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EXTENDED ABSTRACT 
 
Recent involvement in designing and developing a 
simulation model to allow interaction between 
biophysical, economic and social processes has 
also led to interest in uncertainty and error 
propagation in models.  This uncertainty exists in 
each of the biophysical, economic and social 
domains.  With regard to the hydrologic processes 
there appears to be an indeterminacy principle that 
makes up-scaling difficult.  When this is combined 
with the uncertainty in the other aspects of the 
model it would suggest that caution is needed in 
interpreting output from such models. 
 

The uncertainty in biophysical, social and 
economic systems is a combination of uncertainty 
in; data input and model structure.  As we build 
models where non-linearities due to the model 
structure are incorporated the relative uncertainty 
in the outputs will grow rapidly.  Using a simple 
model where data input errors are either added or 
multiplied together we can see the consequences 
for the relative error in the output (figure 1). 
Suppose we have a process that results in a local 
(cell) parameter yi with standard deviation σi and 
the area of the plot is ai. We will assume that the 
same value and standard deviation occur in n other 
plots such that: 
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Figure 1. Relative error in an aggregated 
parameter as related to the number of cells (n).   
The aggregation process is either additive 
(equation 2) or multiplicative (equation 3). 
  
The uncertainty present in models requires that 
when using the results of models that clients are 
made aware of the extent of these errors and their 
nature. We feel that policy makers should be made 
aware of the uncertainty when using such models.  
Decisions still need to be made and modelled 
scenarios provide inputs that help in make sense of 
the studied system.  However, having made a 
decision to change a system monitoring of the 
results is required to determine if the desired 
response has occurred.  Indeed, the dynamic 
between the uncertainties contained with the model 
and those in the minds of its clients is itself a 
social process that can be monitored and managed.  
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1.  INTRODUCTION 

Uncertainty in measurements arises due to bias, 
precision and environmental factors (including 
human).   These we have learnt to control using 
standard practices of replication and reduction in 
environmental factors by experimental design.  In 
development of models of biophysical, economic 
and social systems we often combine many 
parameters together to produce models with 
hundreds and even thousands of parameters.  The 
uncertainty in these models arises not only from 
the uncertainty in the model inputs but also due to 
other more fundamental problems associated with 
our ability to model complex systems.  Often in 
presenting model outputs we fail to adequately 
represent these uncertainties.  In this paper we 
intend to explore some of the issues associated 
with uncertainty in coupled human/landscape 
modelling. 

We need to heed the words of Prigogine (2005) 
“We live in a probabilistic universe.  … The future 
is not given and therefore we have only a 
probabilistic description and there is no certainty” 
when we are looking at devising models of 
systems.  What do we mean by uncertainty?  The 
uncertainty we encounter has been classified as 
(Driebe and McDaniel Jr, 2005): 

• Lack of knowledge of a simple process – 
this uncertainty is eliminated once the 
process is known or over time observed 

• Reduced dynamics of an open system – 
we are only aware of part of the system 
and the coupling of this system to the 
surrounding environment creates 
“shocks” to the system.  If the 
environmental dynamics can be discerned 
the uncertainty may be reduced or 
eliminated 

• Chaotic dynamics – Characterised by 
exponential sensitivity to the initial 
conditions.  Knowing the initial 
conditions gives us limited predictive 
power into the future 

• Irreducible complex dynamics with many 
degrees of freedom – It is encountered 
with turbulence and the weather, and  
probably most economic and social 
systems of interest. 

• Reflexive dynamics – This occurs when 
the system is composed of thinking agents 
that change their behaviour (thinking) as 
the system changes.  This occurs in 
economic systems (Soros, 1987) and 
social systems. 

• Quantum dynamics – Here only a 
probabilistic description is possible. 

In human/landscape modelling we are faced with 
most of these forms of uncertainty apart from 
quantum dynamics.  Here we will look at the 
uncertainties that face both the modeller and the 
interpreter of the outputs from such models who 
are often policy makers.  Our past experience has 
been to use scientific methods and hierarchical 
control systems to reduce uncertainty. The validity 
of scientific inference is based on experimentation 
and is either preceded by prediction or followed by 
postdiction.  Prediction is usually done using 
actual or mental models while the postdiction 
process often leads to a model.  If we do not have a 
model then we often think that what we know is of 
limited utility.  In physics this model is usually in 
the form of a set of mathematical equations.  

Given uncertainty how can we as modellers help 
managers and other decision makers who are 
affected by the fundamental uncertainty that 
surrounds them?  In the past we have a usually 
tried to deal with uncertainty by trying to reduce it 
or eliminate it by normalising the system.  
Reductionist approaches to science and 
hierarchical management structures are 
normalising techniques that have worked very 
successfully for small or slowly evolving 
dynamical systems.  These techniques have also 
had failures when they are used outside of their 
“effective range”. 

2 GENERAL ASPECTS OF MODELLING 

Models represent a hypothesis of how we think a 
system works.  These models are often derived 
from some analysis of experimental data that leads 
to a set of equations.  The parameters in the 
models are usually derived by experimentally 
fitting the model to data sets using regression 
techniques.  However, as Venables and Dichmont 
(2004) clearly state these regressed parameters are 
only expected to apply to “a limited region about 
some central point in the design (or x- variable) 
space”.  Extrapolation beyond this range is fraught 
with unknown uncertainty in the results. 

Bayesian approaches have become popular in 
modelling (Best et al., 2000; Goldstein, 2003).  
This approach uses a process known as elicitation 
to determine the prior probabilities of like solution 
pathways in the model.  In Bayesian methods 
uncertainty is built in as the model is developed.  
However, the formulation of the model by 
elicitation, formulation of the prior probabilities 
and calculation of posterior probabilities (Gilks et 
al., 1996) can be difficult.  The Bayesian approach 
can be loosely described as a structure approach to 
‘sense making’ from diverse knowledge sources of 
a system. 
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2.2  Biophysical Models 

The biophysical systems in landscape modelling 
generally consist of atmospheric, hydrological, 
soil/regolith, plant and animal sub-systems.  The 
modelling of these can occur at any scale 
depending on the purpose(s) for which the model 
is to be used.  A good frame for looking at the 
scale required by a model was provided by 
(Hoosbeek and Bryant, 1992) (figure 2).  For 
simplicity here we will look at the one aspect of 
landscape modelling that is associated with 
hydrology. 

 
Figure 2. Framework for organising modelling 

activities after Hoosbeek and Bryant (1992). 

Uncertainty in hydrologic modelling arises from 
many sources and also depends on the type 
(structure) of the model.  Distributed process based 
models use physics based models for the energy 
balance and water transport at a point/plot scale 
and aggregate the values up to give catchment 
scale results (Beven and Feyen, 2002).  For the 
water balance component Addiscott et al., (1995) 
have questioned the use of Richards equation 
based models for anything greater than areas of 1-
10 m2 due to uncertainty in parameterisation.  The 
up-scaling of processes is unlikely to lead to a 
cascade of errors if the aggregation is additive 
(linear) but will lead to considerable error if the 
errors are multiplied through the upscaling 
process.  The example below illustrates this point. 

Suppose we have a process that results in a local 
(cell) parameter yi with standard deviation σi and 
the area of the plot is ai. We will assume that the 
same value and standard deviation occur in n other 
plots such that: 
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is where An is the area we want to know the 
aggregated value Yn for.  Then the relative error 
(m) in Yn (±m.σi) for such a simple system as 

related to n are shown in figure 1.  What this 
simple example shows is that models where the 
outputs from one cell multiply or divide those in 
other cells can generate large errors quickly and 
should be avoided.  This kind of error propagation 
occurs with the non-linear processes which often 
occur in complex systems.  The calculation of 
these errors could lead to unrealistic results, as 
there are some bounds on these errors, due to finite 
energy and mass balance constraints.  

There have been some special editions of journals 
(see Jolma and Norton 2005; Beven and Feyen, 
2002) where some of these issues have been 
discussed in detail.  There are some (Beven and 
Feyen, 2002) who suggest that up-scaling in 
hydrology may be impossible until we have better 
understanding or find better ways to do this.  This 
same comment could equally apply to ecological 
and social systems.  There have also been 
suggestions that greater computer power will allow 
us to use data directly in modelling (Beven 2002); 
it will be interesting to see if this proves to be 
correct. 

Lumped parameter models where the catchment 
behaviour is described by catchment scale 
parameters are common in hydrology.  The lumped 
parameters are generally attributed to a physical 
entity and derived by fitting (tuning) the model to 
input and output data sets.   However, as Beven 
and Freer (2001) have shown the parameter set 
obtained is not unique and a number of equally 
valid parameter sets can be found.  This means that 
the parameter set is only valid within the parameter 
range represented by the data set.  These models 
are examples of general linear models and as such 
will fit best around the mean of the data sets with 
the results becoming less certain as we move 
towards the extremities of the data range.   

Using these parameters to investigate a change in 
catchment condition associated with, say changed 
land-use is unlikely to give reliable results 
(Venables and Dichmont, 2004).  Yet it is common 
to see such models of these types being used for 
just such purposes.  Although the parameters in the 
model are attributed to certain physical processes 
by the models authors and users, the fitting process 
dictates that the actual parameters are likely to be a 
mixture of the processes identified and some that 
are not.  Also as we move away from the mean of 
the data set processes that have not even been 
considered can now start to effect systems 
response.  An example of this can be seen in Cook 
(2002) where experiments over 20 years have 
gradual extended the range of parameters included 
in the mathematical model of soil respiration. 
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Wooldridge et al. (2002) have suggested that a 
disaggregation method be used to determine which 
parameters are needed to describe the catchment 
behaviour by using different climatic and land-
cover characteristics of the catchments.  This 
adding of extra parameters to linear models is 
cautioned against by Venables and Dichmont 
(2004) as although the fit may appear better due to 
only a better fit around the medium range of the 
parameters 

Modelling of systems usually results in scaling of 
processes in either the time domain or spatial 
domain and often both.  It has been thought and 
argued in the past that if we capture landscape 
processes at a fine scale (bottom up scaling) then 
when we aggregate these up the resulting models 
will be better than lumped parameter models (top 
down models).  There are a number of studies now 
from hydrology that would challenge this 
assumption (Beven and Freer, 2001).  It has also 
been shown that at larger scales the effects of the 
fine scale processes cannot be distinguished. This 
was graphically shown by Chapman (2003).  He 
considered two different descriptions of 
evapotranspiration (ET), one where the point at 
which the actual ET deviates from the potential ET 
is constant and another where the point of this 
deviation depends on the potential ET rate.  He 
could find no improvement fitting of the model to 
the data by this added complication.  This may 
have been related to the frequency of the measured 
data not being able to resolve this fine scale 
information.  Kircher et al. (2000) using fractal 
approaches to analyse high frequency data of 
stream flow and stream chemistry, showed that 
this high frequency data was needed to resolve the 
solute transport processes within the catchment.  
They showed that although the effects of preferred 
pathways could not be discerned from the water 
flow data it could be from stream chemistry.  This 
necessitated using a quite different model for 
solute transport within the catchment than would 
otherwise have been chosen. 

This results in a conundrum with biophysical 
models where due to the paucity of data it is 
difficult to use parameterised processed based 
models and lumped models do not allow us to 
change particular processes in the model due to the 
empirical nature of the parameters in them.  This 
means that it is difficult to use either type of 
models when we, for example, want to estimate the 
result of vegetation change on stream flow or some 
other parameter.  This problem is one of 
indeterminacy which may be generally applicable 
to many similar up- down-scaling problems.  As 
such we would like to term it the ‘Barnes 
Indeterminacy Principle’ for Dr Chris Barnes who 

certainly first drew this to the attention of the 
senior author. 

In groundwater systems attempts have been made 
to use some of the volume averaging techniques 
developed in quantum mechanics such as 
renormalisation (Hristopulos, 2003) to get better 
average transmissivity values for acquifers.  This 
approach can ‘preserve’ some of the variability in 
the original fine scale information.  These 
techniques have worked well in quantum 
mechanics where the detail in fine scale 
information is large but this is not often the 
situation for groundwater models.    Jose and 
Rahman (2004) found that in heterogeneous 
aquifers that stochastic mixing models where only 
qualitatively in agreement with experimental 
results.  The results of McKenna et al. (2003) 
suggest that the non-uniqueness of parameter 
estimation by inverse modelling needs to be 
accounted for. 

Another issue associated with ecological 
modelling is how to assess the stability and 
sustainability of the model.  Cabezas and Fath 
(2002) have suggested using a combination of 
Fishers information index and phase diagrams.  
They only do this for a simple 2 component 
(dimensional) predator prey model, so extension to 
more components could be difficult.  However, 
there are some developments in mathematics by 
John Norbury of Oxford University (pers. comm.) 
that may allow the response function for a highly 
dimensional system to be calculated.  These 
calculations give insight into the emergent 
behaviour of higher dimensional systems. 

2.3 Social 

2.3.1  Complexity and uncertainty 
 
Reichl (2005) has compared chemical systems 
where complex behaviour occurs with social 
systems and suggests that given “…the amazing 
structures that form in complex chemical systems, 
when they are changed slightly…” that this should 
make us “… pause when we contemplate even 
some small aspects of complex social systems”.  
Possible food for thought for politicians and policy 
makers.  In his comparison of complex social 
structures with complex chemical reactions Reichl  
suggests that they are equally fragile.  Although 
social structures can be resilient and stable over 
long periods, they require a continual flow of 
energy to maintain them and they often require a 
continual flow of information.  They are often best 
sustained if they have a efficient communication 
network, which involves flow of information 
throughout the entire structure. (Reichl, 2005) 
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West (2005) suggested that models have not been 
successful in social and life sciences because  these 
phenomena are much more complex than those in 
the physical sciences and therefore less amenable 
to traditional mathematical modelling.   The notion 
of control of the system, the reductionist approach 
being one example, is common to all of science 
and through control we learn about the phenomena 
that we hope to understand.  This approach can be 
difficult to achieve in studies of social systems.  

Montroll (1987) suggested that the reason we have 
had little success so far in modelling complex 
social systems is due to the tyranny of many 
dimensionless constants.  This idea of non-
dimensional variables is further explored by West 
(2005) who uses physical systems of fluid flow 
defined by the Navier-Stokes equation, and 
controlled fusion power generation to illustrate his 
point.  For fluid flow the Navier-Stokes equation 
can be written in terms of three non-dimensional 
constants; the Froude, Reynolds and Euler 
numbers.   In ship building the Froude number is 
the dominant term. While in aircraft design the 
dominant term is the Euler number.  In both cases 
this means that scale models can be used for 
design and experimental purposes.  Unfortunately 
when there are more non-dimensional constants as 
in the magnetic fields associated with containment 
of fusion, the problem of finding an optimum 
solution is more difficult.  West (2005) goes on to 
suggest that social systems are more like magnetic 
containment of fusion with many (often undefined) 
non-dimensional number and this leads to the 
complexity and dilemma in studying these 
systems. 

2.3.2 Institutions, perceptions and uncertainty 

Individual perceptions about uncertainty come to 
be reflected in cultural values within organisations 
and societies and within organisational policies 
and strategies, and public policies.  In turn these 
social institutions affect the way individuals 
perceive uncertainty.  At macrosystem dimensions 
the ways that societies manage uncertainty through 
cultural values and policies are a critical lever for 
change throughout the lower level sub-systems. 

Professionals walk a fine line between arguing for 
the existence of uncertainty and providing service 
to reduce it, because their legitimacy depends on 
societal acceptance of a degree of uncertainty in a 
work domain, but not so much that specialist 
knowledge cannot help.  Acceptance and 
manipulation of indeterminacy has played an 
important role in the development of the 
profession of medicine and other similar 
professions (Jamous and Pelloille, 1970) 
 

2.4 Economics 
 
One could say that the basic stuff of economics is 
uncertainty. This has not always been true. For a 
long time, economic analysis wallowed 
comfortably in a deterministic world-view. The 
pillar of the so-called neo-classical paradigm, 
perched on Leon Walras’ summum opus of 1874, 
ignores uncertainty. John Maynard Keynes was 
perhaps the first, with Frank Knight in 1921 to 
highlight the importance of uncertainty for 
economic modelling – an initiative that went 
largely ignored until the 1970s. Meanwhile, 
business people have known all along that 
uncertainty underlies all economic decision-
making. The upshot of this is that there has long 
been a gap between the theoretical world of 
economic analysis and the practical world of 
economic decision making. While the former 
ignored uncertainty, the latter was up to its neck in 
it, and sometimes drowning for lack of analytical 
tools.  
 
Today, things are different, and the “uncertainty 
gap” between theory and practice has greatly 
narrowed. Accordingly, information has been seen 
as of primary importance for economic models. 
One needs to distinguish between the information 
held by decision making agents in the model and 
that held by the modeller. In addition, the 
distribution of information among agents is 
important: who knows what strongly influences 
outcomes both in the model and in the real world.  
 
The first issue is how to describe, for one 
economic agent, decision making under 
uncertainty. Since von Neumann and Morgenstern 
(1947), expected utility theory (EUT) is the 
mainstream modelling approach. People are 
assumed to know the probabilities as well as the 
various possible outcomes; they then compute the 
expected outcome and use it for making decisions. 
This ‘rule’ assumes they are risk neutral; if they 
are risk averse, they will adopt a more cautious 
rule and require a risk premium to take risks. An 
important application has been portfolio analysis 
(Markowitz, 1952), whereby decision makers are 
modelled as spreading out their risks across 
various assets – a useful model for farmers and 
land managers as well as stockbrokers. This theory 
has been challenged and several non-expected 
utility theories have been proposed. However, as 
soon as one abandons EUT, one is faced with a 
multiplicity of available theories for behaviour 
under uncertainty, and it is not clear which one is 
to be chosen. More radically, when probabilities 
are themselves uncertain, EUT is deemed to fail. 
However, the theory of subjective expected utility 
(SEU) purports to short-circuit this problem by 
claiming that what really counts are the 
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perceptions of decision makers. When a decision 
must be made, they will simply assume a certain 
probability distribution and act upon it. Belief 
replaces knowledge. Critics of this modelling 
approach point out that people are ‘ambiguity 
averse’ (Ellsberg, 1961) and do not behave the 
same way when they know and when they do not 
know the probabilities. Experimental studies seem 
to confirm this (Di Mauro and Maffioletti, 2001).  
In parallel, theories of learning have developed 
together with modelling of an agent’s uncertainty, 
to the extent they now overlap.  
 
The next issue is what happens when information 
is unevenly distributed between two agents. This 
has led to principal-agent theory (PAT) and the 
theory of asymmetric information. Applications 
include contract theory, policy mechanism design, 
insurance theory, bargaining theory and so forth. 
Expanded to more than two agents, modelling 
uncertainty brings in the role of social norms and 
institutions, one function of which is to minimise 
uncertainty for decision makers. Indeed, the 
economics of uncertainty and the economics of 
information are now seen as fundamental to 
economic analysis and as underpinning both 
models of individual behaviour and of collective 
action and institution building. Social learning, 
whether through imitation, networking or 
otherwise, emphasizes the time dimension.  
 
The uncertainties lying with the modeller, or in the 
model, have been dealt with much less rigorously. 
Econometrics relies on statistical data to support or 
disconfirm a given model, but very often the 
amount of noise in the data only produces 
ambiguous results. Recently, experimental 
economics has opened the way for more rigorous 
handling of model uncertainties, and in particular, 
for testing assumptions about the behaviour of 
agents in the model.  
 
Economic modelling is closely related to decision 
making and policy making. With respect to the 
uncertainties involved, the practical concern is to 
reduce those in decision makers’ minds, while the 
analytical concern is to reduce those lurking in the 
model, and to some extent in the modeller’s mind. 
Unlike the biophysical sciences, modelling 
uncertainty in the social sciences is itself an 
interactive social process.  

3. DISCUSSION 

Non-linearity and uncertainty in processes that we 
want to control or manage can result in surprises 
and abrupt changes in system behaviour (Steffan et 
al., 2004).  This means that in any scenario testing 
with models the effect of a scenario, for instance, 
where nuclear war is included have very large 

uncertainty as they are outside a normal 
extrapolation of the model. 

Begun and Kaissi (2005) asked the question, “How 
would healthcare delivery be different if 
uncertainty were recognized and expected, rather 
than oversimplified and avoided?”  In our case a 
similar question could be asked of resource 
management.  They suggest that organisations that 
embrace uncertainty realise that they will be 
required to engage more in experimentation and 
learning, have loose connections in addition to 
tight ones, emphasis culture and participation as 
control mechanisms rather than formalised and 
centralised structure, and have top managers 
whose role is to make sense rather than make 
decisions.  Weick (2005) has argued that sense-
making is the important process and requires that 
we adopt more of a complex adaptive systems 
approach to the way in which we develop 
responses and policies for healthcare and human 
resources management.  We would contend that 
the same applies with human/landscape modelling.  

Eoyang (2004) proposes a practitioners landscape 
which consists of twelve partitions, which she 
suggests  “provide a rubric to help a practitioner 
understand the wide variety of complexity-based 
approaches and to select the one that is appropriate 
for a given situation.”  This approach appears to 
have promise for assisting researchers and in both 
defining the problem and what tools should be 
used when looking for a solution when working 
with complex problems.  By their very nature 
complex problems mean that there will be a 
number of possible solutions. 

In most systems where there are a number of inter-
linked time scales that are operating at the same 
time, it is important to realise that these 
interlinking time scales can exacerbate or dissipate 
uncertainty in systems.  This is often the case with 
natural resource management or social policy 
where the system response to change may be very 
slow and the effectiveness of the policy is difficult 
to determine in an appropriate time. 

4. CONCLUSION 

Uncertainty in the inputs and structure of 
human/landscape models will produce results with 
large uncertainty.  This uncertainty needs to be 
conveyed to the users of the model outputs. It is 
therefore imperative to make users understand that 
such model systems (or decision aids) can only be 
used to understand how the real world might 
respond or react to various changes, but should not 
be used as predictive tools. Experience over the 
last few years has shown that discrete event based 
tools for sensitivity analysis of complex socio-
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economic-bio-physical systems has considerable 
utility in aiding decision makers facing complex 
problems. It has also shown that it can be difficult 
to prevent an assumption of predictability from 
creeping in. Thus activities such as a monitoring 
and continual assessment process to promote and 
support sensemaking should be part of the use 
profile of any such model systems built to help 
“manage” the human and landscape resources 
successfully. Indeed, the dynamic between the 
uncertainties contained with the model and those 
in the minds of its clients is itself a social process 
that can be monitored and managed. 
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