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EXTENDED ABSTRACT 

In New Zealand, there are over 100 communities 
that are flood prone therefore require good models 
to predict their vulnerability and also the likely 
flood depths. Previous work has shown that 
numerical models under predict water levels in the 
centre of the flow. One of the causes is the wave 
action that is prevalent in floodwater flows. 
Therefore it is important to develop a model of 
wave action.  

The approach taken was to develop a model that 
included the underlying velocity field associated 
with the waves. To do this the turbulent structures 
needed to be understood. This meant that the 
analysis may also provide data about the 
interaction of the water flow and ground surface 
and therefore the flow resistance. 

There are various techniques available to model 
the turbulence structure. Turbulence of 
incompressible water flow (without sediment) can 
be modelled completely using the Navier-Stokes 
equations. However for even a small part of a river 
channel, the size of the problem is many orders of 
magnitude larger than even the world’s largest 
super-computers can handle. This means that other 
techniques are necessary to describe the 
turbulence. One of these is Proper Orthogonal 
Decomposition (POD). 

POD provides a way of decomposing the velocity 
vectors into modes of different scales in each 
direction similar to a Fourier series. Therefore it 
requires detailed data. Particle Image Velocity 
(PIV) is an ideal method to obtain such data. 

An undular hydraulic jumps was chosen as an 
ideal structure to model as it is a strong wave in 
water flow and similar to the rooster tail typical of 
New Zealand rivers shown in figure 1. In this 
paper, we explain the application of POD to PIV 
image data of a slice through an undular hydraulic 
jump or type of standing wave. The data is two-
dimensions, in the direction of flow and the 
vertical.  

This is the first time PIV flow data from an 
undular hydraulic jump has been analysed using 
POD. We identify flow structures and develop 
covariance functions from velocity correlations 
across this random flow field. We discuss the 
structures within the context of this data and their 
significance.  

This will lead to the development of a model based 
on the Navier-Stokes equations using the 
covariance functions to simulate the turbulent 
fluctuations. As there are a wide range of 
structures within the hydraulic jump a wide variety 
of flow situations can be modelled. Improvements 
could be made by analysis of further PIV data 
especially from higher Reynolds Numbers. 

 

Figure 1. A New Zealand River (Opihi River, 
South Canterbury) in flood showing rooster tail 

standing waves. 

The model can therefore be run for the various 
types of situations in a river or a flood plain to 
predict wave heights which can be used with the 
results from a hydrodynamic model such as 
Hydro2de or Mike21. In addition the flow 
resistance values for these areas may also be able 
to be calculated to use in a hydrodynamic model. 
These results can be put into a database of a local 
authority where it can be used to give building 
floor levels in flood plains.  
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1.  INTRODUCTION 

Presently in New Zealand flood modelling is 
widely undertaken on most of the major rivers and 
flood plains. On the river control systems, these 
models are used to estimate their flood carrying 
capacity while on the flood plains they are used to 
model the flooding from super-design floods with 
maps being produced showing the likely flood 
extent and inundation depths. This information is 
used by local authorities for new buildings in these 
areas. Floor levels of new buildings in New 
Zealand are required to be above flood levels that 
vary between the 50 year return period flood event, 
to the 500 year flood event. A typical flood map is 
shown in Figure 2. 

 

Figure 2. Map showing extent of flood inundation 
for the estimated 200 year return period event for 

Ashburton, New Zealand (Modelled using 
Hydro2de with a 10 m grid of 370,000 points). 

The information contained in these maps needs to 
have all the factors of the natural system included 
especially those that are not included in the 
modelling. Previous work by Connell (2001) on 
the Waihao River flood plain on the Canterbury 
Plains in New Zealand showed that these models 
underpredict the flood levels on the flood plain in 
the centre of the flow. The reasons for this are 
surmised to be wave action and local afflux or 
heading of water up against structures within the 
flood plain where the flood levels were measured. 

The effects of afflux against structures can be 
assessed by including more detail in the models 
e.g. increasing the resolution of the model to 
include the buildings. However the effects of wave 
action cannot be included in the present type of 
models commonly used for this work (Two-
dimensional hydrodynamic models.) These effects 
will be greater in a river channel where standing 
waves such as those shown in Figure 1 can occur. 

The approach chosen was to develop a model of 
wave action that included the underlying turbulent 
flow structure. This also meant that the model 
could possibly have the ability to assess the flow 
resistance. This is very important as resistance 
factors for the hydrodynamic models are still only 
estimated with information from river gaugings 
and empirical techniques. Use of photographs with 
gauged data to calculate the resistance factor is still 
a well used technique e.g. (Hicks and Mason 
1991). This publication also shows how the 
standard resistance factors, in this case Manning’s 
‘n’ and the Chezy ‘C’ change significantly with 
depth for a given reach. 

Models have been developed to solve the Navier-
Stokes equations in water (without sediment) and 
can provide a complete solution. However to 
model the complete range of flow scales, even for 
a small area of river flow, requires a model many 
orders of magnitude greater than the largest 
supercomputer available. Therefore techniques are 
required to reduce the size of the problem 
minimising the effects of the loss of detail. 

This paper presents the beginnings of developing a 
model. One method of assessing the flow structure 
within the flow is called Proper Orthogonal 
Decomposition (POD). This technique was first 
used to assess the flow structure by Bakewell and 
Lumley (1967). Since, this technique has been 
developed mainly in the aeronautical field e.g. 
Holmes et al. (1996). To develop such models 
analysis of the data structures of flow with surface 
waves in this cases the undular hydraulic jump, 
needs to be undertaken. The best technique that 
collects data in a form to be analysed by POD is 
Particle Image Velocimetry (PIV).  

2. WAVE STUDIES  

The study first examined types of waves in 
shallow water flow. A wave typical of Canterbury 
Rivers, are rooster tails that occur in flow close to 
critical. Such an example is shown in Figure 1. 
Much initial work was undertaken by Kennedy 
(1961).  
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Subsequent analysis lead to data by Yuen and 
Kennedy (1971) of flow over wavy beds was 
analysed by Hosoda and Minamimoto (2002) 
using the Boussinesq equations. The undular (or 
wave) hydraulic jump has also been analysed using 
the Boussinesq equations by Peregrine (1966) and 
Frazao and Zech (2002). This jump is very similar 
to a rooster tail and is in effect a very wide rooster 
tail as shown by Figure 3 (courtesy of H. 
Chanson’s web site, University of Queensland). 

 

Figure 3. An undular Hydraulic Jump (the river 
bore case). 

The similarity between these two hydraulic 
phenomena meant that data on the undular 
hydraulic jump would be a good starting point 
upon which to develop a model of wave action in 
rivers. 

3. PARTICLE IMAGE VELOCIMETRY 
(PIV) DATA 

As stated above, a detailed velocity field data is 
needed to undertake a POD analysis. PIV data is 
ideal for this. PIV collects a detailed velocity field 
within the water flow with data points less than 1 
mm apart. This is done by inserting neutrally 
buoyant silver coated glass spheres into the flow 
and then taking pairs of photographs very close 
together, 75 μs for these data, with the particles 
being highlighted by a laser sheet pulse sent at the 
same time as each photograph. At this time 
spacing the particles have not moved greatly and 
therefore the water movement can be measured by 
assuming that the sphere’s closest to each other 
from each pair of photographs is the same sphere. 
Cross-correlation software has been developed to 
undertaken this analysis.  

Data from a laboratory undular hydraulic jump 
experiment by Lennon (1994) has been used to 
develop the model. The Reynolds number of the 
flow was about 24,000, with in super-critical 
inflow having a depth of 0.0314 m and velocity of 
0.762 m/s and Froude number of 1.37. The 
downstream Froude number averaged about 0.75 

and the depth averaged 0.047 m varying about 
these values along the undular waves downstream. 

The data obtained was spaced on a grid size of 
0.085 mm. The data set consisted of 11 
overlapping views (except where there was a metal 
plate in the flume between two views) of the jump 
each with over 5000 data points. A typical velocity 
field from a view is shown in figure 4. At each 
view point 400 photograph pairs were taken. This 
enabled a good set of statistics to be obtained for 
each point over the whole velocity field.  

The data is of the form u(x,y) and v(x,y) where u 
and v are the x and y velocities respectively and x 
and y are the x and y positions on the domain. The 
time step between each pair of photographs was 
about 1 second which meant that the data between 
time steps cannot show the development of the 
flow structures as the flow has changed too much 
between each photograph. However this was not 
an issue as the method generated covariance 
functions from the data’s the flow statistics of the 
data sets. 

4. PROPER ORTHOGONAL 
DECOMPOSITION (POD) 

Proper orthogonal decomposition is known by 
several other names including Karhunen-Loeve 
(KL) expansion, principal components analysis 
and is very similar to singular value 
decomposition. The following is a brief one-
dimensional description, similar to Chambers et al. 
(1988), to give an overview of the method as the 
PIV data is two-dimensional. For more details see 
Berkooz et al. (1993) and Bakewell and Lumley 
(1967). For a two-dimensional description see Liu 
et al. (2001). 

The POD is a generalised Fourier expansion of a 
random field, in this case the velocity u(x), using 
the sum of orthogonal basis functions, nϕ ,  
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Figure 4. Part of a velocity field obtained from a PIV analysis. Note that the mean velocities (for each 
horizontal line of data points) have been removed from the plot to show the flow structures. Note that the top 

10 lines are above the water surface and appear in the data due to reflections from the water surface. 

 
where nm∂  is the Kronecker delta.  

To minimise the mean square error from a partial 
sum of N terms (compared to the infinite number 
in equation (1)), leads to a homogeneous Fredholm 
equation for the basis functions, 
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where 〉〈= )'()()',( xuxuxxR  the correlation 
function that can be derived from the PIV velocity 
field and nϕ  and nλ  are the eigenfunctions and 
eigenvalues. By Mercer’s theorem,  
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from which can be shown that random Fourier 
coefficients are orthogonal variables with mean 
square values equal to the eigenvalues nλ , 

nmmnmaa ∂=〉〈 λ   (6). 

The integral equations can be solved by reducing 
them to matrix eigenvalue problems using the 
trapezoidal quadrature. Then equation (4) becomes 
in matrix form (Press et. al. 1986), 

R· f=λ f   (7) 

The Fredholm equation is a homogeneous one of 
the second kind which means that the kernel may 
have lost its symmetry with the quadrature. 
However the symmetry can be restored by using a 
diagonal matrix of the weights used in the 

quadrature i.e. D = diag (wj), where wj are the 
weights giving, 

R · D · f = λ f   (8) 

Multiplying by D1/2 gives, 

 D1/2 · R · D1/2 · h = λ h,  (9) 

which is now a symmetric eigenvalue problem. As 
the kernel is square integrable these eigenvalues 
will provide a good approximation for the lowest 
N eigenvalues of the integral equation.  

The Fredholm equation can also be solved 
analytically in many cases. 

5. ANALYSIS 

5.1. Two Point correlation functions - 
Covariance Structure 

Analysis of the covariance structure of the velocity 
field was undertaken by developing software 
within the Matlab program. 

In each field two-dimensional two point velocity 
correlations were undertaken. The correlations 
were undertaken in both the flow direction and 
vertical direction. This was undertaken from 
several chosen depths in the flow. The data at each 
depth was averaged over the ensemble of 100 of 
the data sets for each field and the velocity 
products with the chosen depths of flow were 
calculated and divided by the variances to obtain 
the correlations. There were points where data was 
missing and these were eliminated from the 
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calculation. The results are shown for the first 
view or velocity field in figure 5. 

 

Figure 5. X-velocity correlation plots at 5 depths 
in the flow (y = 0.11h, 0.36h, 0.55h, 0.75h and 

0.94h) for the first of the 11 fields. 

As can be seen from Figure 5 show the x-velocities 
of the flow are strongly correlated over a 
considerable distance upstream and downstream at 
an angle of about 8 degrees with the bed. This 
angle is probably due to the flow structures arising 
from the bed. These structures are known as 
sweeps and bursts. They have a strong effect on 
the average velocity in the field as it varied 
between data sets or photograph pairs from 0.7 m/s 
to 0.84 m/s (a 20 % range) for a length of flow that 
was 3 times is depth. 

However the plots in figure 5 also show that in the 
top 10 % of the flow the x-velocity correlation 
distance is small and is similar to the y-velocity 
correlations distances shown in figure 6 below. 

The correlation distances shown in figure 6 are not 
great and this reflects the size of the structures in 
the vertical direction. The average y-velocity did 
not change significantly from data set to data set 
whereas the x-velocity did varying by up to 20%. 
This meant when the ensemble averaging took 
place the x-velocity correlation distances were 

much larger than if just sample averaging was 
used. 

 

Figure 6. Y-velocity correlation plots at 5 depths 
in the flow (y = 0.11h, 0.36h, 0.55h, 0.75h and 

0.94h) for the first of the 11 fields. 

These correlations are very similar to those 
calculated by (Liu et. al. 2001) for this flow 
between two plates with a similar Reynolds 
number. 

5.2. Eigenfunctions 

The eigenfunctions are solved both numerically 
and if possible analytically. 

6. CONCLUSIONS 

The analysis shows that PIV data for uniform flow 
within an undular jump has statistical covariance 
properties that vary across the flow. Therefore the 
flow can be classed as a two-dimensional second 
order random field. Analysis of the structures 
under the wave is not able to be presented here due 
to space considerations. With the covariance 
function calculated from the analysis there are 
several options available to build a model. The 
covariance structures can be inserted into a model 
based on the two-dimensional Navier-stokes 
equations (the same two directions as the data, i.e. 
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the vertical and flow directions. Another option is 
use a fully stochastic process such as the Ornstein-
Uhlenbeck process. 

A model so developed will model the undular 
jump well but not other flows with different 
Reynolds numbers and Froude numbers. This will 
mean that the model will be limited in the use that 
it is intended for which is a wide variety of flow 
situations in rivers or on flood plains.  

Further data or quite possibly more detailed 
analysis of this data will be necessary to develop a 
generic model that can be used in any flow 
situation, including considerably different 
Reynolds and Froude numbers. 
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