimate the model and forecast the nth+1 
observation. the sample is then rolled forward by 
1 observation so that it ranges from the 2nd to the 
nth+1 observation and the nth+2 observation s 
forecasted. This process is repeated until the end 
of the sample. In order to strike a balance 
between efficiency in estimation and a viable 
number of forecasts a rolling window size of 
2000 observations is chosen, which leaves 3010 
observations to be forecasted.  
 
Table 2. gives the results of the forecasting 
exercise .As can be seen assuming a t-
distribution always leads to the lowest number of 
violations and the highest average capital charge, 
while   assuming a  normal  distribution   always 
leads to the highest number of violations and the 
lowest  average capital charge. It is interesting to 
note that the EGARCH model leads to the lowest 
average capital charge across all distributional 
assumptions, while the ARCH model leads to the 
highest capital charge in all cases except where 
the critical values are obtained through 
bootstrapping. 
 
It is interesting to note that difference in VaR 
forecasting performance is much greater across 
the various distributional assumptions for a given 
model, than across the various models for a 
given distributional assumption. This result 
suggests that the distributional assumption is 
more important than the choice of conditional 
volatility model. 
 
Finally, as can be seen assuming a t-distribution 
always leads to the lowest number of violations 
and the highest average capital charge, while 
assuming a normal distribution always leads to 
the highest number of violations and the lowest  
average capital charge. As the VaR thresholds 
are estimated assuming a 99% confidence level 
and there are 3010 forecasts the expected number 
of violations is approximately 30.  
 
The results then suggest that the assumption of 
normality is inadequate, as it leads to more 
violations than could be reasonably expected; 
while the assumption that the returns follow a t-
distribution is also inadequate as it leads to far 
fewer violations than could be reasonably 
expected. The results suggest that assuming the 
returns follow a GED distribution or 
bootstrapping the critical values lead to VaR 

threshold forecasts that yield the correct number 
of violations in most cases. 
 
Within the framework set out in the Basel 
Accord banks should choose the VaR model that 
leads to the Lowest capital charge, while not 
yielding backtesting results that fall in the red 
zone. Out of all the model/critical value 
combinations considered in this paper only the 
ARCH-normal, ARCH-GED, ARCH-bootstrap 
and GJR-normal lead to backtesting results that 
fall in the red zone over the entire forecasting 
period. Hence all other models satisfy the Basel 
Accord constraints and hence are eligible to be 
used for the purpose of calculating the banks 
capital charges. 
 
Two important observations arise from this 
study. First, across all model/critical value 
combinations that satisfy the Basel Accord the 
EARCH-normal model gives the lowest daily 
capital charge at 7.536%, while the ARCH-t 
gives the highest at 11.542%, suggesting that the 
capital charges can be significantly reduced by 
choosing the appropriate model/critical value 
combination.  
 
Second, for each model considered the assuming 
a t-distribution always leads to the highest 
capital charges, while assuming that the returns 
follow a normal distribution always leads to the 
lowest capital charges. This results has serious 
implications for regulators as it suggests that 
given the current penalty structure proposed in 
the Basel Accord, banks have an incentive to 
choose models that lead to excessive violations. 
 
5 Conclusion 
 
This paper analysed the performance of five 
popular conditional volatility models in 
forecasting VaR thresholds. The Basel Accord 
stipulates that banks must hold capital in 
reserves to cover their exposure to market risk, 
or  the risk that a banks portfolio will experience 
a severe negative return. The need for banks to 
have in place adequate risk management systems 
stems from the intrinsically systemic nature of 
the banking industry, where bank failures can 
quickly spread and harm the entire financial 
system. 
 
Originally the market risk amendment set out a 
standardised  model  that all banks were required  
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to  use  when  calculating  their  VaR  thresholds.  
This model was heavily criticised by industry 
participants as being too conservative and hence 
leading high capital charges. Furthermore it was 
argued that this approach did not reward 
institutions with superior risk management and 
did not promote research into more sophisticated 
VaR models. 
 
The internal modes amendment to the Basel 
accord was intended to allow bans to use internal 
models, provided a series of quantitative and 
qualitative criteria were met. An obvious concern 
of regulators was that this amendment would 
encourage banks to pick models that 
underpredicted risk and hence led to lower 
capital charges than models that correctly 
predicted risk. Hence a backtesting procedure 
was developed to assess the performance of each 
model and to penalise models that 
underpredicted risk through higher capital 
charges. 
 
The results suggest that the EGARCH model 
dominates all other models, as it gives the lowest 
capital charge while never entering the red zone. 
The ARCH model is always the worst 
performing model, giving the highest capital 
charge and almost always falling in the red zone. 
 
Of all the distributional assumptions, the 
assumption of normality always leads to the 
most number of violations, which are much 
higher than expected given the confidence level 
chosen, and the lowest capital charges. While 
assuming a t-distribution always leads to the 
lowest number of violations, which are much 
lower than expected given the confidence level 
chosen, and the highest capital charges.  
 
When the critical values are obtained through 
bootstrapping or the assumption that the returns 
follow a Generalised Error distribution the 
results lead to the correct number of violations 
and capital chares that are higher than under the 
assumption of normality but lower than under 
the assumption that the returns follow a t-
distribution. 
 
These results suggest that the penalty structure 
proposed under the Basel Accord is not severe 
enough to discourage banks from choosing 
models and critical values that clearly 
underpredict risk.  
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