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EXTENDED ABSTRACT   

We begin the development of a theory of total 
factor productivity (TFP) by presenting a 
multi-sector model of general purpose 
technology (GPT) driven growth, which 
generates numerical data via simulation and 
confirm the theoretical predictions of Carlaw 
and Lipsey (2003) and Lispey and Carlaw 
(2004) that TFP is not a contemporaneous 
measure of technological change. The 
modeling framework enables comparison 
between simulated rates of technological 
change and measures of TFP growth calculated 
from the simulated data. Theoretical 
assumptions such as returns to scale and 
returns to knowledge in the production 
function and there effect on the TFP 
calculations can be tested. It is demonstrated 
that in cases where the generation and 
adoption of new technology has resource costs 
that are capitalized in the TFP growth 
calculation, TFP growth does not measure the 
introduction of a new GPT. Furthermore, 
under assumptions that the introduction of new 
transforming GPTs requires investment in 
structural adjustment, TFP growth slows while 
the technology diffusion rate increases and 
then increases while the diffusion rate declines 
generating a negative contemporaneous 
correlation between the two. Our theoretical 
findings are compared with the growth 
experience of a number of OECD economies 
with special focus on Australia’s and New 
Zealand’s experiences with ICT. TFP growth 
and ICT diffusion rates are calculated and 
compared to check the robustness of the 
modeling framework. Preliminary results yield 
limited evidence that is consistent with the 
model’s prediction that as a transforming new 
GPT such as ICT enters the economy TFP 
growth will slow and stay low while diffusion 
rates increase, then TFP growth increases as 
the technology matures. The results refute the 

                                                 
  * The authors gratefully acknowledge funding support 
for this research from the Royal Society of New Zealand’s 
Marsden Fund grant number UOC101 and consultancy 
contracts with the Australian National Office for the 
Information Economy and the Department of 
Communications, Information Technology and the Arts. 

implicit empirical hypothesis of endogenous 
and exogenous growth theory that TFP growth 
is a positive contemporaneous measure of 
technological change. 
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1. INTRODUCTION 
This paper is about the interpretation of TFP 
which has been associated with economic 
growth or lack thereof caused by information 
and communication technology (ICT). We 
separate the diffusion of ICT from measured 
output or productivity gains generated by it in 
order to determine the causes of TFP and 
wider economic growth.     

There is little disagreement that computers, the 
Internet and the myriad supporting 
complementary technologies that they have 
enabled, have revolutionized production taking 
the world into the age of the global economy.1 
What is debated is whether this technological 
revolution is having the kinds of revolutionary 
influences on economic growth that were 
witnessed with the First and Second Industrial 
Revolutions. At the centre of a current debate 
on long-run productivity growth is the so 
called productivity paradox. The erroneous 
presumption that underwrites the paradox is 
that TFP measures technological change.  

We develop a theory consistent with David 
(1990), David and Wright (1999), the 
theoretical models in Helpman (1998) and 
Lipsey, Bekar and Carlaw (1998) who argue 
that there is no paradox because of the 
existence of a real technology cycle. We argue 
that the introduction of new GPTs can cause 
large structural adjustment costs as the 
economy exploits the new technology.   

2.  TECHNOLOGICAL CHANGE AND 
TFP 
Measures of TFP change are often interpreted 
to be the rate of technological progress within 
an economy. This requires a definition of 
technology in terms of output and its 
associated inputs. Technology is not defined 
and measured independent of economic 
performance. In this view the measurement of 
technological change does not require 
observations that are independent of output. 
Nor is it necessary to develop a theory that 
explains how technology leads to economic 
growth because the two are conceptually 
inseparable.  

A number of economists that study 
productivity, economic history, technological 
change and economic growth have argued that 

                                                 
1 However, some economist, such as, Young (1992) and 
Krugman (1996) commenting on Young argue that the 
lack of high total factor productivity in the Asian 
economies that experience exceptional growth in GDP per 
capita throught the 1970s and 1980s is evidence that no 
technological revolution occurred in these economies.  

TFP is not a measure of technological change. 
Technological change is recognized as 
endogenous to economic choices and bears the 
cost of the resources used to embody the 
technology, costs which are capitalized in the 
inputs of the TFP calculation. Technology is 
independent of the traditional aggregate 
outputs and inputs measures.  

There are two ways to demonstrate that TFP 
change is not a measure of technological 
change. First, endogenous technological 
change is brought about by the allocation of 
resources that have opportunity costs to the 
activity that generates the new technology. 
Second, measures of technological change, 
which are independent of measures of 
economic performance, show a negative 
correlation with the pattern of TFP change.  

Virtually all technological change becomes 
embodied in one form or another: new or 
improved products, capital goods or other 
forms of production technologies, and new 
forms of organization in finance, management 
or on the shop floor. Almost all of 
technological change results from resource-
using activities and the costs involved in 
creating such change are more than just 
conventional R&D costs. They include costs of 
installation, acquisition of tacit knowledge, 
learning by doing in making the product, and 
learning by using it, plus a return on the 
entrepreneurial investment of funds in 
development costs. Lipsey and Carlaw (2004) 
refer to the sum of these as “development 
costs”2 and illustrate the point with a simple 
algebraic analysis.  

The contributions of embodied technological 
change to TFP growth have been studied in the 
growth accounting literature. Hulten (1992) 
and Jorgenson (1966) argue that quality 
change (or Investment Specific Technological 
(IST) change growth) is difficult to observe, 
and therefore may not be measured accurately 
in the National Income and Product Accounts 
(NIPA).  

An analysis of change in investment quality 
and TFPG for 16 OECD countries where 
comparable data was available reveals a 
negative relationship between ISTC and TFPG 
for most of the countries. The data span the 
period 1970 to 1997, although the time series 
are shorter for some of the countries included 

                                                 
2 Jorgenson and Griliches (1967) argued that changes in 
TFP would only measure the gains in output that were 
over and above the development costs of the technological 
advance that caused the gains. 

795



  

in the analysis. Correlations and their 
significance are calculated by linearly 
regressing TFPG on ISTC. (See Table 4.1 
below.)3 

3.  MODELS OF GPT-DRIVEN GROWTH 
Our model has the following key 
characteristics. GPTs arrive at randomly 
determined times with an impact on the 
productivity of applied R&D that is 
determined by the amount of pure research 
knowledge, which has been endogenously 
generated since the last GPT and elements of 
randomness. The sources of randomness 
defined above imply that short term outcomes 
are influenced by the particular realizations of 
the random variables, allowing the average 
growth rate of output over the lifetime of each 
successive GPT to differ from that of its 
predecessor. However, the average growth rate 
over long periods of time in which several 
GPTs succeed each other is determined by the 
accumulated amount of pure knowledge. This 
is partly endogenous (determined by the 
allocation of resources to pure research), and 
partly exogenous (determined by random 
factors affecting the productivity and timing of 
those resources). Furthermore, while some 
GPT driven research programs are richer than 
others, successive GPTs will not always either 
accelerate or decelerate growth on average 
over their lifetimes. There is no expectation 
that each new GPT will produce a productivity 
bonus in the form of acceleration in 
productivity growth.  

There is a generic input called resources, Rt, 
allocated among the various consumption 
sectors, ,

j
c tr , applied R&D sectors, ,

j
a tr , pure 

knowledge sectors ,
x

g tr  and structural 

adjustment sectors, ,
x

s tr . There are J of the 
consumption and applied Sectors and X of the 
pure knowledge and structural adjustment 
sectors. 

(1)  
, , ,,

1 1 1 1
a t g t s t

J J X X
j j x x

t c t
j j x x

R r r r r
= = = =

= + + +∑ ∑ ∑ ∑ . 

The flow of consumption output in each of the 
j lines of consumption, cj,t in (2) is a function 
of the resources allocated to the consumption 
sector, rc,t, and the productivity coefficient μAt-

                                                 
3 Carlaw and Kosempel (2004) also demonstrate that IST 
is negatively correlated with TFP particularly since 1974. 

1.4 The parameter μ is used to apportion the 
stock of applied knowledge between 
consumption and pure knowledge production. 

(2) 1 2
, , ,( ) ( )j

j t j t c tc A rα αμ= ,  with          

2(0,1],   1,2 and 1i iα α∈ = < . 

Applied R&D utilizes GPTs produced from 
each of the X pure knowledge sectors so the 
production function for each applied R&D 
activity has X + 1 arguments, X types of GPT 
knowledge, and resource inputs. The model 
captures the behaviour of GPTs acting as 
complements and as a displacer of the GPT 
that exists from the same line of pure 
knowledge research. Whether the new GPT is 
chosen depends on whether the set of GPTs 
and their related νx

j and κx
j parameters (defined 

in equation 3 below) create the most output 
with the new GPT or the old GPT. In either 
case the choice between the first two terms is 
then complementary with the resources 
allocated to each line of applied R&D. Each 
line of production of applied knowledge is 
altered to include the possibility of allocating 
resources to the activity of adjusting the 
structure with a structural adjustment cost, SAt , 
defined in (8), which reduces the immediate 
impact of the new GPT on productivity in that 
particular applied R&D sector.  

(3) 

( )
( )1 1 1

1

2 1

, , ,,
1

, ,

, , ,,
1

, , , 1

( ) ,
max (

( )
)

(1 )
(0,1), (1, , 1)

x

X x
x

z z z
z

x

X x
x

z z z
z

X

X
x x

x t j t x tj t
x j

j t a tX
x x

x t j t x tj t
x

j t j t j t

i

G SA
a r

G SA

A a A
i X

β
β

β
β

β

ν χ κ

ν χ κ

ε
β

+

+

− − −
−

+
=

=

−

=

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥⎪⎣ ⎦ ⎪
⎨ ⎬
⎡ ⎤⎪ ⎪
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

= + −

∈ = +

∏

∏

K
 with (0,1],  1,..., 2 1i i Xβ ∈ = + ,  

,

0 with Prob 0.5    
Beta(x| , ) with Prob 0.5x

z

x
tj t

Vν
ν η

⎧
∈ = ⎨

⎩
 

and ,

0 with Prob 0.5    
Beta(x| , ) with Prob 0.5

x
j t tKκ

ν η
⎧

∈ = ⎨
⎩

The random coefficients used to model the 
productivity of each of the X GPTs in the J 
lines of applied R&D, Vt, is an XxJ array of 
random variables with elements , z

x
j tν . The 

random coefficients for the effect of the 
structural adjustment costs from each GPT on 

                                                 
4 We subsequently simplify the model by not lagging the 
stock of applied R&D in the production function for 
consumption. 
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each line of applied R&D, Kt, is an XxJ array 
of random variables with elements ,

x
j tκ .5  

We model the productivity in each line of 
applied research as being determined by two 
forces: the first arrives as the productivity 
enhancing effect of the logistic diffusion of a 
the current xth GPT ( ,x tGχ in (3)) and the 
second is the effective structural adjustment 
cost associated with the xth GPT (SAx,t in (3)). 
The effective structural adjustment depends on 
two things (see (8)), first, the accumulated 
amount of adjustment achieved by allocating 
resources to structural adjustment, which 
increases effective adjustment and, second, 
required further adjustment introduced by the 
arrival of a new GPT, which decreases current 
effective adjustment.  

Resources are allocated among X types of pure 
knowledge research. GPTs arrive in each line 
of activity when *

, ,x t x tλ λ≥ .  

(4) ( ) ( ) 1

, , ,
1

j J
J

x
x t j j t t g t

j

g A r
σ σ

μ θ +

=

= ∏ ,  

(0,1],   1,..., 1i i Jσ ∈ = + .  

Potential useful knowledge in each of the X 
lines of pure research is accumulated 
according to: 

(5) , , , 1(1 )p p
x t x t x tG g Gδ −= + −  

Actually useful pure knowledge (when the 
GPT arrives): 

(6) 

( )
,

1 1,

( )

, , , , ,( )1

z x

z z zz x

t t
h

x t x t x t x t x tt t

eG G G G
e

τ γ

τ γϖ
− −

+ −

+ −

⎛ ⎞
= + −⎜ ⎟+⎝ ⎠

where 

(7) 

( ), 1 , , -1
,

, 1

-   if *

 otherwise

h p h
x t x t x th

x t h
x t

G G G
G

G

ϑ λ λ−

−

⎧ + ≥⎪= ⎨
⎪⎩

and 

tz,x is the arrival date of the zth GPT in pure 
knowledge sector x, and γ and τ are control the 
rate of diffusion. θt is distributed uniformly 
with support [0.8, 1.2] and λ and ϑ are drawn 
from Beta distributions. (See Lipsey, Carlaw 
and Bekar (2005, Ch. 14)). 

,x tSA  is defined as follows: 

                                                 
5 Note that equation (3) represents the impact of the actual 
current stock of pure knowledge on the applied R&D 
sector where expectations of the current stock of pure 
knowledge are employed in the maximization procedure 
defined below. 

(8)   ,
,

,

x t
x t

x t

S
SA

SC
= . 

The total amount of structural adjustment 
produced for the xth GPT is determined by the 
relative productivity of resources in the xth line 
of structural adjustment activity. These are 
highly productive when the GPT first arrives, 
then the resources migrate back out of the xth 
line of activity in the structural adjustment 
sector as they become more productive 
elsewhere.    

,
h
x tSC  holds the total cost of structural 

adjustment defined as a function of the total 
impact of the new xth GPT, which we model by 
taking the difference between the total value of 
the new xth GPT relative to the old and a 
random variable, ψx,t , drawn from a Beta 
distribution, defined in (12). 

(9)  ( ), , , , 1
h h h
x t x t x t x tSC G Gψ −= − . 

The actual structural adjustment costs per 
period associated with the xth GPT are assumed 
to follow a logistic diffusion process similar to 
the xth GPT itself. The larger the GPT impact, 
the greater the structural adjustment that is 
required. We assume that ,x x x x

s sγ γ τ τ> < .  

(10) 
( )

, ,, 1 , 1( )
( )

1

x x x
s s z

x xx x x
z zs s z

t t
h

x t x tx t x tt t

eSC SC SC SC
e

τ γ

τ γ

+ −

− −+ −

⎛ ⎞
⎜ ⎟= + −
⎜ ⎟+⎝ ⎠

The required structural adjustment, Sx,t, 
accumulates from the point that the xth GPT 
arrives: 

(11)  , , , 1 ,(1 )x t x t x t x tS s S φ−= + − , 

where 

( ), , ,(1 ) x
x t x t s ts G rχ= − ,  

and ,
,

  if  *
0   otherwise
x t

x t

ς λ λ
φ

≥⎧
= ⎨
⎩

,  

The flow of structural adjustment, sx,t, depends 
on the resources devoted to producing 
adjustment, ,

x
s tr , and a portion of the stock of 

useful pure knowledge from the xth line of pure 
research, (1 - χ) Gx,t.  

The random variable ψx,t  that conditions SCh
   

influences the total amount of new investment 
in structure required for the xth GPT. The 
random variable, φx,t , makes obsolete that 
portion of past investment in structure, Sx,t, 
which is not useful to the new GPT.   
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(12)  
[ ], Beta( | , ) ,    

0 2
x t x

x

xψ ο ν η
ο

=
< <

 

The constant οx allows the random variable 
drawn from the Beta distribution to take on 
values larger than one. This, combined with 
the calibration of ν and η, determines the 
probability that ψx,t is greater than or less than 
one. ςx,t is drawn from a uniform distribution 
with support of [0, 1].     

The maximization problem includes the 
allocation of resources to J lines of final 
consumption, J lines of applied R&D, X lines 
of pure research and X lines of structural 
adjustment. Once again a representative agent 
with an additive utility function defined over 
the J lines of consumption output is assumed. 

(13) 

{ }
( )

, , , ,

, , ,

1 2

,
, , , 1

,
1 1 1 1

, , ,

max ( )

. .

( ) ( )

j

j j x x
c t a t g t s t

a t g t s t

J
J
t j t

r r r r j

J J X X
j j x x

t c t
j j x x

j
j t j t c t

U c c

s t

R r r r r

c A r

ϕ

α α

=

= = = =

=

= + + +

=

∑

∑ ∑ ∑ ∑
 

( )
( )

2 1

, , ,,
1

, ,

, , ,,
1

, , , 1

( )
max ( )

, ( )

(1 )

x
X x

x
z

X

x
X x

x
z

X
x x

x t j t x tj t
x j

j t a tX
x x

x t j t x tj t
x

j t j t j t

G SA
a r

G SA

A a A

β
β

β

β
β

ν χ κ

ν χ κ

ε

+

+

+

=

=

−

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥
⎪ ⎪⎣ ⎦= ⎨ ⎬
⎡ ⎤⎪ ⎪
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

= + −

∏

∑

( ) ( ) ( ) 31 2

, , , 1

, 1, 2, ,

(1 )x t x t x t

x
x t t t g t

G g G

g A A r
σσ σ

δ

μ μ

−= + −

=
 

and equations (10 – 14) 
Resources are allocated to maximise the utility 
from each line of consumption output in each 
current period by equating the expected 
marginal increase in consumption from a unit 
of resources allocated to each of the J applied 
R&D, X pure knowledge and X structural 
adjustment sectors of the model, but with 
productivity in each taken as given.  

4.  SIMULATION AND EMPIRICAL 
RESULTS 
The model is solved using numerical 
simulation which requires calibrating 
parameter values. We choose values in order to 
achieve long run average growth rates of 
approximately 2% and GPT arrival rates of on 

average 30-35 periods. The qualitative results 
are robust to a wide rage of parameter values 
that meet the restrictions specified in the 
model. The growth properties of this model are 
discussed at length in Carlaw and Lipsey 
(2001, 2006 forthcoming) and in Lipsey, 
Carlaw and Bekar (2005 forthcoming, Chapter 
14). Do to lack of space we do not report the 
calibration of the model for the simulations 
reported here.6  

For the simulations we calculate TFP growth 
using a Tornquist index employing data 
defined by an accounting identity defined over 
all outputs and inputs in the system for the 
given simulation. We also calculate the rate of 
technological change directly from the 
simulation model. In all cases TFP 
underestimates the rate of technological 
change in the system. In cases where structural 
adjustment costs associated with the 
introduction of GPTs are included there is a 
negative contemporaneous correlation between 
TFP growth and the rate of technological 
diffusion. In all cases positive TFP growth is 
an indication of increasing returns to scale in 
the production system. When there are 
constant returns to scale TFP growth is zero 
and when there are decreasing returns to scale 
TFP growth is negative. In all cases 
technological change can be positive. 

4.1  EMPIRICAL EVIDENCE AND 
CONCLUSIONS 
The available empirical evidence for New 
Zealand and Australia, as well as a selection of 
16 OECD economics for which comparable 
data is available, supports the theoretical 
findings of the pervious section. The test 
reported in this section are in no way meant to 
represent a complete test of the above theory 
of GPT driven growth, but they do are 
consistent with an implied empirical 
hypothesis in that theory and refute the implied 
empirical hypothesis of the only competing 
theory, namely neoclassical growth theory 
(either endogenous or exogenous). In the 
neoclassical theory TFP must be positively 
contemporaneously correlated with 
technological change (whether it is exogenous 
or endogenous). In our theory no necessary 
relationship exists in general and in cases 
where there are positive structural adjustment 
costs associated with the introduction of a new 

                                                 
6 See Carlaw and Lipsey (2001), Carlaw (2004), Carlaw 
and Lipsey (2005), Lipsey, Carlaw and Bekar (2005)  and 
Carlaw and Lipsey (2006 forthcoming) for various 
calibratins. 
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GPT there is an explicit negative 
contemporaneous relationship. 

In the New Zealand and OECD data 
investment specific technological change is 
calculated as an independent measure of 
technological change and compared with 
measures of TFP. We report here some of our 
analysis of changes in investment quality and 
changes in TFP in sixteen OECD countries 
(where comparable data on national accounts, 
labour and productivity was available from the 
OECD) reveals that the negative relationship 
between IST and TFP change appeared in most 
of the countries in the data set. The data span 
the period 1970 to 1997, although the times 
series are not as long for some countries 
included in the analysis. Correlations and their 
significance are calculated by linearly 
regressing TFP growth on IST growth. This 
simple procedure allows for easy calculation of 
correlation and the statistical significance of 
the correlation between the two rates of 
change, however, it also has some obviously 
flawed assumptions. For example, it is unlikely 
that the relationship between TFP and IST 
growth is linear. We use it because reveals that 
there is clearly something wrong with TFP as a 
contemporaneous measure of technological 
change. We report these results in Table 4.1at 
the end of the paper. The results shown in 
Table 4.1 indicate that the relationship 
between MFP and IST is week. In most cases 
there is a negative relationship, in two cases a 
significant one.  

Table 4.2 reports the same calculation, this 
time for 9 industrial sectors in New Zealand. 
Again a negative relationship seems to prevail 
however significance is greatly reduced 
perhaps due to the limited time serries of only 
10 years (1989-99). However, when checked 
against the only other independent source of 
data on ICT diffusion in New Zealand, cellular 
telephone diffusion, the relationship between 
IST in the 9 industrial sectors and cell phone 
diffusion was prevailingly positive and in 
some cases significant.   

In the Australian Data ICT diffusion rates are 
calculated from the available data on the 
productive contribution to the capital stock of 
computers and software.7 A similar correlation 
calculation was made for 13 industrial sectors 
in Australia. These results are reported in 
Table 4.3. Again the negative 
contemporaneous relationship between TFP 

                                                 
7 This is only a partial measure of ICT diffusion as it does 
not include Internet, Broadband, etc. 

and technological change is supported by these 
data.  
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TABLES 

TABLE 4.1 

 Correlation  (t statistic) Ave. TFP growth Ave. IST growth 
Australia -0.20 -1.63 0.57% 3.06% 
Austria 0.08 0.80 1.62% 1.46% 
Canada -0.04 -0.45 0.49% 6.69% 
Germany -0.90 -1.91 0.24% 1.00% 
Denmark 0.06 0.49 0.66% 1.37% 
Spain -0.17 -1.19 0.70% 1.75% 
Finland -0.35 -1.49 0.99% 0.12% 
France 0.09 0.66 0.89% 2.23% 
United Kingdom -0.36 -3.45 0.82% 1.11% 
Greece -0.12 -2.57 0.09% 2.57% 
Ireland -0.05 -0.35 1.55% 1.72% 
Italy -0.03 -0.18 0.53% 1.08% 
Japan 0.43 2.93 0.96% 3.97% 
Netherlands 0.29 2.30 -0.002% 1.75% 
New Zealand -0.22 -1.30 -0.09% 4.90% 
Sweden 0.06 0.56 0.40% 2.05% 
 

TABLE 4.2 

Industrial Sector Correlation t-stat. 
Ave. TFP 

Growth Rate 
Ave. IST Growth 

Rate 
Primary 0.444755 0.600319 0.013061 0.02585 
Mining and quarrying -0.13522 -0.13445 0.004123 0.019507 
Construction 0.545119 0.793985 -0.0184 0.02543 
Manufacturing 0.364575 1.007994 -0.00354 0.027529 
Electricity, gas and water -0.09912 -0.2468 0.006498 0.030409 
Transport and 
communications 0.169355 0.541571 0.05626 0.0455 
Business and property 
services 0.091789 0.388129 -0.00964 0.07521 
Personal and community 
services 0.017632 0.054999 0.015462 0.038775 
Retail and wholesale trade 0.305878 0.915756 0.003513 0.040282 
 

TABLE 4.3 

 Coefficient (t stat.)
Ave. TFP 
Growth 

Ave. ICT diff. 
rate 
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SECTOR     
Agriculture -0.3187 -0.5785 0.0184 0.1968 
Mining 0.0026 0.0095 0.0318 0.2075 
Manufacturing -0.0299 -0.4306 -0.0027 0.2305 
Electricity, Gas and Water -0.0102 -0.0636 0.0339 0.1895 
Construction -0.2923 -1.3126 0.0026 0.2141 
Retail Trade -0.1518 -3.0050 -0.0169 0.2269 
Wholesale Trade -0.2126 -1.4738 0.0198 0.2159 
Transport and Storage -0.1942 -2.9127 0.0195 0.1927 
Communications -0.2518 -2.6261 0.0259 0.2183 
Accommodation Cafés and Restaurants -0.2833 -2.7934 -0.0376 0.2255 
Finance and Insurance 0.0626 0.6501 0.0163 0.2207 
Cultural and Recreational Services -0.0550 -0.3794 -0.0589 0.2245 
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