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EXTENDED ABSTRACT

In many economic and financial applications, the
problem of temporal aggregation arises when data
are observed at a lower frequency than the data gen-
eration frequency of the underlying model. The re-
sulting observed data, which is referred to as the
aggregate series, contain less information, and may
lead to a distorted view of the true model, leading to
potential errors in decision making. Therefore, the
study of the effects of temporal aggregation is im-
portant for making proper decisions that are based
on aggregate data. This paper examines the effect
of temporal aggregation on five classes of stochas-
tic equity return models that are commonly used in
actuarial practice. Analytical formulae for the link-
ages between some aggregated and disaggregated
stochastic models are presented. If a model is closed
under temporal aggregation, the parameters of the
lower frequency model can be directly implied by
the higher frequency (i.e., more data) model.

With large volatility observed in stock mar-
kets around the world over the last few years, many
actuaries are now being urged to employ stochas-

tic models to measure the solvency risk generated
from insurance products with equity-linked guaran-
tees. There are a large number of potential stochas-
tic models for equity returns. Insurance regulators,
both in Europe and North America, normally do not
restrict the use of any stochastic model that reason-
ably fits the historical baseline data. However, in the
U.S. and Canada, the final model must be calibrated
to some specified distribution percentiles. The em-
phasis of the calibration process remains on the tails
of the equity return distribution over different hold-
ing periods. The results in this paper are particu-
larly useful when we need to study distributions and
dynamics of longer term (for instance, more than
10 years) accumulation factors for equity-linked in-
surance products. The data on 10-year (or longer)
accumulation factors is often very limited, even for
the mature markets in Europe and North America.
The advantages of choosing a closed (under tem-
poral aggregation) class of processes for modelling
asset returns and equity-linked guarantees are dis-
cussed. Actuarial applications of temporal aggrega-
tion using S&P500 total return data are given.
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1. INTRODUCTION

With large volatility observed in stock markets
around the world over the last three years (see Table
1), many actuaries are now being asked to employ
stochastic models to measure the solvency risk gen-
erated from insurance products with equity-linked
guarantees.

Let St be the monthly total return index value
at t, for t = 0, 1, 2, . . . , n. Define

rt = log
(

St

St−1

)
(1)

as thelog return for the t-th month. The log return
series for am-month non-overlapping holding pe-
riod can be constructed by

RT = log
(

SmT

Sm(T−1)

)
=

mT∑

t=m(T−1)+1

rt (2)

for T = 1, 2, . . . , N , and we assume thatN =
[n/m] is an integer. The accumulation factor for
the period[m(T − 1), mT ) (in months) is given by

AT =
(

SmT

Sm(T−1)

)
= exp(RT ). (3)

Equation (2) is called temporal aggregation in the
time series econometric literature. The parameter
m is termed the order of aggregation. Thus, we can
setm = 12, 60 and 120 to obtain the one-year, five-
year and ten-year accumulation factors from the dis-
aggregatedrt series.

In recent years there has been growing interest
in studying the effect of temporal aggregation on fi-
nancial asset returns (e.g., see Meddahi and Renault,
2003). In general, we say that a model isclosed
under temporal aggregation if the model keeps the
same structure, with possibly different parameter
values, for any data frequency. This property has
also been discussed in the actuarial literature (Klein,
2002; and Hardy, 2002).

The rest of this paper is organised as follows.
In Section 2, we examine the effect of temporal

aggregation on classes of stochastic equity return
models that are commonly used in actuarial prac-
tice. The advantages of choosing a closed (under
temporal aggregation) class of processes for mod-
elling asset returns are discussed. Section 3 illus-
trates the application of temporal aggregation re-
sults by some actuarial examples. Concluding re-
marks are given in Section 4.

2. TEMPORAL AGGREGATION

In this section, temporal aggregation of commonly
used equity return models is studied. It should be
noted that if the monthly stochastic equity return
model is closed under temporal aggregation, the pa-
rameters of the monthly model can be directly cali-
brated to generate longer term accumulation factors.

2.1. The Independent Log-normal (ILN) Model

We first consider the traditional log-normal eq-
uity return model. The log-normal model has a
long and illustrious history, and has become “the
workhorse of the financial asset pricing literature”
(Campbell et al., 1997, p.16). The log-normal
model assumes that log returns are independently
and identically distributed (IID) normal variates
with a constant mean and a constant variance.

It is well-known that the ILN model is closed
under temporal aggregation (or scale invariance in
the finance literature). If the monthly log returnrt

as defined in equation (1) follows a normal distribu-
tion, that is

rt ∼ N(µ, σ2), (4)

then the aggregated log return series for am-month
non-overlapping holding period also follows a nor-
mal distribution, i.e.,

RT ∼ N(mµ, mσ2). (5)

The corresponding accumulation factor variableAT

as defined in equation (3) therefore follows the log-
normal distribution.

Table 1. Performance of world stock markets, 2001-2005

Index Value Change(%)

Country Market Jan 2001 Jan 2003 Jan 2005 2001-2003 2003-2005

Australia All Ordinaries Stock Index 3292 2935 4107 -12.2% 28.5%
Canada TSE 300 Stock Index 9322 6569 9204 -41.9% 28.6%
France CAC 40 Stock Index 5998 2938 3913 -104.2% 24.9%
Hong Kong Hang Seng Stock Index 16097 9259 13722 -73.9% 32.5%
Japan Nikkei 225 Stock Index 13724 8372 11388 -63.9% 26.5%
United Kingdom FTSE 100 Stock Index 6298 3567 4852 -76.6% 26.5%
United States S&P 500 Stock Index 1367 856 1181 -59.7% 27.5%
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2.2. The Independent Log-Stable (ILS) Model

Stable distributions are a class of probabil-
ity laws that have intriguing theoretical and practi-
cal properties. The class is characterised by Lévy
(1924) in his study of the sums of independent
identically distributed variables. The application of
stable laws to actuarial/financial modelling follows
from the fact that stable distributions generalise
the normal (Gaussian) distribution to accommodate
heavy tails and skewness, which are frequently seen
in investment data (e.g., see Finklestein, 1997; Em-
brechts et al., 1997; Nolan, 2003a).

There are a number of possible parameteri-
sations of the class of stable distributions. Nolan
(2003b) lists more than 10 different definitions of
stable parameters. In this paper, we employ the
“S0” parameterisation, which is better suited to
numerical calculations than other representations
(Nolan, 1998). Under this definition, the class of
stable distributions is described by four parameters,
which we call(α, β, γ, δ). A random variableY is
S0(α, β, γ, δ), if its characteristic function takes the
form:

Ψ(t) = E[exp(itY )]

=

8>>>>>>>>>>>><>>>>>>>>>>>>:

exp

�
−γα|t|α

�
1 + iβsign(t)

�
tan πα

2

��
|γt|1−α − 1

��
+ iδt

�
, α 6= 1,

exp

�
−γ|t|

�
1 + iβsign(t)

�
2
π

��
ln(γ|t|)

��
+ iδt

�
, α = 1.

(6)
It should be noted that Gaussian distributions are

special cases of stable laws withα = 2 andβ = 0;
more precisely,N(µ, σ2) = S0(2, 0, σ/

√
2, µ).

The reason for terming this class of distribu-
tions stable is that they retain their main distribu-
tional characteristics under addition (Nolan, 2003b).
This means that the stable model is closed under
temporal aggregation. If the monthly log returnrt

are independently and identically distributed assta-
ble, that is

rt ∼ S0(α, β, γ, δ), (7)

then the aggregated log return series for am-month
non-overlapping holding period also follows a sta-
ble distribution, i.e.,

RT ∼ S0(α∗, β∗, γ∗, δ∗). (8)

The aggregated and disaggregated stable parameters
are related by

α∗ = α, β∗ = β, γ∗ = m
1
α γ,

δ∗ =

{
mδ + m

1
α βγ tan(πα

2 ), α 6= 1,

mδ + 2
π m

1
α βγ ln(m

1
α γ), α = 1.

(9)

The corresponding accumulation factor variableAT

therefore follows the log-stable distribution.

2.3. The Linear ARMA Model

Wilkie (1987, 1995) developed linear stochas-
tic asset models for United Kingdom data. Wilkie’s
model is based on the orthodox Box and Jenk-
ins (1976) ARMA (autoregressive moving average)
modelling techniques. Suppose that time seriesYt

has the stationary and invertible ARMA(p, q) repre-
sentation

φ(L)Yt = θ(L)at, (10)

whereL is the backshift operator such thatLsYt =
Yt−s, φ(L) = 1 − φ1L − . . . − φpL

p, andθ(L) −
θ1L− . . .− θqL

q; φ(L) andθ(L) have all of their
roots outside of the unit circle, andat is Gaussian
white noise with zero mean and constant variance
σ2

a < ∞. Without a loss of generality, we assume
that E[Yt] = 0 (ShouldE[Yt] = µY 6= 0 then,
instead of working with{Yt}, the mean-corrected
process{Ỹt = Yt − µY } will be used).

In general, the class of linear ARMA pro-
cesses is closed under temporal aggregation. If
the disaggregated series follows an ARMA(p, q)
model, then the temporal aggregated series follows
an ARMA(c, d) process where the aggregated or-
ders (c, d) could be the same as or different from the
original orders (p, q). The parameters and the orders
of the aggregated model can be derived through the
relationship of autocovariances between the disag-
gregated and aggregated series (see Wei, 1990 and
references therein).

The first-order autoregressive process is often
employed to model the first-lag serial correlation
that is observed in many stock return data. As an
example, we illustrate the results discussed above
using an AR(1) model. Assume that the monthly
log returnrt follows an AR(1) process,

rt = φrt−1 + at, at ∼ N(0, σ2
a).

First, we derive the lag-s autocovariance function of
them-period aggregated log return variable,
Cov[RT , RT+s]

=

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

�
m + 2(m− 1)φ + 2(m− 2)φ2 + . . .

+ 2φm−1

�
σ2

a
1−φ2 , if s = 0,

�
1 + φ + φ2 + . . . + φm−1

�2
×�

φm(|s|−1)+1

1−φ2

�
σ2

a,

if s = ±1,±2, . . . .
(11)
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Equation (11) implies thatRT follows an
ARMA(1,1) process, i.e.,

(1−φ∗L)RT = (1−θ∗L)a∗t , a∗t ∼ N(0, σ2
a∗),

with
φ∗ = φm,

and |θ∗| < 1 is the solution of the following
quadratic equation

(φm − θ∗)(1− φmθ∗)
1− 2φmθ∗ + θ∗2

=

φ(1 + φ + φ2 + . . . + φm−1)2

m + 2(m− 1)φ + 2(m− 2)φ2 + . . . + 2φm−1
.

Finally, σ2
a∗ can be computed from the Var[RT ]

equation in (11).

2.4. The GARCH Model

Time-varying volatility models have been pop-
ular since the early 1990s in financial research
and applications, following the influential papers
by Engle (1982) and Bollerslev (1986). Stochastic
models of this type are known as generalised au-
toregressive conditional heteroscedastic (GARCH)
models in the time series econometrics literature.
GARCH processes are useful because these mod-
els are able to capture empirical regularities of as-
set returns such as thick tails of unconditional dis-
tributions, volatility clustering and negative corre-
lation between lagged returns and conditional vari-
ance (Franses and Dijk, 2000 and Tsay, 2002).

Let at = (rt − µ) be the mean-corrected log
return. Then,at follows a GARCH(p, q) model if

εt = at

/√
ht, ht = ω+

p∑

i=1

αi a2
t−j +

q∑

j=1

βjht−j ,

(12)
where{εt} is a sequence of IID random variables
with mean zero and unit variance,ω > 0, αi ≥
0, βj ≥ 0, and

∑max(p,q)
k=1 (αk + βk) < 1 with

αk = 0 for k > p andβk = 0 for k > q.
Little is known about the impact of temporal

aggregation on a general GARCH(p, q) process. For
some lower order GARCH models, under certain
conditions, Drost and Nijman (1993) show that they
are closed under temporal aggregation. Fortunately,
in most practical applications, lower order GARCH
processes are adequate for modelling equity return
data. In this section, we consider a GARCH(1,1)
process and its innovation following a Studentt dis-
tribution: i.e., εt in equation (12) has a marginal
t distribution with mean zero, unit variance and de-
grees of freedomν, and the conditional variance has
the following representation

ht = ω + β ht−1 + α a2
t−1,

and the unconditional kurtosis ofat is κ. Following
Drost and Nijman (1993), we find that the aggre-
gated return for am-month non-overlapping period
can be “weakly” approximated by a GARCH (1,1)
process with the corresponding parameters:

µ∗ = m µ, ω∗ = m ω

{
1− (α + β)m

1− (α + β)

}
,

α∗ = (α + β)m − β∗,

κ∗ = 3 +
(κ− 3)

m
+ 6(κ− 1)×(

[m− 1−m(α + β) + (α + β)m][α− αβ(α + β)]

m2(1− α− β)2(1− 2αβ − β2)

)
,

and |β∗| < 1 is the solution of the following
quadratic equation

β∗

1 + β∗2
=

Θ[(α + β)m]− Λ
Θ[1 + (α + β)2m]− 2Λ

, with

Θ = m(1− β)2

+

(
2m(m− 1)(1− α− β)2(1− 2αβ − β2)

(κ− 1)[1− (α + β)2]

)
+4

(
[m− 1−m(α + β) + (α + β)m]×D

1− (α + β)2

)
, with

D = [α− αβ(α + β)], and

Λ =
[α− αβ(α + β)][1− (α + β)2m]

1− (α + β)2
.

The degrees of freedom of the marginalt distribu-
tion (ν∗) for the aggregated GARCH model can be
derived via the aggregated kurtosis,κ∗ (Bai et al.,
2003).

2.5. The RSLN Model

In recent years, the use of regime switching
log-normal (RSLN) processes for modelling matu-
rity guarantees has been gaining popularity. Hardy
(2001) proposes using Markov-type regime switch-
ing log-normal (RSLN) processes for modelling
monthly equity returns. The RSLN model is defined
as

rt = µSt + σSt εt (13)

whereSt = 1, 2, . . . , k denotes the unobservable
state indicator, which follows an ergodick-state
Markov process, andεt is a standard normal ran-
dom variable that is IID over time. In most situa-
tions,k = 2 or 3 (i.e., two- or three-regime models)
is sufficient for modelling monthly equity returns
(Hardy, 2001). The stochastic transition probabil-
ities that determine the evolution inSt are given by

Pr{St+1 = j | St = i} = pij ,

0 < pij < 1,
k∑

j=1

pij = 1 for all i,
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so that the states follow a homogenous Markov
chain.

Research into the temporal aggregation of
RSLN models is scanty and very much in its in-
fancy. As a starting point to study the effect of tem-
poral aggregation on RSLN processes, we examine
the limiting behaviour (i.e.,m → ∞) of a simple
two-regime RSLN model. Let

rt =

{
ε
(1)
t ∼ N(µ1, σ

2
1),

ε
(2)
t ∼ N(µ2, σ

2
2),

(14)

with transition probability matrix

P =


p11 p12

p21 p22


 , 0 < pij < 1. (15)

This implies that the vector of steady-state (ergodic)
probabilities is


π1

π2


 =




p21
p12+p21

p12
p12+p21


 .

It is well-known that the limiting structure of time
series aggregates from a covariance stationary pro-
cess is white noise (e.g., see Wei, 1990, p. 412;
Granger, 1990; Ohanissian et al., 2003). Timmer-
mann (2000) gives the autocovariance function of
the RSLN model in (14),

γ(s) = π1π2(µ1 − µ2)2vec(Ps)′η (16)

where vec(·) is the vector of a matrix oper-
ator (Graybill, 1983, p. 309), andη =
(π2,−π2,−π1, π1)′. Cox and Miller (1965, p. 82)
derive that

Ps =


π1 π2

π1 π2


+(1−p12−p21)s


 π2 −π2

−π1 π1


 .

(17)
Combining (16) and (17), we have

γ(s) = π1π2(µ1 − µ2)2(1− p12 − p21)s.

This autocovariance function is obviously geometri-
cally bounded because|(1−p12−p21)| < 1, which
is guaranteed by the restriction in (15) that all ele-
ments ofP be positive. Hence, the limiting struc-
ture for the temporal aggregates of a two-regime
RSLN model is white noise.

Deriving the effect of temporal aggregation on
a more general (i.e., more than two regimes and fi-
nite values ofm) RSLN model is not a trivial task.
Research in this direction is in process.

3. APPLICATIONS

Quantile matching is the key of the Life Capital Ad-
equacy Subcommittee (LCAS) calibration require-
ment in the United States (LCAS, 2002). In this

application, we consider the monthly S&P 500 total
return series from January 1945 to October 2002,
which is the baseline series recommended by the
Subcommittee. The main focus of this example is
to numerically illustrate the quantile results using
model aggregation formulae derived in the previous
section. These results are then compared to the pub-
lished calibration requirements. It is not our objec-
tive to recommend the “best” fitted model for the
S&P 500 series.

From the five classes of models discussed in
the last section, we find that the classes of ILS mod-
els and GARCH models are reasonably fitted to the
data. First, we consider the class of independent sta-
ble distributions. Assume that the monthly S&P 500
log return follows an IID stable distribution, i.e.,

rt ∼ S0(α, β, γ, δ),

see equations (6) to (9) in Section 2. Methods
of computing the maximum likelihood estimation
(MLE) of stable parameters are discussed by Nolan
(2003b). Nolan (2003c) provides software for esti-
mating and analysing stable models. The fitted sta-
ble parameters for the monthly seriesrt are given
in Table 2. The implied parameters for the aggre-
gated stable models with different orders of aggre-
gationm are calculated using equation (9). The re-
sults are listed in Table 2. The corresponding ac-
cumulation factor (AT ) for a holding periodm, as
defined in equation (3), follows an ILS model. The
ILS model is simple and tractable. The cumulative
distribution function (CDF) and the probability dis-
tribution function (PDF) ofAT are easy to be eval-
uated (Nolan, 2003c).

Financial asset return time series usually ex-
hibit a characteristic known as volatility clustering,
in which large changes tend to follow large changes,
and small changes tend to follow small changes.
Furthermore, probability distributions for asset re-
turns often exhibit fatter tails than the standard nor-
mal distribution. The fat tail phenomenon is known
as excess kurtosis in the finance literature. It is well-
known that the GARCH model can accommodate
these unique features (heavy tails and volatility clus-
tering), which occur frequently in observed stock re-
turns (Bollerslev et al., 1994).

The GARCH(1,1) model with marginalt dis-
tribution is fitted to the S&P 500 monthly total
return series. The fitted GARCH parameters and
their corresponding implied parameters for the ag-
gregated models with different orders of aggrega-
tion m are given in Table 3. The implied parameters
are computed using formulae discussed in Section
2.4.

Finally, lower quantiles for the 1-year accumu-
lation factor using the aggregated ILS and GARCH
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models are obtained. Table 4 compares these quan-
tiles to the calibration criteria derived from the
S&P 500 empirical data by the AAA (LCAS, 2002
and Longley-Cook, 2003). The GARCH quantiles
closely match to the AAA calibration points, but the
ILS quantiles are too large as compared to the crite-
ria.

4. CONCLUSION

This paper examines the effect of temporal aggre-
gation on five classes of stochastic equity return
models that are commonly used in actuarial prac-
tice. Analytical formulae for the linkages between
some aggregated and disaggregated stochastic mod-
els are presented. If a model is closed under tem-
poral aggregation, the parameters of the lower fre-
quency model can be directly implied by the higher
frequency (i.e., more data) model. This property
is particularly useful when we need to study dis-
tributions and dynamics of longer term (for in-

stance, more than 10 years) accumulation factors for
equity-linked insurance products. The data on 10-
year (or longer) accumulation factors is often very
limited, even for the mature markets in Europe and
North America.

Table 2. Stable parameters for the S&P 500 data
Monthly Aggregated Model

Parameter Model m = 12 m = 60 m = 120

α 1.8678 1.8678 1.8678 1.8678
β -0.7591 -0.7591 -0.7591 -0.7591
γ 0.0273 0.1032 0.2443 0.3540
δ 0.0128 0.1705 0.8088 1.5961

Table 3. GARCH parameters for the S&P 500 data
Monthly Aggregated Model

Parameter Model m = 12 m = 60 m = 120

µ 0.01074 0.12885 0.64423 1.28845
ω 0.00014 0.01331 0.10738 0.21659
α 0.08296 0.00060 0.00007 0.00002
β 0.84070 0.38501 0.00846 0.00006
κ 4.92 4.18 3.52 3.29
ν 9.06 9.09 15.60 24.56

Table 4. Non-overlapping 1-year accumulation factor, S&P 500 data
Empirical Range Aggregated Aggregated AAA

Quantile Minimum Maximum Mid ILS GARCH(1,1) Calibration

1.72% 0.61 0.89 0.75 0.80 0.74
2.50% 0.67 0.89 0.78 0.84 0.77 0.77
3.45% 0.73 0.89 0.81 0.87 0.81
5.00% 0.79 0.90 0.85 0.90 0.84 0.84
5.17% 0.80 0.91 0.85 0.90 0.84
6.90% 0.82 0.91 0.87 0.93 0.87
8.62% 0.87 0.92 0.89 0.95 0.89
10.00% 0.87 0.93 0.90 0.96 0.91 0.91
10.34% 0.87 0.93 0.90 0.97 0.91
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