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EXTENDED ABSTRACT

Much research has focused upon the dynamics of
the conditional volatility of financial asset returns.
Broadly speaking there are two important features
of the process underlying volatility. These may be
described as either a sign effect, where the level of
volatility is related to the sign of past returns or a size
effect, where the dynamics of volatility are related to
prevailing level of volatility.

A great deal of work, at least in the context of dealing
with equity returns has examined the nature of the
sign effect. This has become known as the leverage
effect and has revealed that conditional volatility is
higher subsequent to negative returns. The size effect
on the other hand has received somewhat limited
attention in that the dynamics of many models of
volatility are independent of the level of volatility.
What limited evidence has been documented, shows
that the persistence of US equity market volatility falls
as the level of shocks to returns increase.

This paper considers the size effect within an
stochastic volatility framework, a common class of
models for modeling conditional volatility. Es-
timation of the parameters of stochastic volatility
models is relatively difficult due to the presence
of a latent factor (conditional volatility). While
many estimation techniques exist for simple stochastic
volatility models, they may be categorised as either
computationally simple and relatively inaccurate or
computationally burdensome and relatively accurate.
Given that this paper considers whether stochastic
volatility dynamics are related to the level of
volatility, an estimation scheme that is flexible but
also computationally feasible must be utilised for
estimation.

Non-linear filtering techniques have been applied to
the estimation of stochastic volatility models. While
this is a flexible framework, with few restrictive
assumptions, it has not gained wide acceptance due
to the associated computational costs. A non-linear
filtering algorithm for the estimation of stochastic

volatility models with size effects is proposed.
Considering the computational cost issues, estimation
here is utilises a computationally efficient non-linear
filtering algorithm. This algorithm is based on
a discretised non-linear filtering algorithm where
the relevant continuous state-space (for unobserved
volatility) is discretised and the latent variable treated
as if it were a discrete-valued Markov process. While
this discretised non-linear filtering algorithm has
been developed for efficient estimation of standard
stochastic volatility models, this paper proposes an
extension that accommodates possible size effects.

To assess the significance of the size effect, an
hypothesis testing framework is proposed. While a
standard stochastic volatility model is nested within
a model incorporating size effects, it is not possible
to use standard likelihood ratio tests. This is due to
the manner in which the state-space of the stochastic
volatility model with size effects is partitioned using
a threshold parameter. Under the standard stochastic
volatility case, this threshold parameter is unidentified
and thus standard likelihood ratio tests are not
applicable. To overcome these problems, a bootstrap
testing procedure is suggested. Under this approach, a
likelihood ratio statistic (stochastic volatility with size
relative to the standard stochastic volatility model) is
replicated given data generated under the assumption
of the standard stochastic volatility process. The
likelihood ratio statistic is then computed given the
actual datasets and then compared to the distribution
of the statistics under the null hypothesis of the
standard stochastic volatility model. Doing so, allows
for an empirical p-value to test the significance of the
size effect to be obtained.

Two empirical datasets are considered, daily returns
on the S&P 500 composite and the Yen/USD
exchange rate. In both the equity and currency return
cases, volatility dynamics are found influenced by
the level of prevailing volatility. When volatility
is relatively low (high), volatility is extremely (not)
persistent with little (a great deal of) noise. This size
effect was found to be statistically significant in both
instances.
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1 INTRODUCTION

Modeling the distribution of financial asset returns
is a critically important issue within areas such as
risk management, portfolio construction and option
pricing. To accurately capture the conditional
distribution of returns it is necessary to capture time-
variation of volatility.

Estimating the conditional distribution of asset returns
can be attributed to the seminal work of Engle (1982)
and Bollerslev (1987) who developed the ARCH and
GARCH models respectively. A vast amount of
literature exists in this field, summaries of which are
contained in Bollerslev, Chou and Kroner (1992),
Pagan (1996) and Campbell, Lo and MacKinlay
(1997).

An alternative approach to GARCH style models
are the Stochastic Volatility (SV) class of models
which treat conditional volatility as a latent variable
that follows its own stochastic process. While on a
practical level, it is difficult to estimate the parameters
of SV models, they are theoretically appealing. Clark
(1973), Tauchen and Pitts (1983) and Andersen (1996)
theoretically motivate SV models from the perspective
of capturing stochastic changes in information flow.

There has been an enormous amount of attention
paid to the specification of volatility dynamics.
Broadly speaking, the important features of volatility
dynamics may be due to either sign (relationship
between volatility and the sign of past returns) and
or size (relationship between volatility and the size of
past returns or volatility) effects. Much work has been
directed at dealing with the sign effect, specifically
the asymmetric relationship between returns and
volatility. Within the GARCH class of models,
Nelson (1991), Hentschel (1995) and Ding, Engle
and Granger (1993), among others, propose threshold
style models to capture the sign effect. Within an SV
framework, Harvey and Shephard (1996) and So, Lam
and Li (2002) propose asymmetric SV models where
volatility dynamics are dependant on the sign of past
returns, once again to capture the leverage effect.

An alternative feature that has received much less
attention is the size effect where volatility dynamics
are dependent on the level of volatility. Friedman
and Laibson (1989), Gouriéroux and Monfort (1992),
Engle and Ng (1993) and Longin (1997), consider the
size effect within GARCH style models. For instance,
Friedman and Laibson (1989) find that the persistence
in conditional volatility falls when shocks to US stock
returns are large.

To the best of the authors knowledge, the size effect
in volatility has not been considered within an SV
framework. Partly, this may be due to the problems

surrounding the estimation of such models. It is
therefore the goal of this paper to develop a non-
linear filtering algorithm that allows the dynamics of
volatility (the latent variable) in an SV setting to be
dependent on the current level of volatility. This non-
linear filtering framework builds upon the non-linear
filter approach to dealing with latent variable models
proposed by Kitigawa (1987). Given the non-linear
filtering framework, an hypothesis test is suggested
to ascertain whether volatility dynamics are in fact
dependant on the level of volatility.

This paper proceeds as follows. Section 2 introduces
the concept of an SV model with size effects.
Section 3 outlines the non-linear filtering estimation
framework as it applies to a standard SV model,
along with adjustments to capture the size effect. An
approach to testing the significance of the size effect
is also proposed. Section 4 presents an empirical
application of the SV models with a size effect,
showing this it is an important feature of the two
time series considered. Section 5 provides concluding
remarks.

2 STOCHASTIC VOLATILITY WITH SIZE
EFFECTS

A stochastic volatility (SV) model considers that
returns (the observed variable) {yt}T

t=1 are generated
by,

yt = exp(xt/2)ut ut ∼ N (0, 1) (1)

where xt = ln(σ2
t ). SV models treat xt as

an unobserved (latent) variable, following its own
stochastic path, the simplest being an AR(1) process,

xt = α + β xt−1 + wt wt ∼ N(0, σ2
w) (2)

where errors, ut and wt are assumed to be
independent. These equations describe the standard
SV model where volatility dynamics are independent
of the current level of volatility.

To incorporate a size effect into the SV dynamics
it is necessary to condition the volatility dynamics
on the level of volatility. To do so, the state-
space of xt will be partitioned by the point τ into
two adjoining regions each with their own distinct
volatility dynamics. Two regions are selected in this
context to reflect relatively high and low volatility. To
allow for the size effect in SV dynamics equation 2
must be augmented

xt = αs + βs xt−1 + σw,swt, (3)

where the subscript S denotes the index of the region
containing xt−1. If xt−1 < τ dynamics will be
governed by θ1 = (α1, β1, σw,1) otherwise if xt−1 >
τ dynamics will be governed by θ2 = (α2, β2, σw,2).
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The following section will now outline the non-
linear filtering framework employed to estimate to
the standard SV model of equation 2 along with an
extension to deal with the level dependence implied
by equation 3.

3 SV ESTIMATION AND TESTING OF SIZE
EFFECT

To estimate the parameters of the SV model
incorporating the size effect, this paper builds
upon the non-linear filtering framework pioneered
in Kitigawa (1987). While many other approaches
to estimating SV models exist (for summaries see
Ghysels et al. 1996 and Shephard 1996) the non-linear
filtering approach has been chosen in this setting as
it provides the flexibility required when incorporating
non-standard features such as the size effect.

Estimation of a latent variable process such as
equation 2 within a non-linear filtering framework
is based on a recursive, prediction-update algorithm.
This approach requires two density functions to be
defined and a number of integrals to be evaluated. Let
r (yt|xt, Yt−1, θ) be the conditional distribution of yt

on xt (given equation 1), q (xt|xt−1, Yt−1, θ) be the
conditional distribution of xt on xt−1 (given equation
2) and θ. The one-step ahead prediction of the
distribution of xt conditional on Yt−1, f (xt |Yt−1, θ),
is given by

f (xt |Yt−1, θ) =∫ ∞

−∞
q(xt |xt−1, Yt−1, θ) f (xt−1 |Yt−1, θ) dxt−1.

(4)

Once a new observation, yt, is available, the
probability distribution of the state variable at time t,
conditional on information at time t, f (xt |Yt, θ), may
now be obtained as

f (xt|Yt, θ) =
r(yt|xt, Yt−1, θ) f (xt |Yt−1, θ)

f (yt|Yt−1, θ)
. (5)

The denominator of equation (5) is the likelihood of
observing yt conditional on yt−1 and θ and may be
computed as

f (yt|Yt−1, θ) =
∫ ∞

−∞
r(yt|xt, θ) f (xt|Yt−1, θ) dxt

(6)
which may be optimised (for all observations) to
permit maximum likelihood (ML) estimates of SV
parameters to be obtained. The method to do so will
now be discussed.

3.1 Estimation of SV models using DNF

The non-linear filtering algorithm utilised here solves
equations 4 to 6 based on a discretisation of state-
space. This algorithm is known as the discretised non-
linear filter (DNF). This allows the likelihood function
of a continuously valued latent variable process to
be evaluated in a similar manner to Markov models
for discrete valued time series, see MacDonald and
Zucchini (1997). In doing so, this avoids the use of
numerical integration or simulation schemes.

Under the DNF approach, the pdf of the latent
variable, x, is approximated by computing the
probability of observing x within a set of discrete
intervals (a histogram) as opposed to the linear
spline approach suggested by Kitagawa (1987). In
discretising the state-space, N equal-width adjacent
intervals are defined across x ± 6 σx, bounded by
{wi}N+1

i=1 , and centered on the points {xi}N
i=1 where

xi =
wi + wi+1

2
. (7)

In general terms, the probability of observing x within
the interval centered on xi, i.e. x ∈ (wi, wi+1] is
given by

p(x ∈ (wi, wi+1]) =
∫ wi+1

wi

f (x) dx ≈ p(xi) (8)

where f (x) is the continuous probability distribution
of the of the unobserved state variable x. The series
of {p(xi)}N

i=1 represent a discretised approximation
to the continuous distribution f (x). Based on
this discrete approximation, the DNF captures the
evolution of the state variable through time given
definitions of a time-invariant set of transition
probabilities and a set of conditional likelihoods.

Transitional probabilities

Given that the state space is defined over N adjacent
intervals it is possible to compute an N × N matrix
of time-invariant transition probabilities, q̂. The
elements of this matrix, q̂ i,j ∀i, j = 1, ..., N,
represent the probability of x migrating from the
interval centred on xj at time t − 1, to the interval
centred on xi at time t and is given by

q̂ i,j = δ q
(
xi

t|xj
t−1, θ

)
(9)

where δ is the interval width. In the case where q(.) is
a normal distribution,

q̂ i,j =
δ√

2πσ2
v

exp

(
− (

xi − α− βxj
)2

2σ2
v

)
. (10)
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Conditional likelihoods

The likelihood of observing yt conditional on x being
within each discrete interval is found. The T ×
N likelihood matrix containing elements, r̂i

t ∀i =
1, ..., N, is defined by

r̂i
t = r

(
yt|xi

t, θ
)

(11)

In the standard SV model of equation 2, r̂i
t is given by

r̂i
t =

1√
2π exp(xi)

exp
(
− y2

t

2 exp(xi)

)
(12)

Based on this set of conditional likelihoods and the
time-invariant matrix of transition probabilities, the
DNF proceeds with the following steps.

Prediction Step

The predicted probability of observing x ∈ (wi, wi+1]
at time t is given by (a discrete approximation to 4):

P i
t = p(xi

t| yt−1, θ)

=
N∑

j=1

q̂ i,j · U j
t−1.

(13)

Update Step

The updated probability of observing x ∈ (wi, wi+1]
at time t, is defined as (a discrete approximation to 5)

U i
t = p(xi

t |yt, θ)

=
r̂i
t · P i

t

p(yt|Yt−1,θ)
(14)

Likelihood

The denominator of equation (14) is the likelihood of
observing yt, given by

p(yt|Yt−1,θ) =
N∑

i=1

r̂i
t · P i,j

t (15)

The log-likelihood used to generate ML estimates of
θ are obtained directly from equation 15 and is given
by

ln L =
T∑

t=1

ln[p(yt| yt−1,θ)]. (16)

For the DNF to be initialised, the prediction of the
state probabilities at time t = 1 need to be selected.
The state probabilities are initialised by discretising
the unconditional distribution of the state variable
such that

P i
1 =

∫ wj+1

wi

f (x | θ) dx (17)

where

f (x| θ) ∼ N

(
α

(1− β)
,

σ2
w

(1− β2)

)
. (18)

The manner in which this DNF framework can be
augmented to incorporate size effects will now be
discussed.

3.2 Estimation of SV models with a size effect
using DNF

To capture a size effect in SV dynamics it is necessary
to adjust both the nonlinear filtering framework of
equation 4 through 6 and the the associated estimation
procedure. In terms of the non-linear filtering
equations, only the prediction equation, equation 4
must be adjusted to reflect the size effect,

f (xt |yt−1, θ)

=
∫ ∞

−∞
[I q(xt |xt−1, θ1) + (I − 1) q(xt |xt−1, θ2) ]

f (xt−1 |yt−1, θ1,θ2) dxt−1

(19)

where I = 1 if xt−1 < τ , with SV dynamics being
governed by θ1 = (α1, β1, σw,1) otherwise I =
0 if xt−1 > τ results in dynamics being governed by
θ2 = (α2, β2, σw,2). This specification is consistent
with equation 3 in that the dynamics governing the
evolution of volatility at any point in time is dependent
on the current level of volatility.

To estimate an SV model with a size effect, three
adjustments to the DNF are necessary. It is necessary
to choose τ so as the state-space of x may be
partitioned into two adjoining regions. Within each
region, discrete intervals must be chosen so as to
discretise state-space. Finally, it is necessary to adjust
the transition probability matrix, q̂ i,j to reflect the
distinct volatility dynamics of each region.

Region Choice

Whilst the state space of x is theoretically infinite, as
with the standard SV case it must be discretised into a
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finite number of intervals. As the size effect, requires
the use of two state equations, it is not immediately
obvious how to span the state space of x. However,
it is reasonable to assume that after accounting for
the size effect, volatility would lie within the same
region. Thus it is proposed that the state-space be
defined such that it spans the region implied by the
ML estimates of the SV model. The first step is to find
the ML estimates of the parameters of the SV model
and compute

max(x) = bα
(1−bβ)

+ 6 bσw√
(1−bβ2)

min(x) = bα
(1−bβ)

− 6 bσw√
(1−bβ2)

(20)

The region defined between min(x) and max(x) is
believed to span the relevant state-space.

To split the state space of xt into two regions,
the threshold point, τ is defined under a restriction
that τ ∈ [max(x)+11 min(x)

12 , 11 max(x)+min(x)
12 ]. This

ensures that there is a non-trivial distance between
τ and the edges of the discretisation, min(x) and
max(x).

Interval Choice

It is now necessary to define the discretisation within
each region, [min(x), τ ] and [τ, max(x)]. Define
number of intervals in the upper and lower regions as

NU = round

(
N (max(x)− τ)
max(x)−min(x)

)
, NL = N−NU

(21)
with the interval widths in each region δU =
(max(x) − τ)/NU and δL = (τ − min(x))/NL

respectively. Define a set of interval edgepoints to
discretise state-space. These edgepoints are defined
by {wi}N+1

i=1 = min(x), min(x) + δL, ..., min(x) +
(NL−1)δL, τ, τ +δU , ..., τ +(NU−1)δU ,max(x). In
a similar fashion to the standard SV model, the centre
of each interval, x1...xN , is defined as the mid-point
as in equation 7.

Transition Probabilities

To condition the transition dynamics on the level of
volatility it is necessary to compute the matrix of
transition probabilities, q̂ i,j , such that it reflects the
parameter values of the region to which xj belongs.
Based on the volatility dynamics given in equation 3,

q̂ i,j =
δi√

2πσ2
w,s

exp

(
− (

xi − αs − βs xj
)2

2 σ2
w,s

)

(22)

where S = 1 and δi = δL if xj < τ , otherwise
S = 2 and δi = δU when xi > τ .

The filtering algorithm proceeds as outlined earlier,
recursing through equations 13 to 15 where the
transition probabilities are now computed given
equation 22. Finally, P i

1 is initialised from equation
17 using the ML estimates of the standard SV model.

3.3 Testing the significance of the size effect

Under the null hypothesis of θ1 = θ2 the SV model
with size effects collapses to the standard SV model
for any value of τ . Since τ is unidentified under
this null, a standard likelihood ratio (LR) test will
not follow a standard distribution. Therefore to obtain
accurate inference regarding the adequacy of the size
effect, it is proposed that the non-standard distribution
of the LR statistic can be determined by the use of a
bootstrap procedure.

This procedure can be summarised in the following
steps:

1. Estimate the parameter vector, θ̂SV , of the
standard SV model on actual data and store the
log-likelihood, LSV .

2. Estimate the parameter vector, θ̂SIZE , of the
SV model with size effects on actual data and
store the log-likelihood, LSIZE .

3. Find the likelihood ratio statistic LR = 2 ×
(LSIZE − LSV ).

4. Set i = 1.

5. Simulate a return series of length T , from the
standard SV process using the parameter vector
θ̂SV .

6. Estimate the parameter vectors θ̂SV,i and
θ̂SIZE,i storing the log likelihoods,LSV,i and
LSIZE,i.

7. Find the likelihood ratio statistic LRi = 2 ×
(LSIZE,i − LSV,i)

8. Set i = i + 1 and repeat steps 5 − 7 until i =
Nsim.

9. The empirical p − value is then found as
1/Nsim

∑Nsim

i=1 Ii where Ii = 1 if LRi > LR
and 0 otherwise.

4 EMPIRICAL RESULTS

Two datasets are considered. Equity returns consisting
of 2000 daily return observations from the S&P 500
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Table 1. Estimation results for standard SV models and SV model with size effects (SIZE) for both the S&P500
and YEN/USD datasets. p-values for the LR statistic are generated from the bootstrap approach outlined above
with Nsim = 500.

SIZE SV
S&P Y en S&P Y en

α1 −1.1E − 4
(3.3E−3)

−2.0E − 3
(7.3E−3)

α −0.0059
(3.8E−3)

−0.011
(5.1E−3)

β1 0.993
(5.3E−3)

0.983
(0.011)

β 0.9784
(7.9E−3)

0.966
(0.012)

σw,1 0.083
(0.012)

0.108
(0.024)

σw 0.1420
(0.022)

0.176
(0.031)

α2 0.539
(0.614)

0.109
(0.178)

β2 0.426
(0.558)

0.832
(0.163)

σw,2 0.457
(0.128)

0.485
(0.118)

τ 0.238
(0.134)

0.133
(0.113)

Like −2660.9 −2599.4 −2667.6 −2609.8
LR 13.4 20.8
p 0.002 < 0.002

index spanning 5 September 1996 to 16 August 2004
are utilised. Currency returns in the form of 2000
daily YEN/USD observations spanning 29 November
1996 to 30 July 2004 are also considered. Both
datasets have been standardised to zero mean and unit
variance.

Parameter estimates for both the standard SV and SV
with size effect, along with tests of significance are
outlined in Table 1. As a benchmark, the results for
the standard SV model are first addressed. These
results reflect the commonly observed feature of
relatively high persistence in conditional volatility. In
comparison to these results, allowing for a size effect
reveals a number of interesting features.

The most obvious result, once the size effect has
been introduced is the difference between θ̂1and θ̂2

for both series. When volatility is relatively low
(< τ ) it is more persistent than the standard SV
case. Conversely, when volatility is quite high (> τ )
the persistence in volatility is much lower than the
persistence found in either the low volatility region
or the standard SV case. It is also evident that the
variability of volatility is quite low (high) in the low
(high) volatility regions.

In both cases the likelihood ratio tests indicate
that the size effect is clearly statistically significant
feature of the respective datasets. This implies
that the conditional volatility of these series are not
linear processes in that the dynamics of volatility is
dependent upon the level of current volatility.

5 CONCLUSION

Much research attention has been paid to the dynamics
of asset return volatility. Two significant features of

volatility dynamics are of interest. These are the sign
(level of volatility related to sign of past returns) and
size (volatility dynamics related to current level of
volatility) effects respectively. The asymmetric sign
effect has been dealt with by numerous authors within
both the GARCH and SV contexts. The size effect on
the other hand has attracted much less attention with
it not being considered in the context of an SV model.

The central contribution of this paper has been to
propose a non-linear filtering based approach to
the estimation of an SV process with size effects.
A simple hypothesis testing procedure was also
suggested to determine the significance of the size
effect. While such a model has been considered
here, the proposed DNF estimation procedure could
be applied to a wider range of latent variable
models where it is believed the the dynamics of
the latent variable is related to its level. This has
been achieved by partitioning the possible state-space
into adjoining regions and utilising region specific
transition probabilities within the prediction step
within DNF algorithm.

Empirical application of the SV model with size effect
shows that it is certainly an important feature of
the two series considered here. Given the equity
and currency returns considered, volatility dynamics
appear to be dependent upon the current level of
volatility. In both instances, the persistence of
volatility falls and the volatility of volatility rises as
the current level of volatility rises, suggesting that
volatility dynamics are not linear.
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