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EXTENDED ABSTRACT 

Algal blooms are prevalent within the Berowra 
Estuary.  When algal species are present in high 
numbers they pose serious problems for 
commercial and recreational users of the estuary.  
Management authorities require an 
understanding of the relationship between the 
incidence of algal blooms and the environmental 
conditions required to initiate and promote these 
populations.  An Artificial Neural Network 
(ANN) is currently being developed to predict 
the occurrence and risk of algal blooms within 
the Berowra Estuary.   

Modelling the algal dynamics for this project is 
based on a unique data set, for South Eastern 
Australia, obtained from a deployed probe which 
monitors Chlorophyll-a (Chl-a), temperature and 
salinity at 15 minute intervals.  Distinguishing 
features of the present study are that it is being 
conducted in an estuarine environment with 
prediction horizons of the order of hours to 
several weeks.  This is in contrast to previous 
studies which are more commonly set within 
freshwater environments with the relevant time 
scales ranging from biweekly to seasonal. 

Preliminary network development for this 
project has utilised the back-propagation training 
algorithm and the sigmoid activation function. A 
multilayer perceptron architecture containing an 
input, hidden and output layer was selected.  
Data pre-processing and division into training, 
selection and test subsets occurred prior to being 
incorporated into the network.  Prediction 
outputs have been generated which aim to 
provide predictions for 1, 3 and 7 days in 
advance.  Preliminary analysis of the data 
indicates the best predictive results (i.e. lowest 
selection error) are obtained with models with 
the lowest number of variables.  Specifically, 

time-lagged Chl-a concentrations provide the 
best data set from which a prediction is made.  
This suggests initially that antecedent algal 
concentrations within the previous week are the 
most significant variable to be used when 
predicting future Chl-a levels.  However, it is 
acknowledged that with further refinement of 
internal network geometries and potential 
alteration to the data preprocessing techniques 
this may not be the case.  This paper outlines 
initial model results and compares each 
individual model on its predictive ability whilst 
maintaining constant internal model geometries 
between models.  Future improvements to the 
models developed in this paper are expected. 

Prediction of Chl-a within the estuarine 
environment is a suitable application of ANNs.  
This predictive tool provides opportunities for 
proactive rather than reactive management 
regimes with regard to mitigating the effects of 
estuarine algal blooms. Essential to the 
implementation and adoption of a proactive 
strategy is the requirement for a specified degree 
of certainty in the model outputs, an 
understanding of problematic algal 
concentrations and their duration.  These 
requirements are essential to ensure logistics 
staff and financial support are maintained for an 
algal bloom early warning system. 
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1.0 INTRODUCTION 

The occurrence of algal blooms within the 
estuarine ecosystem threatens both recreational 
and commercial pursuits.  Generally, algal 
blooms occur when a favourable set of 
environmental conditions exist.  Characteristic of 
blooms within the Berowra Estuary is their 
occurrence over relatively short time scales- of 
the order of days to a few weeks.  These blooms 
often lead to the discoloration of estuarine water 
and in some instances, dissolved oxygen 
depletion, fish kills and potential shellfish 
poisoning which may lead to closure of the 
estuary. 

 
Figure 1 The Berowra Estuary  
 
Current knowledge on the interactions between 
environmental variables and the resultant 
ecological algal response to these variables has 
been studied and largely incorporated into 
process based mathematical models.  Whilst the 
causality of an algal bloom is well known the 
actual responding algal dynamic to these 
causalities is difficult to predict due to the non-
linear relationships between environmental 
variables and algal response.  These process 
based models do not provide adequate 
forecasting capabilities due to the uncertainty in 
the kinetic rate coefficients and the complexity 

of existing deterministic two or three 
dimensional models (which are often coupled 
with hydrodynamic models) (Lee and Huang et 
al. 2003).  It is not the intent of this paper to 
provide an ecological model of algal bloom 
dynamics, rather it is to provide a framework for 
developing a predictive model which utilises 
Artificial Neural Network (ANN) modelling. 
The main advantage of this approach is that 
ANNs are able to model non-linear, dynamic and 
noisy data, especially when the underlying 
physical/biological relationships are not fully 
understood (Lee and Huang et al. 2003).   

In providing predictive capabilities to 
environmental managers, a new management 
paradigm is created.  Predictive tools provide 
managers with the opportunity to proactively 
manage natural resources rather than reactively.  
Benefits arising from this new management 
paradigm can result in improved economic and 
time efficiencies with regard to monitoring 
programs, staff resourcing, and response times to 
algal blooms.  This project will determine 
whether management of algal blooms can be 
assisted by predicting algal blooms 1, 3 and 7 
days in advance using an ANN. 

2.0 INSTRUMENTATION 

Coordination of probe deployment, verification 
and calibration has been principally undertaken 
by Manly Hydraulics Laboratory and Hornsby 
Shire Council.  The probe instrumentation,  
YSITM 6820 sonde, for this project has been 
deployed in its current location above a deep 
hole (approximately 13m in depth) between 
Calabash Point and Cunio Point in the Berowra 
Estuary.  This site was selected as previous 
estuary process studies indicate that typical 
bloom characteristics were shown to have peak 
Chl-a concentrations around Calabash Bay 
(MHL 1998). 

The YSITM sonde is deployed at 0.5m depth and 
is connected to a data logger and mobile phone.  
Measurements of salinity, temperature and Chl-a 
are taken every 15 minutes.  The data is available 
online to the public via a web link on the 
Hornsby Shire Council website 
(www.hornsby.nsw.gov.au). 

To limit potential problems of fouling during 
deployment in the estuary, the probe has an 
automated wiper attached.  The wiper completes 
a cleaning cycle of the probe optics prior to each 
measurement being taken to reduce the 
occurrence of marine fouling leading to a biasing 
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of the results.  Routine cleaning and probe 
change-overs every 3 weeks further reduce 
problems of fouling and vandalism. 

3.0 INPUT VARIABLES  

Selection of network parameters is undertaken 
through iterative testing of a number of network 
scenarios which contain a variety of input 
variables.  The aim is to provide a robust model 
based on the lowest number of input variables, 
with a modest data requirement. 

Inputs considered for the ANN include nutrients, 
solar radiation, Chl-a, water temperature and 
salinity.  Nutrients are delivered to the estuary 
from catchment inflows which include 
discharges from two Sewerage Treatment Plants 
(STP). These STP’s contribute more than 25% of 
the total phosphorus load and 97% of the total 
nitrogen load to the estuary (MHL 1998).  
Despite these nutrient loads entering the estuary, 
hydrodynamic investigations suggest that the 
highly variable light field and spring and neap 
tide variations in salinity dispersion control the 
algal biomass distribution.  SALMON-Q model 
results indicate that light and salinity dispersion 
were more important than nutrient limitation for 
controlling algal biomass and possible blooms 
(MHL 1998). 

Tidal characteristics also play an important role 
in determining the presence of phytoplankton 
which require reasonably stable conditions (ie 
long residence times) to reach bloom 
proportions.   

Correlogram of daily averaged Chla 

0 10 20 30 40 50 60
 Lag (Days)

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
ut

o-
co

rr
el

at
ion

28 days

Figure 2 Correlogram of daily averaged Chl-a 
 
Figure 2 illustrates that in the period 05/07/2002 
to 01/01/2003, autocorrelation of daily-averaged 
Chl-a indicates Chl-a concentrations are 
significantly correlated for time lags of up to 28 
days.  The significant autocorrelation of Chl-a 

within the first 7 days is considered to be the 
result of the flushing characteristics at the probe 
location.  As the probe is located above a deep 
hole a water residence time of approximately 7 
days is maintained (MHL 1998).  

Water temperature is also considered an 
important variable controlling algal biomass and 
subsequent bloom conditions.  Temperature is 
considered within the development of these 
initial models with consideration given to diurnal 
and seasonal patterns.  These patterns indicate 
that the warmest diurnal temperatures occur 
during the afternoon and that the warmest 
seasonal temperatures are associated with 
summer months.  These warm periods are mostly 
associated with the highest Chl-a measurements. 

Therefore, variables considered to be most 
influential for the prediction of algal blooms 
include; time lagged Chl-a, water temperature 
and salinity.  Tidal range data as an input 
variable will be considered in future model 
developments, at the time of writing this paper 
the data was not available. 

4.0 NETWORK ARCHITECTURE AND 
LEARNING ALGORITHM 

Being conceptually based on biological nervous 
systems, ANNs consist of a large number of 
highly interconnected processing elements.  
Specifically, they attempt to mimic the fault 
tolerance and the learning capacity of biological 
neural systems by modelling a low-level 
structure of the brain.  

ANNs contain artificial neurons which receive a 
number of inputs (either from original data or 
from the output of other neurons in the network).  
Each of these inputs comes via a connection that 
has a strength (or weight); these weights 
correspond to the synaptic efficiency in a 
biological neuron.  Each neuron also has a single 
threshold value.  The weighted sum of the inputs 
is formed, and the threshold subtracted, to 
compose the activation of the neuron. The 
activation signal is passed through an activation 
function (also known as the sigmoid transfer 
function(1)) to produce the output of the neuron.  

( )xe
xf −−

=
1

1)(    (1) 

In utilising this function the trained network is 
able to undertake non-linear interpolations in 
order to provide a reasonable output in response 
to a range of inputs (Maier 1995; Lee and Huang 
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et al. 2003).  This function is considered 
appropriate for algal bloom predictions as the 
onset of algal blooms and associated growth is 
determined by highly non-linear processes, such 
as nutrient uptake by phytoplankton, the light 
limitation factor and photo-inhibition (Lee and 
Huang et al. 2003). 

Neural networks learn the input/output 
relationship through training which in this study 
utilises the back propagation algorithm.  This 
algorithm uses the data to adjust the network’s 
weights and thresholds so as to minimise the 
error in the predictions on the training set. Once 
the network is properly trained, it has learned to 
model the (unknown) function that relates the 
input variables to the output variables, and can 
be used to make predictions where the output is 
not known (StatSoft 2004). 

The back propogation training algorithm is 
commonly used within many ANNs and is 
described within numerous texts (Haykin 1994; 
Bishop 1995; StatSoft 2004). Benefits in using 
this algorithm are that it has lower memory 
requirements than most algorithms, and usually 
reaches an ‘acceptable’ error level relatively 
quickly, although it can be very slow to converge 
properly on an error minimum (StatSoft 2004). 
An on-line version of back propogation (2) is 
used within this investigation, that is, it 
calculates the local gradient of each weight with 
respect to each case during training. Weights are 
updated once per training case. 

The update formula is (StatSoft 2004): 

Δwij (t) = ηδjoi + α Δwij(t-1)  (2) 

wij - the weights between the input and hidden 
layer or between the hidden and output layers 
(depending on the local error gradient being 
used) 

t - the epoch number 

η - the learning rate 

δj - the local error gradient 

α - the momentum coefficient 

oi - the output of the i'th unit 

Thresholds are treated as weights with oi = -1. 

Within this formula the local error gradient 
calculation depends on whether the unit into 
which the weights feed is in the output layer or 
the hidden layers.  If the local gradients are in the 
output layers then they are the product of the 

derivatives of the network's error function and 
the units' activation functions.  Local gradients in 
the hidden layers are the weighted sum of the 
unit's outgoing weights and the local gradients of 
the units to which these weights connect 
(StatSoft 2004). 

5.0 DATA PRE-PROCESSING 

Data pre-processing is essential to remove 
spurious data which can result from probe 
malfunctions.  Caution is given to readings 
where consecutive 15 minute Chl-a readings 
have exceeded 10µg/L and are subsequently 
removed.  For temperature and salinity data, 
values were removed where there was a 1oC and 
10ppt difference respectively in consecutive data 
values.  These thresholds for excluding data 
values have been set subjectively and do require 
further attention.  Values removed were replaced 
with an alternate value through linear 
interpolation.   

6.0 INPUT SELECTION 

An optimisation of the input variables was 
undertaken to select those parameters considered 
most useful for prediction of Chl-a.  The 
procedure started with the model containing all 
parameters and then removal of one parameter at 
a time until Chl-a was the only input parameter.  
For the purpose of this initial investigation three 
models were developed based on this procedure: 

• Model-1 Chl-a, Temp and Sal 

• Model-2 Chl-a, Temp 

• Model-3 Chl-a 

To enable consistency with comparisons between 
models, all internal model coefficients and 
geometries were held constant in all models.  
Thus, the three models presented here maybe 
capable of further improvement with appropriate 
adjustment of the internal coefficients and 
geometries (e.g learning and training parameters, 
initialisation of weights, etc).   

7.0 NETWORK PERFORMANCE 

In assessing the performance of the various 
models, use is made of several test statistics.  
These test statistics include the Root Mean 
Square Error (RMSE), Standard Deviation Ratio 
(S.D. Ratio) and Pearson-R correlation 
coefficient (r2). 
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Of particular interest is the prediction error, S.D. 
Ratio.  This ratio is calculated by comparing the 
prediction data error standard deviation with 
either the training or test data standard deviation.  
A ratio significantly below 1.0 is indicative of 
good regression.  Furthermore, a value less than 
0.1 indicates very good regression performance.  
Care needs to be taken when using this statistic 
to select networks, as good performance rates 
based on the training set can be deceptive and 
may actually be indicating “over-learning” 
(which is similar to “over fitting” in linear 
models). 

In comparing the three models, the ‘best’ 
prediction performance, lowest error, and ‘best’ 
correlations between input and predicted data 
was achieved by model-3 which utilised Chl-a 
data only.  Subsequent improvement in model 
predictions was not achieved by adding more 
environmental variables to this model (ie 
temperature and salinity). 

Table 1 Input and Model Selection 
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Model Train Test Train Test Train Test 

1. 
Chla,  
Temp, 

Sal 

0.116 0.115 0.925 0.941 0.422 0.248 

2. 
Chla, 
Temp 

0.077 0.076 0.838 0.838 0.547 0.550 

3. 
Chla 0.043 0.052 0.383 0.443 0.925 0.897 

 

This does not suggest that salinity and light are 
not important ecological considerations in 
ecological models, rather it indicates that these 
parameters are potentially redundant in 
predictive models which utilise ANNs.  
Specifically, it appears that all the past 
ecological information required to make a 
prediction is embodied in the historic Chl-a 
concentrations (Lee and Huang et al. 2003).  
This makes ecological sense as the presence of 
algal biomass is the result of (or highly 
correlated with) the previous behaviour of the 
phytoplankton population 2 weeks prior. 

To further extrapolate the use of various 
parameters within the neural network, a 
sensitivity analysis was undertaken.  

8.0 SENSITIVITY ANALYSIS 

A sensitivity analysis was conducted on the 
inputs to the ANN to determine which inputs are 
considered most beneficial.  Sensitivity analysis 
ranks the variables according to the deterioration 
in modeling performance that occurs if that 
variable is no longer available to the model.  
Care is to be taken in interpreting sensitivity 
results as it is assumed that all the input variables 
are independent and ignores the possibilities that 
there may be in fact subtle interdependencies 
between variables (StatSoft 2004). 

Table 2 Sensitivity analysis 
 Variable 

Model Chla Temp Sal 

1. Chla, Temp, Sal 50.79 1.17 0.96 

2. Chla, Temp 75.73 1.40 - 

3. Chla 120.54 - - 

 

The measure of sensitivity is determined as a 
ratio of the error with missing value substitution 
to the original error. Therefore, based on the 
assumption that by removing some of the 
information required by the network to make a 
prediction (ie one of the inputs) then it is 
reasonable to expect some deterioration in error 
to occur.  Thus, the more sensitive the network is 
to a particular input, the greater the deterioration 
expected, and hence the greater the ratio. 

From Table 2 it is possible to see the effect of 
removing various variables.  Firstly, salinity 
within Model-1 recorded a value less than 1 
indicating that this parameter contains no 
discernable information that is useful for 
prediction of Chl-a.  That is, the network error 
actually decreases when the training data mean is 
substituted.  Removal of the salinity variable 
improved the network errors on the test data.  
Further removal of temperature from the model 
input improved the error ratio as shown by the 
result for Model-3 when only Chl-a data is used.  
Thus Model-3 is selected as it has the lowest 
selection error and is able to produce the most 
accurate predictions (Table 1) based on the 
fewest variables (Table 2). 
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9.0 NETWORK PREDICTIONS 

The objective of this project is to predict the 
values of Chl-a, given known input variables.  
From Figure 3 it can be seen that Model-3 is 
generally mimicking the pattern of Chl-a, 
however, the magnitude of the Chl-a 
concentration is being well represented at low 
Chl-a values only.   

1,3 and 7 day Predictions from Day-0 (9/12/2002)
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Figure 3 Model-3 network prediction scenario 
at 1,3 and 7 days in advance 
 

Reasons for this are most probably related to the 
effect from output scaling and extrapolation. In 
using a sigmoid activation function (also known 
as a transfer function) there is a scaling effect 
whereby the independent variable which has an 
initial input range from -∞ to ∞ is transformed to 
a output range of between 0 and 1.  That is, the 
activation function can accept input in any range 
but produces output within a limited range.  Thus 
to ensure that the network’s output will be in 
reasonable range a scaling function is then 
utilised.  The scaling function used in this project 
finds the minimum and maximum values of a 
variable in the training data, and performs a 
linear transformation (using a shift and a scale 
factor) to convert the values into the target range 
(typically [0.0, 1.0]). The net effect is that a 0.0 
output activation level in the network is 
translated into the minimum value encountered 
in the training data, and a 1.0 activation level is 
translated into the maximum training data value. 
Consequently, the network is able to interpolate 
between the values represented in the training 
data. However, extrapolation outside the range 
encountered in the training set is limited as the 
network's output will be constrained to lie within 
this range. This can be considered to be both 
beneficial and also restrictive (StatSoft 2004).  
Beneficial, in terms that it prevents the network 

from making predictions beyond the range of the 
training set and thus limiting extrapolation.  If it 
is considered restrictive, a linear activation 
function can be used to enable extrapolation 
beyond the range of the training data set, 
however, this can lead to increasing the risk of 
spurious model results. The implications of using 
various scaling and activation functions require 
further investigation.  

10.0 PROACTIVE MANAGEMENT 
REGIMES 

It is anticipated that with the development of an 
algal bloom prediction model, environmental 
managers will be able to undertake proactive 
management strategies.  Therefore, by being 
forewarned of an impending algal bloom, 
management actions can be undertaken prior to 
the occurrence of an algal bloom.  This is 
contrary to the current management paradigm of 
reactive management,  whereby a response to an 
algal bloom is made only when they occur.  
Integration of predictive model outputs into 
proactive management regimes will assist in 
minimising the impacts of algal blooms and will 
provide adequate warning to public and private 
sectors of an impending algal bloom. Early 
detection of an algal bloom provides managers 
with essentially more options in dealing with the 
bloom situation undertaken (Nancarrow and 
Wood 2000). 

Pivotal to the implementation and adoption of a 
proactive strategy, based on a predictive model, 
environmental managers require the following: 

• a specified degree of 
certainty/confidence in the network 
predictions 1, 3 and 7 days in advance, 

• an understanding of problematic Chl-a 
levels and subsequent alert levels, and 

• an understanding of the potential 
duration of high Chl-a levels. 

These requirements are essential to ensure 
logistics, staff and financial support are 
maintained for an algal bloom early warning 
system. 

11.0 FUTURE DEVELOPMENT 

Future modifications of the three models 
presented requiring investigation include: 

• Use of different activation functions (eg 
linear, hyperbolic) 
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• Use of different scaling functions 
depending on management 
requirements 

• Use of different network architectures 

• Use of longer term data sets. A 6 month 
data set has been used for this study. 

• Use of Bureau of Meteorology forecast 
data to assist with model predictions 

• Use of tidal range data and solar 
radiation as input variables 

12.0 CONCLUSIONS 

The use of neural networks for the prediction of 
estuarine Chl-a levels is currently being 
investigated for the Berowra Estuary.  The 
multilayer perceptron architecture has been 
developed utilising a backpropogation training 
algorithm, logistic activation function and 
minimum/maximum scaling function.  In using 
this framework the ‘best’ prediction results were 
obtained, based on time lagged Chl-a data as the 
only inputs.  This suggests that information 
required to make future Chl-a predictions is 
encapsulated within the historical Chl-a 
concentrations.  The exact causative parameter 
for inducing an algal bloom is not known and 
cannot be deduced from the predictive models 
presented within this paper.  Causation of algal 
blooms is best addressed through the 
interpretation of ecological models. 

The concept of proactive management regimes is 
presented to address the often missing 
association between model outputs and 
management response.  Central to a management 
response is an indication of confidence in model 
outputs and understanding model limitations. 

In being able to forecast algal blooms it is 
envisaged that environmental managers will be 
able to apply the information to: 

• Improve monitoring efficiencies, by 
monitoring only when problematic 
concentrations occur. 

• Inform recreational users of potential 
public health risks. 

• Inform oyster growers and other 
commercial operators of potential 
bloom concentrations. 

• Determine which environmental 
conditions are most useful in predicting 

the occurrence of problematic algal 
concentrations. 

This paper presents preliminary results and it is 
considered that improved models can be made 
through adjustments of internal network 
parameters and geometries.  Namely, alterations 
to weight optimisation, learning and momentum 
rates, network architectures and stopping 
criterion need further consideration.  Further 
refinement of these ANNs will improve both the 
predictive capacity of the ANNs and the 
managerial confidence in the network 
predictions.   

13.0 ACKNOWLEDGEMENTS 

This study is supported by Hornsby Shire 
Council, University of New South Wales and 
Manly Hydraulics Laboratory.  The authors wish 
to thank Dr Ross McPherson for comments and 
support for this project. The assistance of Miss 
Kristy Guise and Mr David Leggett in probe 
deployment and GIS support is also gratefully 
acknowledged.  

14.0 REFERENCES 

Bishop, C. 1995. Neural networks for pattern 
recognition, Oxford University Press. 

Haykin, S. 1994. Neural Networks. Englewood 
Cliffs, NJ, Prentice-Hall. 

Lee, J. H. W., Y. Huang, et al. 2003. Neural 
network modelling of coastal algal 
blooms. Ecological Modelling 159(2-3): 
179-201. 

Maier, H. R. 1995. A review of Artificial Neural 
Networks . Department of Civil and 
Environmental Engineering. The 
University of Adelaide. 

Manly Hydraulic Laboratory MHL, 1998. 
Berowra Creek Estuary Processes 
Study Estuarine Water Quality. NSW 
Department of Commerce. 

Nancarrow, S. and J. Wood 2000. Algal 
Contingency Plan. Sydney 
Metropolitan/South Coast Regional 
Algal Coordinating Committee, NSW 
Department of Land and Water 
Coanservation. 

StatSoft, Inc. 2004. STATISTICA (data analysis 
software system), version 7. 

 

2379


