
Solving Multiagent Markov Decision Processes: A Forest
Management Example

1Iadine Chadès and Bertrand Bouteiller

1Institut National de Recherche Agronomique
Unité de Biométrie et Intelligence Artificielle iadine.chades@toulouse.inra.fr

Keywords: Multiagent systems, Stochastic Dynamic Programming, Multiagent Reinforcement Learning

EXTENDED ABSTRACT

In the Artificial Intelligence community, Markov
Decision Processes (MDPs) and Reinforcement
Learning (RL) are used to solve sequential decision
making problems under uncertainty. However, when
problems involve several agents, solving Multi-
agent MDPs becomes untractable due to the high
complexity level: exponential in the number of agents
at least. Nevertheless, these problems may often be
represented in a compact way and be decomposed
into subproblems weakly coupled. In this paper,
we propose to go further in the understanding
of previously proposed multi-agent reinforcement
learning algorithms. We have evaluated their fitness
on a forest management problem.

The studied forest is formed by a finite number of
stands. Each stand is composed of the same aged
trees. The benefit provided by the exploitation and the
cut of a stand depends on the quality of the trees, that
is to say the age of the trees. Once a stand is cleared,
new trees grow until the next harvest and so on. The
clear decision has a fixed cost of achievement and
also depends on how far is a stand from the previous
cleared stands. The probability of losing several
stands is represented by the risk of fire occurrences.
The forest management yields important incomes that
can be optimized: the aim is to find an optimal strategy
(also called policy) that maximizes the benefits while
taking into account uncertainty of fire occurrence. To
solve this problem one must decide the best sequential
harvest over a finite period of time.

This problem becomes very interesting when the
management involves a large amount of stands that
are spatially linked. Classically, two approaches
are usually investigated to solve Markov decision
problems, depending on the quantity and quality of
knowledge available:

• Planning methods. These are used when all the
components of the studied system are known
and modeled.

• Learning methods. These are used when
the dynamic of system is too complex to be

modeled or when the dynamic of the system is
partially unknown. However, a simulator can be
used to learn optimal solutions using simulation
techniques and reward functions.

In practice, even for small size problems, planning
algorithms can fail to compute optimal policies
because of a lack of memory space, whereas
Reinforcement Learning (RL) techniques succeed.
Nevertheless, despite the fact that convergence of
RL algorithms toward optimal policies have been
proved, when applied, RL algorithms are more
able to give near optimal policies than optimal
policies due to important time convergence. Solving
very large optimal decision making problems under
uncertainty remains an important challenge in
Artificial Intelligence and more specifically using
MDPs. In order to find near optimal solutions,
Multiagent systems provide an interesting alternative
to deal with the global complexity of large problems.
In designing agents that perceive, decide, and interact
locally, one can significantly reduce the global
complexity of solving a global problem. We have
previously studied this alternative using planning
methods (Chadès, Scherrer & Charpillet 2002, Chadès
2003, Chadès 2004), but we are now interested
in studying the Multiagent Reinforcement Learning
alternative to solve large Markov decision problems.

As a preliminary work, we propose in this paper
to focus on the heuristics proposed by Schneider,
Wong, Moore & Riedmiller (1999). The multi-
stand forest management problem chosen offers a
way to evaluate these Multiagent Reinforcement
Learning algorithms. For this particular problem, the
results show that Multiagent Reinforcement Learning
algorithms with spatial local rewards find better
policies than Multiagent Reinforcement Learning
algorithms with global rewards.

1594

1. INTRODUCTION

In this paper, we propose to go further in the
understanding of previously proposed multiagent
reinforcement learning algorithms. We have evaluated
their fitness on a forest management problem.
This problem becomes very interesting when the
management involves a large amount of stands that
are spatially linked. Unfortunately, solving very large
decision problems remains an important challenge
in Artificial Intelligence and more specifically using
MDPs due to the high complexity level. To deal
with this complexity heuristic approaches have been
developed:

• State aggregation methods. States are grouped
in subsets sharing the same features, thus
reducing the size of the MDP.

• Decomposition methods. The original problem
is split into smaller subproblems that are
solved independently. The elementary solutions
are then combined in order to provide an
approximately optimal solution to the global
problem.

• Multiagent methods. The original problem is
decomposed in subproblems that are solved
using interaction between agents. Multiagent
reinforcement learning combine RL and multi-
agent methods.

The body of work in AI on multiagent RL is still
small (see Shoham, Powers & Grenager (2003) for
a critical survey), this is particularly the case when
agents use local perceptions and local actions to
achieve together a global task (Schneider et al. 1999,
Dutech, Buffet & Charpillet 2001). In the field
of Markov decision models, the Decentralized MDP
(Dec-MDP) formalizes the local observations and the
local decision making of a cooperative multiagent
systems. However, it has been shown (in Bernstein,
Zilberstein & Immerman 2000) that the decentralized
MDP class problem is NEXP-complete for a number
of agents greater or equal 2. Finding an exact solution
for a Dec-MDP problem is therefore untractable.
Heuristics for this theoretical problem have been
proposed recently in the literature (Chadès et al. 2002,
Nair, Tambe, Yokoo, Pynadath & Marsella 2003,
Shen, Lesser & Carver 2003).

This paper follows the work done by Garcia & Sab-
badin (2001) on the multi-stand forest management
problem. We propose to go further into the use of
Multi-agent Reinforcement Learning algorithms. To
this end, we change the existing model to reduce
the computer memory requirements and to take into

account the local properties of the agents. Moreover,
we add a spatial dependence between the agents to
enhance coordination phases. The algorithms studied
were proposed in Schneider et al. (1999) with a small
number of agents (10 agents). Our results show that
only some of these algorithms gave good solutions.

The paper is organized as follows. In the first section,
we introduce the MDP model and the Q-Learning
algorithm. Then, we present our application and show
that exact method can’t compute optimal policies with
more than 10 stands and 6 classes of age. In section
4, we introduce multiagent reinforcement learning
heuristic solutions, and our model based on the use of
local spaces, and spatial reward function. In section
5, we report the results of our simulations. The
assessments allow us to discuss future work in the last
section.

2. MARKOV DECISION PROCESSES

Markov Decision Processes (MDP) are basic and
generic models that enable us to formulate the
problems we are interested in. An MDP is defined
as a tuple〈S, D, T, R〉 where:

• S is a finite set of states.

• D is a finite set of actions.

• T : S×D×S 7−→ [0, 1] is a transition function.
T (s, d, s′) = P (s′|s, d) denotes the probability
of moving from states to states′ when actiond
is performed.

• R : S 7−→ R is a reward function.

In an MDP, given a policyπ : S 7−→ D and a starting
states0 whose utility isV π(s0), the expected long-
term reward is characterized by the following linear
system :

∀s ∈ S, V π(s) = R(s)+γ.
∑

s′∈S

T (s, π(s), s′)V π(s′)

(1)
V π is the so-called value function. The problem
is to find some policy that maximizes this expected
long-term criterion. It is proved that there exists one
optimal value function (Puterman 1994). Besides,
deterministic optimal policies can easily be found
using an appropriate algorithm, such asValue
Iteration or Policy Iteration (Puterman 1994). The
complexity of Value Iteration is inO(|D||S|2)
precluding its use when state or action spaces are
large. Moreover, it cannot be applied when the
transition probabilities or rewards are unknown.
The reinforcement learning algorithms are designed
to overcome these difficulties by applying two

1595

principles: unknown quantities are estimated by
means of simulation; large state or action spaces are
handled through function approximation.

The Q-learning algorithm (Watkins & Dayan 1992)
is a standard reinforcement learning algorithm which
can be used when probabilities of transitions are
unknown and, with the joint use of a function
approximator, when the state or action spaces are
large. It consists of iteratively computing the optimal
value function: for each states at each instantt, the
optimal valueQ∗(s, d) of each decisiond is estimated
on the basis of simulated transitions. When all these
values have been correctly estimated, the optimal
policy can be derived through:

∀s ∈ Sπ
∗(s) = arg max

d∈D
Q

∗(s, d)

To estimate these state/decision values, the algorithm
performs Bellman’s updates in the style of equation 1
but on the basis of a sample of simulated transitions
instead of the actual probabilities and rewards (see
Algorithm 1).

Algorithm 1 Q-Learning
1: Initialize(Q0);
2: for n← 0 to Ntraj do
3: s← InitializeState;
4: for t← 1 to τ do do
5: d← SelectAction;
6: (s′, r)← SimulateTransition(s, d);
7: {Update of the simulated state/action pair value;}
8: d← r + γ maxb Q(s′, b, t + 1)−Q(s, d, t);
9: Q(s, d, t)← Q(s, d, t) + α(s, d, t)d;

10: { α(s, d, t) ∈ [0, 1] is the learning rate;}
11: end for
12: end for

If every action in each state at each instant is tried
infinitely often and if the learning rate properly
decreases, thenQ → Q∗ with probability 1. In
practice, one needs some efficient control of the search
to focus on the most relevant state/action pairs. This
is the role of the SelectAction function which has to
handle the classical trade-off between exploration and
exploitation (Sutton & Barto 1998).

3. GLOBAL MODEL AND AN EXACT
DYNAMIC PROGRAMMING SOLUTION
METHOD

The problem that will illustrate the various approaches
to solving “large” MDPs is a multi-stand forest
management problem, in which we want to maximize
the long-term revenue from timber sales. We model
the problem in a MDP framework, following similar
work from Garcia & Sabbadin (2001).

3.1. States of the system

The forest is formed byN homogeneous stands (same
tree species), that can be of different size and shape.

Each standn is simply defined by an age groupan
t at

current timet, with an
t ∈ A = {1, . . . , A}. A is the

last class1. Thus, the state of standn is defined by
an

t . The global state of the system at time periodt is
defined by a vectorst = (a1

t , . . . , a
N
t) ∈ S = AN

3.2. Decisions

At time t, the system is in statest, we decide which
stands will be clearcut within the next time period.
The set of global decisions of the system is defined
by the set of vectorsdt = (d1

t , . . . , d
N
t). Wheredn

t is
the decision in standn. For each standn, dn

t can take
two values “clearcut” or “do nothing”. The cutting
decision may not have the desired effect if a fire
occurs within the[t, t + 1] period. Another decision
to take is the fire protection expenditure level,et ∈
ǫ = {1, . . . , E} applied globally for the forest for the
current period.et may consist of funds allocated to
the fire tower network or road maintenance. It shall
be noticed thatet is the only factor that links the
dynamics of the different stands, and thus prevent us
from considering them as independent.

3.3. State Transition Function

The state transition function is stochastic, due to the
stochastic nature of the fire event, modeled by the
probability tablePfire(n, an

t , et) indexed by stand
number, age, and fire protection level. Each stand
evolves under the conjugate effect of two processes:

• Harvest. Ifdn
t = 0 (clearcut),an

t+1 = 1.

• Growth. If dn
t = 1 the age of trees at the next

time period depends on the fire event: if there is
a fire (with probabilityPfire(n, an

t , et)) an
t+1 =

1 and if not,an
t+1 = min(an

t + 1, A).

We then define a transition probability
Pdn

t ,et
(an

t , an
t+1) for every stand. At the global

level, due to the independence of the various stands,
et being fixed:

P (st+1|st, et, dt) =

NY
n=1

Pdn
t ,et(a

n
t , a

n
t+1)

3.4. Rewards

The incomes are the result of the clearcut decisions
and depend on the features of each stand (quality,
quantity, and age group of the stand). To these
incomes, we must remove the cost of the clearcut

1We consider that all trees older than A keep the same
properties, and thus need not be distinguished

1596

H
H

H
H

A
N

4 6 10 15

3 3.77 5.23 8.92 28.63
4 3.89 5.47 10.05 /
6 3.93 5.77 / /

Table 1. CPU time (in s.) needed to solve the global
forest management: exact method.

achievements (k′(dt)), and the cost of fire prevention
(k(et)).

rt = r(st, et, dt, st+1)

= −k(et)− k
′(dt) +

NX
n=1

rn(dn
t , a

n
t , a

n
t+1, n)

with rn(dn
t , an

t , an
t+1, n) price of the whole stand

timber stock ifdn
t = 1, and of the salvaged timber

if there is a fire.rn(dn
t , an

t , an
t+1, n) = 0 if we choose

not to cut and there is no fire.

3.5. Exact Solution

This MDP can now be solved using the exact
dynamic programming method. Note that the global
MDP model of the forest hasAN states and2N ×
E decisions. The size of the problem grows
exponentially withN andA. Table 1 shows the time
needed to solve the forest management problem using
a global exact method. ForA = 4 andN = 15 and
E = 2 the memory size is too huge to compute an
exact solution.

4. HEURISTIC SOLUTION METHODS

4.1. Previous Work on Multiagent RL

In a previous work (Garcia & Sabbadin 2001), the
authors began to study Multiagent RL, used as a
means of decomposing the initial problem. This
method is based on a different representation of the
problem. The idea underlying this is that each stand
is managed independently by an agent, and the fire
protection level is managed by aN + 1th agent.
The motivation is to limit the size of the computer
memory needed for storing theN + 1 Q-functions.
This implies limiting the information available to each
agent. Garcia & Sabbadin (2001) chose to use the
following relevant factors for each stand agent: agean

t

of trees in standn; average agēat of trees in forest;
number of stands cut in the preceding periodCutt−1;
current fire prevention levelet−1. Concerning the
prevention agent, an aggregated representation of
the ages of trees would be an important factor, as
well as the current prevention level: age repartition
n1

t , . . . , n
A
t ; current prevention levelet−1. The global

size needed to store the Q-functions is inO(E ×
(A2 ×N2 +NA−1)). The authors used a Q-Learning

algorithm using the aggregate states described above
to solve this problem. This algorithm is very close to
the original Q-learning algorithm. Each stand agent
chooses an action, updating the global state, then the
fire protection agent chooses a new protection level.
Then all Q-functions are updated.

For N = 13 andA = 6, or N = 100 andA = 3
with E = 3, the space memory needed to compute
theQ functions becomes too huge to process. Indeed,
the Q-function of the prevention agent isO(NA×E).
However, the aggregation method and the Q-learning
algorithm allow us to deal with more than one hundred
stands. Garcia & Sabbadin (2001) choose a quality
criterion to compare the quality of computed policies:
on a small problem the Q-learning algorithm scored
0.96 (1 is optimal).

4.2. New spatial representation

This previous study has shown that Multi-agent Q-
learning can be an interesting approach for solving
forest management problems. We propose to go
further into this study. First, we would like to better
use the paradigm of MAS with more interactions
between agents, and our second purpose is to deal
with larger problems. As a means of reducing the
memory space, the previous model erased the spatial
dimension of the initial statement of the problem, and
forbade dealing with spatial local interactions. We
chose to improve this model by integrating a new
interaction between the stands: if a fire occurs in a
stand, the neighborhood of this stand is also affected
by the fire for a certain distance. With a spatial model
we can also improve the simulation of the harvest
activities: we can assume that it costs less to clearcut
stands that are closer than distant stands or isolated
stands. To design this spatial representation, we
compute for the system a newneighborhood matrix:
for each standn we store the8 neighbors.

We propose studying the behavior of Q-learning
algorithms using the following multi-agent model.N
agents represent theN stands of the forest. Our
spatial distributed formulation of the problem makes
the following changes:

• State space.S represents the set of states of the
global system (the ages of all the stands).|Sn|
represents the local state space of agentn. An
agent observes its own age and the mean age of
its 4 direct neighbors.|Sn| = |A2|.

• Action space. Dn represents the local action
space of agentn. An agent has the ability
to choose a decisiondn: “clearcut” or “do
nothing”. |Dn| = 2.

1597

• State transition function. The transition
function remains stochastic and is slightly
different from the previous model because of
the spatial consequences of fire occurrence.

• Rewards.R(s, d) represents the global reward
of the system, andRn(sn, dn) the local one,
with R(s, d) =

∑N

n=1
Rn(sn, dn).

In the model describe above each stand had a
probability to be burned, depending on its age, but
the effects of the fire were limited to only one stand
for each occurrence. Using the neighborhood matrix,
we can now model the propagation of the fire to the
neighborhood of the stand involved. Thus, we define
thedynamic of fire occurrencefor each time period as
following: A number of fire occurrences is randomly
chosen; For each fire occurrence a random process
determines which stand is first involved and then the
intensity and the propagation to the neighborhood are
computed; Finally all the stands involved burn and
a penalty is given to each, following the degree of
propagation.

The last improvement concerns thereward function.
Now, the cost of a clearcut decision for an agent
depends on the number of stands cut around at the
same time period. It’s harder to access a distant stand
and a path must be designed. To reflect this spatial
dependence at each time period, we introduce a new
feature: the size of each group of stands cut. We also
bound this parameter to a maximum size of stands to
avoid artefact effects like clearcuting all the forest.
The neighborhood matrix allows us to deal with the
dynamic costs of the clearcut decision, and with the
management of groups of stands cut. The local reward
that each agent receives in statesn for decisiondn is
now defined by:Rn(sn, dn) = rn(sn

t , dn
t) − kn

t (dn)
with rn(sn

t , dn
t) the price of the whole stand timber

stock if dn
t = 1 (this is also the price of the salvaged

timber if there is a fire).rn(sn
t , dn

t) = 0 if an agent
chooses not to cut and there is no fire.kn

t (dn) =
cn
t (Path)/sizen

t (groupcut) is the new cost of the
clearcut. Note that this new cost is spatially linked
to the decisions of the other agents. Contrary to the
original model, we choose not to take into account the
cost of fire protection.

4.3. Multiagent Reinforcement Learning Algo-
rithms Chosen

In Schneider et al. (1999), the authors studied a
different way to use a distributed value function. As
we now focus on the use of the local state, there
are no results on the convergence properties of the
different distributed Q-learning algorithms. To go
further in understanding of the use of local states

and local decisions for each agent, we only focus on
heuristics using local Q-functions or distributed local
Q-functions. We propose to evaluate the behavior of 4
Q-functions.

Algorithm (A): Global reward. For each agent, the
reward is global:R(s, d). The Q-function for each
agentn is therefore defined by:

Qn(sn, dn) = (1− α)Qn(sn, dn) + α(R(s, d)

+γ max
d′

n∈Dn

(Qn(s′n, d
′
n)))

Here we assume that an agent is an independent
learner. In other words, they perform their actions,
obtain a global reward and update their Q-values. This
algorithm is the same as used in the previous section
in Garcia & Sabbadin (2001), the difference concerns
the model chosen.

Algorithm (B): Global reward and distributed Q-
functions. For each agent, the reward is globalR(s, d)
but this time agents take into account the value of
their neighbors’ Q-functions. The Q-function for each
agentn is:

Qn(sn, dn) = (1− α)Qn(sn, dn) + α(R(s, d)

+γ
X

j

f(n, j) max
d′j∈Dj

(Qj(s
′
j , d

′
j)))

and

f(n, j)←

8>><>>: 1
(|neighb|+1)

if j = n

or if j ∈ neighb(n)

0 else

This Q-function was not proposed in Schneider et al.
(1999).

Algorithm (C): Local spatial rewards. For each agent,
the reward is local:Rn(sn, dn). The Q-function for
each agentn is:

Qn(sn, dn) = (1− α)Qn(sn, dn) + α(Rn(sn, dn)

+γ max
d′

n∈Dn

(Qn(s′n, d
′
n)))

Here we assume that an agent is an independent
learner, it performs its action, obtains a local reward
and updates its Q-value. Note that the local reward
function is spatially linked to the actions of neighbors.

Algorithm (D): Local spatial rewards and distributed
Q-functions. For each agent, the reward is local:
Rn(sn, dn) and the agents take into account the value
of their neighbors’ Q-functions. The Q-function for
each agentn is:

Qn(sn, dn) = (1− α)Qn(sn, dn) + α(Rn(sn, dn)

1598

+γ
X

j

f(n, j) max
d′

j
∈Dj

(Qj(s
′
j , d

′
j)))

Note that the local reward function is spatially linked
to the actions of the neighbors.

The algorithmsC andD are similar to those proposed
in Schneider et al. (1999), except in the definition of
the spatially local reward function. Indeed, we use
the neighborhood matrix to defineR(sn, dn) whereas
Schneider et al. (1999) used af(n, j) function. Note
that the communications between agents are done by
the use of these Q-functions. Because the learning
is done online as the system actually passes through
various states, there is no need for neighbors to specify
to each other what state or action they’ve been in or
taken. It is only necessary for them to transmit their
current estimated value of the state they land in at each
iteration.

5. SIMULATIONS AND ASSESSMENTS

5.1. First results

We first study the general behavior of each algorithm
during the learning phase withN = 25 stands,N =
100 stands andA = 6 (Figure 1). As it is not possible
to compute an optimal policy for this problem, so we
decided to run a deterministic and uniform policy as
a means of comparison (Figure 2 and Table 2). This
policy is defined by the cut decision when stands are
6, i.e. when outcomes are higher.

0 100 200 300 400 500 600
−100

0

100

200

300

400

500

600

700

Simulations*100

In
co

m
es

AlgoC

0 100 200 300 400 500 600
−50

0

50

100

150

200

250

300

350

400

Simulations*100

In
co

m
es

AlgoD

Figure 1. Evolutions of algorithmsC D during the
learning process.

Algorithms Mean Standard deviation Rank
A 211.75 - 163 19.75 - 51.4 4 - 5
B 101.08 - 197 17.94 - 45.76 5 - 4
C 329.73 - 1303.5 68.46 - 87.38 1
D 266.76 - 1148.5 32.81 - 78.62 3

= 6 325.24 - 1288.6 65.47 - 72.52 2

Table 2. Cumulated rewards obtained during the
simulation with 25 and 100 stands.

Obviously, algorithmB computes very poor policies.
The individual learning strategy used inA didn’t
succeed to take into account the spatial dependence
between agents decisions whereasC succeeds to
converge toward a better policy than the deterministic
policy. These results show that algorithmC performs
well in a spatially linked environment. Besides spatial
local rewards,D gives worse policies than= 6. This
means that either the Q-functions of the neighbors are
not relevant to computing an agent Q-function for this
application, orD needs more iterations to converge
to a better policy. To answer this question, we have
run algorithmD for 200000 iterations. Results show
that the mean of rewards achieved is slightly better
(1164) but still less than the rewards accumulated by
the deterministic policy.

0 5 10 15 20 25 30
50

100

150

200

250

300

350

400

450

500

550

Simulations

In
co

m
es

A
B
C
D
=6

Figure 2. Profiles of the 4 Q-learnings and the best
deterministic policy.

5.2. Increasing the local actions space

To improve the exploration of Q-learning, we tried to
change the model of the actions space. Previously, the
action space was defined by the cut or the do nothing
decisions for each agent at each time step. The set
of actions is now the time horizon before the cut. So
the decision is now after how long an agent will cut a
stand.0 means cut at current timet. Obviously, this
new local actions space is limited by the number of
age groups.

With the same number of iterations, new profiles show
that during the learning phase, the convergence of the
algorithms is faster. However, the same results are

1599

0 5 10 15 20 25 30
100

150

200

250

300

350

400

450

500

550

600

Simulations

In
co

m
es

A2
B2
C2
D2
=6

Figure 3. Profiles of the 4 Q-learnings and the best
uniform policy.

Algorithms Mean Standard deviation Rank
A2 295.44 - 54.70 - 3
B2 189.05 - 25.59 - 5
C2 372.45 - 75.62 - 1
D2 249.63 - 33.42 - 4
= 6 353.75 - 93.55 - 2

Table 3.Simulation results with 25 stands.

achieved (Figure 3, Table 3, except withA2 which
converges to a significantly better policy than in the
previous model. As our algorithms only deal with
local states, increasing the size of the local action
space is still a good trade off between exploration and
time of convergence. Obviously, this is not suitable
for a centralized solving process. OnlyC2 performs
a better policy than the uniform policy= 6. We can
conclude that a coordination process between agents
is effective. The only way to beat the uniform policy
at the maximum age is to decide to cut stands by group
of neighbors, and thus agents avoid the cost of a single
harvesting operation.

6. DISCUSSION

In this paper, we have evaluated multiagent Q-learning
algorithms using local states and local actions on
a forest management problem. The assessments of
our experiments show that among the 4 Q-functions
proposed, the local spatial rewards algorithm gave the
best policies. Therefore, for this application and the
chosen model, it is not interesting to take into account
the neighbors’ Q-functions when spatial rewards are
used. We still have to improve our assessments and
comparisons with other heuristic approaches but we
believe that the local properties and interactions of
MAS approaches seem difficult to beat in terms of
memory complexity only inO(N |An|

|Sn|). However,
this preliminary work opens several questions in the
field of Multiagent RL that have still to be answered.
First, the convergence properties of algorithms are
still a drawback of these heuristic approaches. Then,
under specific conditions, which quality of policy

can be expected? The major difficulty in proving
convergence properties is that the MAS paradigm
deals with partial observations in the field of Markov
decision modeling.

7. REFERENCES

Bernstein, D. S., Zilberstein, S. & Immerman, N.
(2000), The complexity of decentralized control of
markov decision processes,in ‘Proc. of UAI’.

Chadès, I. (2003), Planification distribuée dans les
SMA l’aide de processus décisionnels de Markov,
PhD thesis, Universite Nancy 1, LORIA.

Chadès, I. (2004), Multiple equilibria solution for the
multi-agent mdp coordination problem,in ‘Work-
shop of Multi-Agent Markov Decision Processes:
Theories and Models, ECAI04’.

Chadès, I., Scherrer, B. & Charpillet, F. (2002),
A heuristic approach for solving decentralized-
pomdp: Assessment on the pursuit problem,in
‘the 2002 ACM Symposium on Applied Comput-
ing’.

Dutech, A., Buffet, O. & Charpillet, F. (2001), Multi-
agent systems by incremental gradient reinforce-
ment learning,in ‘Proceedings of IJCAI’01’.

Garcia, F. & Sabbadin, R. (2001), Solving large
weakly coupled markov decision processes: Ap-
plication to forest management,in ‘MODSIM
2001’.

Nair, R., Tambe, M., Yokoo, M., Pynadath, D.
& Marsella, S. (2003), Taming decentralized
pomdps: Towards efficient policy computation for
multiagent settings,in ‘IJCAI’03’.

Puterman, M. L. (1994),Markov Decision Processes–
Discrete Stochastic Dynamic Programming, John
Wiley and Sons, Inc., New York, USA.

Schneider, J., Wong, W.-K., Moore, A. & Riedmiller,
M. (1999), Distributed value functions,in ‘Proc.
ICML 99’, Morgan Kaufmann, San Francisco,
CA, pp. 371–378.

Shen, J., Lesser, V. & Carver, N. (2003), Minimiz-
ing communication cost in a distributed bayesian
network using a decentralized mdp,in ‘the sec-
ond international joint conference on Autonomous
agents and multiagent systems’, pp. 678–685.

Shoham, Y., Powers, R. & Grenager, T. (2003), Multi-
agent reinforcement learning: a critical survey,
Technical report, Stanford University.

Sutton, R. & Barto, G. (1998),Reinforcement Learn-
ing: an introduction, Bradford Book, MIT Press,
Cambridge, MA.

Watkins, C. & Dayan, P. (1992), ‘Q-learning’,Ma-
chine Learning8, 279–292.

1600

