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EXTENDED ABSTRACT  

The potential for marine plankton ecosystems to 
influence climate by the production of 
dimethylsulphide (DMS) has been an important 
topic of recent research into climate change. Several 
general circulation models used to predict climate 
change have or are being modified to include 
interactions of ecosystems with climate. Climate 
change necessitates that parameters within 
ecosystem models must change during long-term 
simulations, especially mortality parameters that 
increase as organisms are pushed toward the 
boundaries of their thermal tolerance. There is 
therefore a pressing need to understand the 
influence of varying mortality parameters on the 
long-term behaviour of ecosystem models. 

Mortality terms have been identified as important 
determinants of ecosystem model dynamics. 
Although many forms of mortality have been 
proposed for use in ecosystem models, linear 
mortality forms are often used because they are 
simple, require only one parameter each 
(parameters are often poorly known), and there is 
little empirical data to support alternative forms. 
Mortality parameters have also proved to be useful 
bifurcation parameters for simple ecosystem 
models. 

We consider an ecosystem model originally 
developed to reproduce marine plankton and 
microbial dynamics that was subsequently 
developed to include dimethylsulphoniopropionate 
(DMSP) and DMS for use in climate change 
simulations. This model has proved useful in 
reproducing spatial distributions and depth profiles 
of DMS observed in the ocean and in predicting the 
potential for biogenic DMS to ameliorate climate 
change. Reproducing observed data is often the 
only validation available for ecosystem models. 

The model is composed of five biotic 
compartments: phytoplankton (P), zooplankton (Z), 

dissolved inorganic nitrogen (N), bacteria (B) and 
zooflagellates (F). The model is composed of five 
coupled differential equations that together with the 
mass conservation constraint 1B F N P Z+ + + + =  
form a four degrees of freedom system where each 
scaled variable is a concentration satisfying 
0 , , , , 1B F N P Z≤ ≤  for all time 0t > . The model 
has fourteen critical points of which seven lie in the 
ecologically feasible region of the state space for 
measured parameter values. The location and stability 
properties of these critical points substantially control 
the dynamics of the model. The model has a very 
complicated, robust and highly nonlinear limit cycle 
attractor. This attractor is composed of two distinct 
components; a BFN component and an NPZ 
component. Mostly the model circulates on planes 
where 1B F N+ + =  and 1N P Z+ + =  rather than in 
the full four-dimensional state space. 

We examine the effects of varying three linear 
mortality coefficients. Although the limit cycle of the 
model is very robust with respect to variations in the 
values of the mortality parameters, significant 
changes in dynamics can be induced by parameter 
variations. Stable spiral points and asymptotically 
stable nodes are observed for moderate one-at-a-time 
variations in mortality. A climate change scenario, in 
which all mortality parameters are increased 
simultaneously, indicates the ecosystem will reach a 
final stable state where only phytoplankton exist. This 
state is a result of the model not containing an explicit 
phytoplankton mortality term. The inclusion of a 
phytoplankton mortality term to the model has little 
effect on the dynamics, and hence its ability to 
reproduce observed data, but has a significant effect 
on the bifurcation behaviour. Rather than predict an 
phytoplankton-dominated final state, the model now 
predicts the extinction of all biota. This research 
suggests that the specific formulation of ecosystem 
models must be considered very carefully if they are 
to be applied in simulations of climate change. 
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1. INTRODUCTION 

Dimethylsulphide (DMS) molecules in the 
atmosphere have been identified as a potentially 
significant modifier of solar radiation reflectance and 
hence climate (Charlson et al. 1987). The production 
and emission to the atmosphere of DMS from 
plankton blooms in the upper regions of the oceans 
has consequently been a subject of growing interest 
observationally, experimentally, and by modelling. 
We consider a model introduced by Moloney et al. 
(1986) and subsequently developed by Gabric et al. 
(1993) to include dimethylsulphoniopropionate 
(DMSP) and DMS. This model has proved useful in 
reproducing spatial distributions and depth profiles 
of DMS observed in the ocean and in predicting the 
potential for biogenic DMS to ameliorate climate 
change (Cropp et al. 2004). This work showed that 
understanding the inherent dynamics of the GMSK 
model is important in understanding more detailed 
and realistic models. It also demonstrated that the 
sulphur compartments of the model may be 
considered as a separate sub-model that is slaved to 
the nitrogen-based ecosystem model, and therefore 
when considering the determinants of DMS we need 
only consider the dynamics of the ecosystem model. 

Mortality terms have been identified as important 
determinants of ecosystem model dynamics (Steele 
and Henderson 1992). Although many forms of 
mortality have been proposed for use in ecosystem 
models, linear mortality forms are often used 
because they are simple, require only one parameter 
each (parameters are often poorly known), and there 
is little empirical data to support alternative forms 
(Edwards and Brindley 1999). The coefficients of 
mortality terms have served as effective bifurcation 
parameters in studies of simple ecosystem dynamics 
(Edwards and Brindley 1999). The choice of the 
form of the mortality terms has also been shown to 
have an important influence on the dynamics of 
simple ecosystem models (Steele and Henderson 
1992, Edwards and Yool 2000). We therefore chose 
to examine the influence of all the linear mortality 
terms in the model. 

Examination of the influence of mortality parameters 
on ecosystem model dynamics is also interesting and 
important in the context of modelling ecosystem 
responses to climate change. It is reasonable to 
assume that most anthropogenically unperturbed 
ecosystems, and most organisms within them, are 
well adapted to their ambient environment, and in 
particular to the ambient temperature. Generally 
therefore, species are maintained near the centre of 
their ecological niches. Any change in climate will 
have the effect of moving species from the optimal 
position in their ecological niche to a less-optimal 
position where reproduction is reduced and mortality 
increased. The response of ecosystem models to 

increases in mortality rate is therefore useful as an 
indicator of the influence of climate change, and also 
of the suitability of particular ecosystem models for 
applications in earth system models used to predict 
global climate change. 

2. THE MODEL 

The model is composed of five biotic compartments: 
phytoplankton (P), zooplankton (Z), dissolved 
inorganic nitrogen (N), bacteria (B) and 
zooflagellates (F). Our five coupled differential 
equations model together with the mass conservation 
constraint P Z N B F 1+ + + + =  forms a four degrees 
of freedom system where each variable is a 
concentration satisfying 0 P, Z, N,B, F 1≤ ≤  for all 
time t 0≥ . The model is composed of the following 
equations: 

23 1 4
24 2

dP N Pk P k B k PZ
dt N k P k

⎛ ⎞ ⎛ ⎞
= − −⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

, (1) 

( )

( )

1 11 8
2 9

25 11 10
26

dB P Bk 1 k B k F
dt P k B k

Nk 1 k B k B
N k

⎛ ⎞⎛ ⎞
= − − ⎜ ⎟⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

⎛ ⎞
+ − −⎜ ⎟+⎝ ⎠

, (2) 

( )8 14 13
9

dF Bk 1 k F k F
dt B k

⎛ ⎞
= − −⎜ ⎟+⎝ ⎠

, (3) 

( )4 20 19
dZ k 1 k PZ k Z
dt

= − − , (4) 

10 11 25 1
26 2

13 8 14 19 4 20
9

23 25
24 26

dN N Pk B k k B k B
dt N k P k

Bk F k k F k Z k k PZ
B k

N Nk P k B
N k N k

⎡ ⎤⎛ ⎞ ⎛ ⎞
= + +⎢ ⎥⎜ ⎟ ⎜ ⎟+ +⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

⎛ ⎞
+ + + +⎜ ⎟+⎝ ⎠

⎛ ⎞⎛ ⎞
− − ⎜ ⎟⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

.(5) 

The parameter set for the ecosystem model (Table 1) 
is composed of parameter values from station one of 
Gabric et al (1999) and literature values cited by 
Gabric et al (1993). 

Equations (1)-(5) are non-dimensionalised and the 
state variables replaced by their scaled equivalents: 

o

CC'
N

=  for C = B, F, N, P and Z while time is 

scaled by the maximum phytoplankton growth rate 
23t ' k t= . The resultant scaled parameter values are 

listed in Table 1. These values will be used 
throughout this analysis unless otherwise specified. 
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Table 1: Measured parameter values. 

PAR UNITS MEAS. 
VALUE 

SCALED 
VALUE 

k1 d-1 0.31 1.148 
k2 mgNm-3 34.65 0.693 
k4 m3mgN-1d-1 0.01 1.852 
k8 d-1 1.67 6.185 
k9 mgNm-3 9.10 0.182 
k10 d-1 0.07 0.259 
k11 - 0.63 0.630 
k13 d-1 0.05 0.185 
k14 - 0.65 0.650 
k19 d-1 0.05 0.185 
k20 - 0.40 0.400 
k23 d-1 0.27 1.000 
k24 mgNm-3 12.60 0.252 
k25 d-1 0.31 1.148 
k26 mgNm-3 3.45 0.069 
N0 mgNm-3 154 1 

The non-dimensionalisation implemented on the 
model scales the mortality rates of B, F and Z 
relative to the maximum P growth rate. We explore 
varying three key mortality parameters, k10, k13 and 
k19 over a range of 4 - 1,000% of measured values. 
As moving species from their optimal niche 
positions simultaneously reduces their reproduction 
rate and increases their mortality rate it is reasonable 
to examine the influence of quite large increases in 
scaled mortality rates. 

3. ANALYSIS 

3.1. Dynamics 

The model has seven critical points (labelled CP 1 – 
7, see 3.2 below) that appear to substantially control 
the shape of its limit cycle. The dynamics of the 
model are confined to a very structurally stable and 
highly nonlinear periodic orbit shown in NPZ and 
BFN state spaces in Figures 1 and 2. The 
combination of these figures describes the dynamics 
of the model in the five dimensional state space. 
Dotted lines show the triangular planes defined by 
mass conservation in each state space. The locations 
of the critical points are marked by stars, and some 
eigenvectors of important positive (outward 
pointing) and negative (inward pointing) eigenvalues 
are shown for each critical point. 

We note that the system is never actually on the 
simplex planes as B and F in the case of the NPZ 
plane, and P and Z in the case of the BFN plane are 
very small but never exactly zero; for ease of 
discussion we will not labour this distinction. 

Figures 2 and 3 reveal that six of the seven feasible 
critical points of the model form three pairs of 
closely aligned points: CP 1 and 7 lie very close, as 

do CP 3 and 4, and CP 5 and 6. CP 2 is unique in the 
model in that it is a lone feasible critical point for 
measured parameter values. The locations of most of 
the critical points can, however, be expected to 
change in response to variations in k10, k13 and k19. 

Figure 1: Model dynamics in NPZ state space. 

 
Figure 2: Model dynamics in BFN state space. 

3.2. Critical Points 

The model has fourteen critical points of which 
seven lie in the ecologically feasible region of the 
state space for measured parameter values. The first 
critical point (CP 1), and the only critical point to 
have all non-zero state variables is: 

( )
* 19
1

4 20

k
P

k 1 k
⎛ ⎞

= ⎜ ⎟⎜ ⎟−⎝ ⎠
, (6) 

( )
* 9 13
1

8 14 13

k k
B

k 1 k k
=

− −
, (7) 

( )

( )

*
1

1 11 10**
1 2* 1 9

1 *8 1
25 11 *

1 26

P
k 1 k k

P kB k
F

k N
k 1 k

N k

⎡ ⎤⎛ ⎞
− −⎢ ⎥⎜ ⎟⎜ ⎟+⎛ ⎞ ⎢ ⎥+ ⎝ ⎠= ⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎢ ⎥+ − ⎜ ⎟⎢ ⎥⎜ ⎟+⎝ ⎠⎣ ⎦

, (8) 
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* *
* 23 1 1 1
1 * *

4 41 24 1 2

k N k B
Z

k kN k P k

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

, (9) 

* * * * *
1 1 1 1 1N 1 B F P Z= − − − − . (10) 

The second critical point (CP 2) is given by: 

( )
* 10 26
2

25 11 10

k k
B 1

k 1 k k
= −

− −
, (11) 

( )
* 10 26
2

25 11 10

k k
N

k 1 k k
=

− −
, (12) 

* * *
2 2 2P , Z ,F 0= . (13) 

Useful expressions for two of the eigenvalues of CP 
2 are obtainable: 

*
*2 1

CP _ 2 1 23 2*
22 24

N k
k B

kN k−
⎛ ⎞ ⎛ ⎞

λ = −⎜ ⎟ ⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠
, (14) 

CP _ 2 2 19k−λ = − , (15) 

while the other two are given by the roots of a 
quadratic that are not enlightening. The third critical 
point (CP 3) is located at: 

( )
* 9 13
3

8 14 13

k k
B

k 1 k k
=

− −
, (16) 

( )( )

( )

*
* *25 3
3 11 3 9 *

8 3 26

*10
3 9

8

k N
F 1 k B k

k N k
k

B k
k

⎛ ⎞
= − + ⎜ ⎟⎜ ⎟+⎝ ⎠

− +

, (17) 

( )( )

( )( )

*
* 3 9

26 3 25 11 10
8

2** * 3 93 26 3 25 11 10
8

*
* 3 9

26 3 10
8

B kk B k 1 k k 1
k

1 B kN k B k 1 k k 12 k

B k4k B 1 k
k

⎡ ⎤⎛ ⎞⎛ ⎞+
⎢− + + − − − ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠
⎢ ⎥
⎢ ⎥⎛ ⎞⎛ ⎞+⎢ ⎥= + + − − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎢ ⎥±
⎢ ⎥⎛ ⎞⎛ ⎞+⎢ ⎥− − +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

,(18) 

* *
3 3P , Z 0= . (19) 

For measured parameter values CP 3 lies very close 
to the fourth critical point (CP 4) at the origin of the 
system where no biota are extant: 

*
4N 1= , (20) 

* * * *
4 4 4 4P , Z ,B ,F 0= . (21) 

Useful eigenvalues expressions may also be obtained 
for CP 4: 

23
CP _ 4 1

24

k
1 k−λ =

+
, (22) 

( )25 11
CP _ 4 2 10

26

k 1 k
k

1 k−
−

λ = −
+

, (23) 

CP _ 4 3 19k−λ = − , (24) 

CP _ 4 4 13k−λ = − . (25) 

The fifth critical point (CP 5) is the phytoplankton-
only critical point: 

*
5P 1= , (26) 

* * * *
5 5 5 5Z , N , B , F 0= . 

 (27) 

Again, useful eigenvalues expressions may be 
obtained for CP 5: 

( )CP _ 5 1 4 20 19k 1 k k−λ = − − , (28) 

( )1 11
CP _ 5 2 10

2

k 1 k
k

1 k−
−

λ = −
+

, (29) 

23
CP _ 5 3

24

k
k−λ = − , (30) 

CP _ 5 4 13k−λ = − . (31) 

The system has a further critical point (CP 6) that 
lies very close to CP 5 for measured parameter 
values, given by: 

* *1 24
6 6 2

23

k N k
P B k

k N
+⎛ ⎞= −⎜ ⎟

⎝ ⎠
, (32) 

( )
* 9 13
6

8 14 13

k k
B

k 1 k k
=

− −
, (33) 

( )( )

( )

*
* *25 6
6 11 6 9 *

8 6 26

*10
6 9

8

k N
F 1 k B k

k N k
k

B k
k

⎛ ⎞
= − + ⎜ ⎟⎜ ⎟+⎝ ⎠

− +

, (34) 

*
6Z 0= , (35) 

* * * *
6 6 6 6N 1 B F P= − − − . (36) 

A seventh critical point (CP 7), which lies very close 
to CP 1 for measured parameter values, is given by: 

( )
* 19
7

4 20

k
P

k 1 k
=

−
, (37) 
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*
* 23 7
7 *

4 7 24

k N
Z

k N k

⎛ ⎞
= ⎜ ⎟⎜ ⎟+⎝ ⎠

, (38) 

( )

* 23
24 7

4*
7 2

* *23
24 7 24 7

4

kk P 1
k1N

2 kk P 1 4k P 1
k

⎡ ⎤⎛ ⎞
− + + −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥

= ⎢ ⎥
⎢ ⎥⎛ ⎞
± + + − − −⎜ ⎟⎢ ⎥
⎢ ⎥⎝ ⎠⎣ ⎦

,(39) 

* *
7 7B ,F 0= . (40) 

3.3. Variations in B mortality (k10) 

The locations of critical points CP 1, 2, 3, 6 and 7 
are sensitive to variations in k10. Critical points CP 1, 
2, 3 and 6 lose feasibility as k10 increases, and CP 7 
eventually becomes stable. As k10 increases from its 
measured value CP 2 approaches CP 3 and *

3F  
slowly reduces until the two critical points collide 
when *

3F  becomes zero and a “transcritical” 
bifurcation occurs, although no transfer of stability 
takes place (both critical points are unstable before 
and after the collision), which occurs when: 

( )
*
2

10 25 11 *
2 26

1 B
k k 1 k 0.396

1 B k

⎛ ⎞−
= − =⎜ ⎟⎜ ⎟− +⎝ ⎠

, (41) 

where 
( )

* * 9 13
2 3

8 14 13

k k
B B

k 1 k k
= =

− −
. CP 3 is now 

infeasible and as k10 is increased further CP 2 also 
becomes infeasible when *

2B  becomes zero, which 
occurs when: 

( )25 11
10

26

k 1 k
k 0.397

1 k
−

= =
+

. (42) 

At this point the eigenvalue CP _ 4 2−λ  of CP 4 
(equation (23)) becomes negative and CP 2 and CP 4 
collide. However, CP _ 4 1−λ  of CP 4 is never 
negative, so no change of stability occurs. 

If k10 exceeds the value defined by equation (42) the 
system is in NPZ state space  most of the time, 
taking short excursions into the BFN state space. 
However when: 

( )
* *
1,7 1,7

10 11 1 25* *
1,7 2 1,7 26

P N
k 1 k k k

P k N k

0.453,

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟= − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎝ ⎠

≈

(43) 

CP 1 and CP 7 closely approach and the system 
changes from a limit cycle to an asymptotically 
stable node at CP 7. Stability in this case is conferred 

by the single positive real eigenvalue of CP 7 
becoming negative, rather than a true Hopf 
bifurcation. 

When k10 > 0.453 we can see from equation (2) that 
dB
dt

 is always negative when the system is in the 

vicinity of CP 1 or 7. The system is now prevented 
from flipping to the BFN plane. 

3.4. Variations in F mortality (k13) 

The locations of critical points CP 1, 3 and 6 are 
sensitive to variations in k13 (note that CP 6 has two 
feasible roots for some values of k13). The location of 
CP 2 is insensitive to variations in k13 but the 
eigenvalues of this point are affected by variations in 
the parameter. Critical points CP 1, 3 and 6 all 
become infeasible as k13 increases. 

The first change that occurs as k13 increases is at 
13k 1.508= , when a second root of CP 6-2, becomes 

feasible. CP 6 has two positive roots for values of k13 
less than 1.508, but the second root is ecologically 
infeasible. This second critical point however soon 
disappears along with CP 6-1 in a saddle-node 
bifurcation when 13k 1.537= . This change in CP 6 
coincides with the loss of feasibility of CP 1. The Z 
population reduces as k13 increases and eventually 

*
1Z 0=  when: 

( ) ( )

( )

19
8 23 14 2

4 20
13

1924
1 9 24 2*

4 201

kk k 1 k k
k 1 k

k 1.537
kkk k 1 k k

k 1 kN

⎛ ⎞
− +⎜ ⎟⎜ ⎟−⎝ ⎠= =

⎛ ⎞⎛ ⎞
+ + +⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

. (44) 

These events are not accompanied by any change in 
the stability properties of the system. However as k13 
approaches this value the magnitude of the P blooms 
decreases and the system progressively spends more 
time in the BFN state space until at 13k 1.537=  it 
appears that P no longer blooms and the system is 
effectively confined to the BFN state space. 

As k13 increases further the real parts of the 
eigenvalues of CP 3 all become negative when 

13k 1.653= . At this point CP 3 becomes an 
asymptotically stable spiral node, a change in 
stability that apparently is not accompanied by any 
qualitative change in the critical points. This point 
remains stable until CP 3 collides with CP 2 in a 
transcritical bifurcation that occurs when *

3F 0=  
and: 

( )
*
3

13 8 14 *
3 9

B
k k 1 k 1.799

B k

⎛ ⎞
= − =⎜ ⎟⎜ ⎟+⎝ ⎠

, (45) 
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where 
( )

* * 10 26
3 2

25 11 10

k k
B B 1 0.892

k 1 k k
= = − =

− −
. At 

this point CP 3 becomes a saddle point, while CP 2 
acquires stability and remains a stable node for 
further increases in k13. 

3.5. Variations in Z mortality (k19) 

Increases in k19 engender a bifurcation when: 

( )19 4 20k k 1 k 1.111= − = , (46) 

at which point CP 7 collides, and CP 1 “almost 
collides” with CP 5. When this occurs the positive 
eigenvalue of CP 5 becomes negative and CP 5 
becomes an asymptotically stable node. In this case 
the system changes from a limit cycle to a stable 
node. As noted above, all the eigenvalues of the 
system have become real by this point. 

3.6. Simultaneous variations in all mortality 
parameters 

Simultaneous variation in k10, k13 and k19 leads to 
similar bifurcation behaviour to that described 
above. The salient effect of varying all the mortality 
parameters together is that the critical points CP 2 
and 3, that previously became stable for 
perturbations of k10 singly, no longer do so. The only 
critical points that now become stable are CP 7, 
which now becomes stable when k10, k13 and k19 all 
equal 0.506 and CP 5 ( *

5P 1= ), which acquires 
stability at 1.111. At this point the eigenvalues of all 
the critical points all become real. For mortality 
parameter values greater than 1.111, the only other 
ecologically feasible critical point is CP 4 ( *

4N 1= ). 
This critical point has one positive eigenvalue that 
appears insensitive to all mortality parameter 
perturbations, indicating that CP 4 is always 
unstable. 

3.7. An amended model 

The stability scenario for a simultaneous increase in 
mortality parameters is exactly the circumstance that 
ensues when ecosystems are subject to climate 
change, and species are pushed to the limits of their 
thermal ecological niches and beyond. Our results 
that predict that P is the only survivor appears to be 
a result of the model formulation not including an 
explicit mortality term for P. We amended the model 
by subtracting an explicit P linear mortality term 
( 5k P ) from equation (1) and adding it to equation 
(5). Considering the equivalent of CP 5 of the 
original model in the new model (CP 5alt), we find 
that this critical point has become: 

( )23 5 24*
5_ alt

23 5

k k 1 k
P

k k
− +

=
−

, (47) 

( )23 5 24*
5_ alt

23 5

k k 1 k
N 1

k k
− +

= −
−

, (48) 

* * *
5_ alt 5_ alt 5_ altB ,F , Z 0= . (49) 

The eigenvalues of this point are: 

( )CP _ 5alt 1 4 20 19k 1 k k−λ = − − , (50) 

( )1 11
CP _ 5alt 2 10

2

k 1 k
k

1 k−
−

λ = −
+

, (51) 

( )

23
CP _ 5alt 3,4 5 13

24

13 23 24
2

24 5 13 23

k
k k

k

4k k k
1 1

k k k k

−
⎛ ⎞

λ = − + +⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟± −⎜ ⎟⎜ ⎟⎡ ⎤+ +⎣ ⎦⎝ ⎠

.(52) 

CP _ 5alt 1−λ  is negative when: 

( )19 4 20k k 1 k 1.111> − = , (53) 

while CP _ 5alt 2−λ  is positive when: 

( )1 11
10

2

k 1 k
k 0.251

1 k
−

< =
+

. (54) 

CP _ 5alt 1−λ  and CP _ 5alt 2−λ  are therefore identical to 

CP _ 5 1−λ  and CP _ 5 2−λ  of the original model. 

CP _ 5alt 3,4−λ  are always negative and CP 5alt will be 

an asymptotically stable node when 19k 1.111> . 

However, as k5 increases, *
5_ altP  reduces, and CP 5alt 

becomes ecologically infeasible when: 

23
5

24

k
k 0.799

1 k
= =

+
, (55) 

well before it acquires stability. The location of the 
fourth critical point (CP 4alt) at the origin of the 
system where no biota are extant is unchanged by 
the addition of P mortality: 

*
4_ altN 1= , (56) 

* * * *
4_ alt 4_ alt 4_ alt 4_ altP , Z , B ,F 0= . (57) 

While three of the eigenvalues of CP 4alt are identical 
to those of CP 4, one ( CP _ 4alt 1−λ ) is different: 
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23
CP _ 4alt 1 5

24

k
k

1 k−λ = −
+

, (58) 

( )25 11
CP _ 4alt 2 10

26

k 1 k
k

1 k−
−

λ = −
+

, (59) 

CP _ 4alt 3 19k−λ = − , (60) 

CP _ 4alt 4 13k−λ = − . (61) 

CP _ 4alt 1−λ , CP _ 4alt 3−λ  and CP _ 4alt 4−λ  are always 

negative and CP _ 4alt 2−λ  is negative for: 

( )25 11
10

26

k 1 k
k 0.397

1 k
−

> =
+

. (62) 

CP 4alt becomes an asymptotically stable node when 
10k 0.397=  and becomes the long term state of the 

system for high mortality rates. This is 
fundamentally different to the climate change 
response of the original model. This result suggests 
that great care must be taken in selecting ecological 
models used to predict the impacts of events such as 
climate change that affect the attributes of organisms 
represented in the models. The veracity of an 
ecosystem model is often assessed by testing 
whether it can reproduce observed data (Franks 
2002). While the original and modified models are 
capable of reproducing the same data, these models 
will produce very different results if used to simulate 
the effects of global warming. 

4. CONCLUSIONS 

Our model has a complicated, interesting and quite 
robust limit cycle that essentially comprises two 
modes of behaviour, a BFN cycle and a NPZ cycle. 
This limit cycle is largely determined by the location 
and stability properties of the critical points. The 
robustness of this limit cycle is of profound 
importance to the model’s application in simulations 
of climate change. Scenarios of climate change lead 
to manipulation of mortality parameters, and we find 
that mortality parameters have a dramatic influence 
on the model’s dynamics. 

We also observe the importance of microbial factors 
in destabilising plankton dynamics. Bacterial blooms 
occur more frequently if bacterial mortality is low or 
nutrient levels are high. The presence of a bacterial 
predator however effectively controls the bacterial 
population, and restricts the potential for bacteria to 
dominate the system to a small region of parameter 
space. 

We have also highlighted the importance of subtle 
variations in model formulation if the model is to be 
used in scenarios such as climate change. The 

inclusion of an explicit linear P mortality term to the 
model produces only subtle modifications to the 
dynamics for measured parameter values. Such a 
modification does not affect the model’s ability to 
reproduce observed ecosystem dynamics, and both 
models would satisfy the usual ecological model 
validation criteria of reproducing observed data. 
However our analysis indicates small differences in 
ecosystem model formulation may have profound 
impacts on climate change scenario predictions. 
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