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EXTENDED ABSTRACT

Measures of the risk of extinction, such as the
expected time to extinction, are often used in
population viability analysis (PVA) and in subsequent
decision-making procedures, to gauge the impact
of various management actions. Since PVA results
are often used in the allocation of conservation
funding, which in turn has a major impact on the
future persistence of populations, the calculation of
quantities such as the expected time to extinction is
of great importance. These quantities are typically
calculated by assuming a specific model for changes
in the population over time. In particular, diffusion
models are often used because they are simple to
analyse and often give rise to explicit formulæ for
most quantities of interest. However, while they
are widely used, they frequently lead to inaccurate
predictions of critical quantities such as the expected
time to extinction. Hence, management decisions
based on these predictions may be similarly flawed.

Often, a more appropriate model for describing
the behaviour of the population in question is a
discrete-state Markov process describing the actual
number of individuals in the population. The
most commonly used such models are birth-death
processes or extensions thereof which allow for
catastrophic events. Unfortunately, whilst these may
be more appropriate for modelling the dynamics of
the population in question, they are usually more
difficult to work with, from both analytical and
computational points of view. For these reasons, it
is important to find some balance between accuracy
of predictions based on the models and tractability of
the method of prediction. Advances can be made by
considering the limiting processes that correspond to
these discrete-state models; in particular, Ornstein-
Uhlenbeck processes and piecewise-deterministic
processes with stochastic jumps. These models
may still provide inaccurate predictions of extinction
times, but should show improvement over the simplest
Brownian motion approximation.

We consider populations that have density dependent
demographic rates (in a specially-defined sense),
and which may also be subject to environmental
catastrophes. In particular, we assume that these
populations may be modelled by continuous-time
Markov chains — the stochastic SIS logistic model
with or without binomial catastrophes occurring at a
constant rate — and compare the accuracy of several
approximations to the expected time to extinction. We
contrast the various advantages of several methods for
predicting extinction times for the above mentioned
models, and compare these predictions for simulated
data and a population of Bay checkerspot butterflies
using model parameters estimated from data. We
pay particular attention to the question of whether
the extra analytical and computational effort required
for the more complex models is necessary to inform
decision-making in a conservation context.

We find that a variety of different models may
give comparable results for measures of the risk of
extinction (such as the expected time to extinction).
This is true even in the situations we examine
where catastrophes are known to play a role in
population dynamics, but are not modelled when
analysing the data. One model we consider in detail,
the stochastic SIS logistic model and its Ornstein-
Uhlenbeck diffusion approximation, is particularly
robust in allowing for either strong or weak limiting
of populations by their carrying capacities, and
in adjusting for catastrophic events. A simpler
geometric Brownian motion approximation may also
provide reasonable results, but is less reliable due
to shortcomings in its estimation of the population
ceiling. Finally, we determine empirically that
heuristic approximation methods for the stochastic
SIS logistic model subject to catastrophes can
provide accurate values for the expected time to
extinction when the true parameters are known.
The present lack of a suitable estimation procedure
for these models would preclude their wider use,
but fortunately other models, such as the Ornstein-
Uhlenbeck approximation, can provide reasonable
estimates of the expected time to extinction.
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1 INTRODUCTION

One of the main challenges in population modelling,
as with all mathematical modelling, is to find a
balance between tractability and accuracy. While
complex models involving many parameters might
more accurately reflect reality, they may be difficult
to analyse or difficult to fit from data. Conversely,
simple models may fail to capture essential aspects
of the population dynamics in question. In many cir-
cumstances, a useful approach is to develop a model
that attempts to capture all of the relevant behaviour
of the process, and then to find an approximation to
this model that is more tractable. One such example
is the use of diffusion approximations in population
viability analysis (PVA). In performing such analyses,
the scientist does not suppose that population size
is actually a continuous variable, but rather that
the population size is adequately approximated by a
diffusion process. In many cases, such assumptions
about the suitability of the approximating process can
be justified mathematically; however, care must still
be taken with quantities (such as extinction times)
derived from such approximations (Pollett (2001)).

In this paper we will consider populations that have
density dependent demographic rates (in a specially-
defined sense), and which may also be subject to
environmental catastrophes. We will assume that
these populations may be modelled by continuous-
time Markov chains—the stochastic SIS logistic
model (Weiss and Dishon (1971)) with or without
binomial catastrophes occurring at a constant rate—
and compare the accuracy of several approximations
to the expected time to extinction, one measure of
the risk of extinction. Since the risk of extinction
obtained in a PVA is often used in the allocation
of conservation funding, which in turn can have a
major impact on the future persistence of populations,
these calculations are of great importance. We will
pay particular attention to the question of whether
the extra analytical and computational effort required
for the more complex models is necessary to inform
decision-making in a conservation context.

2 THE MODELS

We will consider a number of models for a biological
population with per capita birth and death rates that
are functions of the population density, rather than
of the population size. That is, we assume that
the functional relationships between the birth and
death rates and the population sizex have the form
nf(x/n) where n might be equal to a carrying
capacityK or population ceilingN . We will call
population processes that possess such ratesdensity
dependent.1 Density dependent processes of this

1In its common usage in ecology, ‘density dependence’ refersto
a strong tendency of some populations to decline when above some
carrying capacity; the carrying capacity is simply the population
size above which this tendency begins. The definition we givehere

form are amongst the most important in modelling
biological populations of all types. Notable examples
include most of the classical models for epidemics, the
Levins model for metapopulations (Levins (1969)),
and many early models for human populations (e.g.
Verhulst (1838)). In this paper, our goal is to compare
estimates of the time to extinction obtained from
continuous-time Markov chain (CTMC) models with
those obtained from approximations to these models
involving either central limit-type results or heuristic
approximation schemes.

2.1 Continuous-time Markov chains

For our purposes in this paper, we use only the
transition rate matrixQ of the processes discussed
in this subsection, which has off-diagonal elements
qij giving the rate of jumps from statei to statej,
and diagonal elementsqii = −qi whereqi represents
the rate of jumps from statei (qi =

∑

j 6=i qij ). For
further details on the extensive theory of CTMCs see,
for example, Norris (1997).

The stochastic SIS logistic model. We will begin
by assuming that the underlying populations change
over time according to a stochastic SIS logistic
model (henceforth, simply the SIS model). Such
models are named for their use in the study of
epidemics in which susceptible individuals may
become infective, then recover to become susceptible
again (Susceptible-Infective-Susceptible); however,
they are broadly applicable as models for density
dependent populations. The SIS model has transition
rates, fori andj in {0, 1, . . . , N},

b(i) = qi,i+1 = λi (1 − i/N) , (1)

d(i) = qi,i−1 = µi, (2)

for births and deaths, respectively. The per capita birth
and death rate parameters are respectivelyλ andµ. N
is the maximum size of the population or population
ceiling. For both parameter estimation and calculation
of expected times to extinction, the SIS model may be
approximated by an Ornstein-Uhlenbeck diffusion, as
detailed in§2.2 and Appendix A.

A birth-and-catastrophe model. In some cases
the main drivers of mortality in a population
may be catastrophic events causing mass, rather
than individual death. A number of authors
have explicitly considered Markov chains in which
catastrophic mortality plays an important role,
including models for populations of Crabeater seals,
Lobodon carcinophagus (Wilcox and Elderd (2003)),
and of California spotted owls,Strix occidentalis
occidentalis (Andersen and Mahato (1995)). In this
birth-and-catastrophe model, we replace individual
death entirely by death due to catastrophic events,
occurring at a constant rateν, which affect each

is a more literal ‘dependence on the population density’, ofany
strength, in the given form.
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and every individual in the population independently,
killing them with a certain probabilityp. In this
situation, we haveb(i) as in (1) above, but instead of
individual death at rated(i), take the rate of jumps
down fromi to j (< i) as

c(i, j) = qij = ν

(

i

j

)

(1 − p)jpi−j . (3)

That is, catastrophes occur at a constant rateν and
have size given by a binomial distribution. We
will approximate the expected extinction times for
this model using a piecewise-deterministic Markov
process (§2.3).

2.2 Diffusion and deterministic approximations

A number of approximation methods exist for the SIS
model (and other density dependent CTMCs). One
such method is the deterministic approximation for
density dependent processes, which is obtained by
scaling the process from{0, 1, . . . , N} to [0, 1] by
dividing through byN , and lettingN → ∞ to obtain
a functional law of large numbers (Kurtz (1970)).
For example, the SIS model has a deterministic
approximation given by the solution to the ordinary
differential equationdx/dt = λx(1 − x) − µx, for
x(0) ∈ [0, 1].

Deterministic approximations may not be useful in
obtaining measures of extinction risk, since they may
predict that the population reaches a steady state at0
or some non-zero fixed point. Pollett (2001) compares
two methods for approximating the expected time to
extinction when the population ceilingN is large:
an asymptotic formula, and the numerical solution
to the hitting times of a diffusion approximation.
By removing the trend in the process given by the
deterministic approximation described above, and
scaling by

√
N rather thanN , an Ornstein-Uhlenbeck

(OU) approximation around a stable fixed point in
the deterministic dynamics may be found (see Pollett
(2001)). This OU process is stationary, Gaussian,
Markovian, and has parameters that are again given
explicitly in terms of the original parametersλ andµ.

2.3 Piecewise-deterministic Markov processes

The birth-and-catastrophe process is not density
dependent in the sense required for a diffusion or
deterministic approximation of the type discussed in
§2.2. However, it is density dependent ‘between
catastrophes’, and the size of a catastrophe—
conditional on its occurrence and the population size
just before the catastrophe—converges to a constant
proportion of this population size asN → ∞.
This suggests an approximation for the birth-and-
catastrophe process that is somewhat analogous to the
deterministic, law of large numbers, approximation
for density dependent processes.

In this approximation, between catastrophes the
population dynamics are described by an ordinary

differential equation, given by the solution todx/dt =
λx(1 − x). Then, catastrophes occur according to a
Poisson process with rate parameterν, and when they
occur they instantly reduce the size of the population
to a proportion(1 − p) of the population size just
before a catastrophe. That is, ifS is the time of a
catastrophe, thenx(S) = (1− p) (limt↑S x(t)). Since
this process is Markovian and exhibits deterministic
behaviour between stochastic jumps, it is known as
a piecewise-deterministic Markov process (PDMP).
The class of PDMPs includes almost every Markovian
process that is not a diffusion (Davis (1984)),
including CTMCs, but is relatively little-studied in
general. We propose a simple but robust procedure
for numerical calculation of the expected time to
extinction of this PDMP (Appendix B).

2.4 Geometric Brownian motion

Foley (1994) considers a simple procedure for
estimating extinction risk to populations using
geometric Brownian motion (GBM). Under this
model, the population changes according to a
stochastic differential equation, such that, if the
natural log of the population size isY (t) = log X(t)
at time t, then Y (t) is assumed to satisfy the
stochastic differential equationdY (t) = rddt +√

vrdW , where W is the white noise process.
The parameters are the mean and variance of the
natural log of the growth rate of the population,rd

and vr respectively. The advantage of this model
is that expected times to extinction can be found
analytically in all cases; however, it explicitly leaves
out density dependence in the population growth, and
is not proposed as an approximation to any particular
discrete-state population model (however, it may be
constructed as the limit of a random walk). Foley
uses simulation methods to explore the possibility
of density dependence in a range of ecological time
series, but reports very little difference in the results.

3 RESULTS

We first consider the time series of the Jasper
Ridge ‘JRH’ population of Bay checkerspot butterfly,
Euphydryas editha bayensis sampled yearly between
1960 and 1986 (Harrisonet al. 1991).2 The data
from this population was analysed by Foley (1994)
in the context of the GBM model described in
§2.4. Harrisonet al. (1991) found that the observed
data are consistent with the assumption of density
independence or only weak density dependence,
where they use this term in the ecological sense noted
in §2. We obtained estimates of birth and death rates
(λ andµ respectively) and of the population ceilingN
from the OU approximation to the SIS model, using
a numerical maximum likelihood procedure. We used

2As we discuss in the next section, this population is now
extinct. Although data exists up to the year of extinction, it is of
interest here to compare approaches for prediction of extinction risk
using data and analyses from a time when the population persisted.
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Foley’s estimates of parametersrd andvr for GBM or
found our own (see Appendix A). The best estimates
obtained using these procedures are given in Table 1.

Estimate JRH Sim.

(a) N 1998∗ 299
rd −0.052∗ −0.0011
vr 0.840∗ 0.0571

(b) N 1998∗ 400
λ 4.8585 1.6554
µ 3.9506 1.0989

(c) N 297417 3200
λ 240.4360 3.4413
µ 240.0446 3.2811

Table 1. Estimates obtained from the JRH butterfly
data and the simulated birth-and-catastrophe data,
using Appendix A: (a) for GBM; and for the SIS
model: (b) assumingN is as in (a), and (c) assuming
N is unknown. Starred values (∗) are due to
Foley (1994).

Figure 1 shows expected times to extinction calculated
from the GBM model, the SIS model and its OU
approximation, using the estimates from Table 1
JRH(a) & (c), and the methods detailed in
Appendix B. The population was considered extinct
when it dropped below1 individual.
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Figure 1. Estimated mean time to extinction for
the JRH population of Bay checkerspot butterflies.
Foley’s (1994) approximation (dash-dot), an SIS
model (solid) and its OU approximation (dashed)
assumingN is unknown.

For the SIS model, whenN = 1998 was considered
known we used the estimates from Table 1 JRH(b),
and found that the mean time to extinction was
approximately4.14 × 1013 years across the entire
range of starting values; considerably longer than
most estimates for the current age of the universe.
We omit it from Figure 1 in order to better see the
relationship between the other results. The values for
the OU approximation forN = 1998 are assumed to

be similarly large, but consequently we were unable
to compute them accurately.

We used simulated data to examine the role
of catastrophes in complicating the prediction of
extinction risk. We constructed a birth-and-
catastrophe CTMC model as detailed in§2.1, with
parametersN = 400, λ = 0.25, ν = 2/3 and
p = 0.25. This represents a growing population with
relatively frequent catastrophes which, when they
occur, kill, on average, a quarter of the population;
note, however, that the mean per capita death rateνp
is only two thirds ofλ, so when the population density
is low, the population tends to increase. A hundred
years of simulated data is given in Figure 2.
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Figure 2. One hundred years of population sizes ob-
tained by simulating a birth-and-catastrophe process.

We again computed estimates forλ, µ andN using the
OU approximation, and forrd andvr for the GBM
model, assuming either thatN was 400, as used in
the actual simulation, or thatN was unknown (see
Table 1 Sim.(a)–(c)). From these estimates, expected
times to quasi-extinction below40 individuals were
computed for the various models (Figure 3).3 Again,
the SIS model and OU approximation from the
Sim.(b) estimates produced large values,4.66 × 106

and 1.60 × 107 respectively, and are omitted from
Figure 3. We compared the expected times to quasi-
extinction from each of the fitted models to the values
computed from the underlying birth-and-catastrophe
process and its PDMP approximation using the true
parameter values; the width of the plotted ‘ribbon’
gives the precision of the numerical procedure for the
PDMP. (We also computed an additional piecewise-
deterministic approximation by taking the estimates
of λ, µ andN obtained from the Sim.(c) estimates,
while assuming catastrophes with killing probability
p = 0.25. The mean times to quasi-extinction found
in this way were an order of magnitude smaller than
the plotted values. This indicates that, although this
procedure might be a natural first guess for scientists

3This level of quasi-extinction is the size below which our
hypothetical population is considered functionally extinct or at least
severely threatened.
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Figure 3. Expected times to quasi-extinction below
40 individuals for: the SIS (black, solid) and OU
approximation (black, dashed) using estimates with
N unknown; the underlying birth-and-catastrophe
process used in the simulation (dark grey solid
line), the piecewise-deterministic approximation to
this (dark grey ribbon), assumingN = 400, and the
GBM approximation (light grey dashed).

attempting to extract information about catastrophes
from estimates for individual mortality, it is unlikely
to produce accurate results). The SIS and OU results
were reasonably accurate despite overestimating the
expected time to extinction.

4 DISCUSSION

Our analysis of the JRH data provides some
interesting insights into the relationship between the
various models presented here. First, the estimates
for λ andµ differ markedly depending on whether or
not N is assumed to be known (Table 1). TheN -
unknown estimates support the conclusion of Harrison
et al. (1991): since the estimates forλ and µ are
so close, the population tends to be small, relative
to N , and henceb(i) ≈ λi over a wide range of
population sizes. Consequently, the population does
not exhibit a strong downward trend in size following
deviations from its long-term mean size. This result
indicates a degree of flexibility in the SIS model and
the estimation procedure that we propose whenN is
assumed to be unknown, because, while the model
allows for a tendency to decline at large population
sizes, it does not require this tendency to be strong.
As a wide variety of density dependent processes may
be analysed using this approach, it appears to provide
a robust method for assessing whether populations are
strongly limited by their carrying capacity.

The SIS, OU and GBM models for the butterfly
population showed somewhat different predictions
for the expected time to extinction, although the
SIS model and its OU approximation gave very
similar values (Figure 1). The GBM model produced
predictions that were similar to those obtained from
the SIS and OU models assuming an unknownN ,

unlike those found when assumingN = 1998.
This suggests that both the SIS/OU and GBM
approximations can give comparable estimates despite
the difference in their structure and estimates forN .
However, because the estimate ofN for the GBM
model is biased by the quantity of data, the degree
of compatibility between these results may vary. A
comparison of the results of these models may serve
as a useful test of the reliability of predictions of
the time to extinction, especially when considering
density dependence.

The Bay checkerspot butterfly is now extinct on
Jasper Ridge, with the JRH population thought to
have gone extinct in 1998 due to a combination
of extensive habitat loss and a period of increased
climatic variability beginning in 1972 (McLaughlinet
al (2002)). It is interesting to note that, despite the
simplicity of the OU approximation, its expected time
to extinction is quite close to the observed time (over
the recorded population range), 12 years after the last
measurements we used.

The birth-and-catastrophe and PDMP models tell a
rather different story. Because there is at present
no suitable method for estimating parameters for a
birth-and-catastrophe model from real-world data, we
constructed data (Figure 2) simulated from a CTMC
birth-and-catastrophe model in order to assess the
performance of the OU and GBM approximations in
dealing with the presence of catastrophic mortality.
Again, both these and the SIS model derived from
the OU estimates ofλ, µ and N , gave results
that are roughly similar to the exact results for the
underlying birth-and-catastrophe process (Figure 3).
This suggests that these models are able to adjust
for the effects of catastrophes. Finally, the PDMP
model appears to give very good approximations
to the mean times to (quasi-) extinction for birth-
and-catastrophe processes (Figure 3); these were
consistently overestimates, but followed the pattern
of the true values quite closely. However, the
mathematical links between the birth-and-catastrophe
process and the PDMP approximation remain to be
properly described, and in the absence of a procedure
for estimating birth and catastrophe rates and killing
probabilities, the utility of this model in dealing with
real-world data will remain limited. Fortunately, with
careful use, models such as the OU approximation are
adequate in at least some circumstances.

Shall we dance with a diffusion, walk with a
Markov chain, or jump with a piecewise-deterministic
process? It is important to capture as much
of the dynamics as possible when constructing a
model of a population, and so this question is an
important one. Although this is a only a preliminary
study, the evidence presented herein suggests that
the SIS model, with parameter estimates provided
by its OU approximation, can provide reasonable
approximations to measures of extinction risk, such as
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the expected time to extinction. The GBM model may
also be capable of providing reasonable predictions,
although it may be prone to overestimate the expected
time to extinction. This may even be true when
catastrophic declines in population are a feature of
the process, although care should be taken to examine
the reliability of these estimates, for example by
simulation methods such as we have used here.
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APPENDIX A. PARAMETER ESTIMATION

The SIS model

Our parameter estimation method for the SIS model
uses the OU approximation as follows. Firstly, the
OU process is strongly stationary if we start it in
equilibrium: Z(0) ∼ N

(

0, σ2
)

, whereσ2 = µ/λ =
ρ (< 1) (see Pollett (2001)). Therefore, we have that

XN (0) ∼ N

(

x∗,
σ2

N

)

,

wherex∗ = 1 − ρ is the stable fixed point of the
density dependent deterministic approximation, and
N is the population ceiling (see Pollett (2001)). We
also have that the covariance of the state of the OU
process at successive times is given by

c(t) := Cov(XN (s), XN (s + t))

= c(0) exp(B|t|), (4)

where c(0) = Var(XN (s)) = σ2/N and B =
−(λ − µ) (see Pollett (2001)). Hence, we know
explicitly the correlation structure of the Gaussian
vector (XN (t1), XN (t2), . . . , XN (tn)), where n is
the number of observations. Thus, we know its
likelihood function:

f(x) =

1
√

(2π)n|V |
exp

[

−1

2
(x − x̄)V −1(x − x̄)′

]

,
(5)

where x̄ = (x̄1, x̄2, . . . , x̄n), x̄i = x∗ for all
i = 1, 2, . . . , n, andV is the covariance matrix with
elementsvi,j , where vi,i = σ2/N and vi,i+s =
(σ2/N) exp(B|ti − ti+s|).

We may therefore evaluate the (joint) maximum
likelihood estimators, which are the values ofλ and
µ that maximise (5). Explicit calculation of these is
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not feasible if the sample size is large. Hence, we use
the Cross-Entropy Method of numerical optimisation
(see Rubinstein and Kroese (2004)) to find the
parameters which maximise the likelihood function,
but other numerical optimisation procedures should be
similarly effective. When the population ceilingN is
unknown, we estimate it by using the approximation
NXN(0) ∼ N

(

x∗N, σ2N
)

and then calculate the
joint maximum likelihood estimators with the addition
of N as an unknown parameter.

Note that because the OU approximation is achieved
by letting the maximum population size tend to
infinity, this procedure is best forlarge population
sizes. However, unequally spaced sampling of the
process does not present difficulties, as can be seen
from the covariance structure (4).

Geometric Brownian motion

Foley (1994) proposes a range of tools for estimating
the parametersrd, vr and N using the GBM
approximation. For comparison, we employ the
simplest such approach. Ifr = Y (t) − Y (t − 1),
whereY (t) is the natural logarithm of the population
size at timet, thenrd is just the arithmetic mean ofr,
andvr is just the variance ofr, as computed using the
standard unbiased estimators. The population ceiling
N is chosen in this instance as one more than the
largest observed population size.

APPENDIX B. MEAN TIMES TO EXTINCTION

Continuous-time Markov chains

When dealing with CTMCs, the expected time to
extinction is relatively easy to calculate in many cases,
using the transition rate matrixQ (e.g. constructed
from (1)–(3)). First, we restrictQ to the non-
extinct population sizes; we remove all those rows and
columns with entries corresponding to (quasi-) extinct
population sizes, and call this restricted matrixM .
Then, the expected time to extinction is the minimal,
non-negative solutionτ to Mτ = −1. This system of
linear equations can easily be solved using virtually
any numerical computing package.

Ornstein-Uhlenbeck processes

We follow Pollett (2001) and solve the partial
differential equations corresponding to the OU
approximation to the SIS model, using thebvp4c
procedure in MATLAB on the appropriate boundary
value problem. We choose slightly different bounds
between which to evaluate the solution, to allow
for quasi-extinction and to make the upper bound
equivalent toN . See Pollett (2001) for further details.

Geometric Brownian motion

Foley (1994) gives the derivation of the expected time
to extinction for a population under the assumption

that the population size changes approximately
according to a GBM. The expected time to extinction
Te(x0), when the log of the initial population size is
x0, is given by

Te(x0) = 2
x0

vr

(

n − x0

2

)

, rd = 0,

where rd is the mean of the natural log of the
population growth rate,vr is the variance in the
log growth rate, andn = log N is the log of the
population ceiling, or,

Te(x0) =
1

2srd

(

e2sn
(

1 − e−2sx0

)

− 2sx0

)

,

if rd 6= 0, wheres = rd/vr. Because of the symmetry
of the process in the log of the population size, we
may adjust for quasi-extinction by subtracting the log
of the quasi-extinction level from bothx0 andn (in
the above, we have assumed the extinction level is1).

Piecewise-deterministic Markov processes

Expected times to extinction for PDMPs have
been considered analytically by Hanson and Tuck-
well (1981, 1997). We employ a rather different,
unsophisticated, yet very robust approach to obtain
numerical solutions. The expected times to extinction
τ(u), for u ∈ [0, 1], satisfy a delay differential
equation that may be solved implicitly, by use of an
integrating factor and careful selection of boundary
values, to obtain a (delay) integral equation:τ(u) then
also solves

τ
(

u(t; ue)
)

=

1

ν
+ eνt

∫ ∞

t

νe−νxτ
(

(1 − p)u(t; ue)
)

dx.
(6)

Here, as earlier,λ is a growth rate constant,ν
is the rate of occurrence of catastrophes,p is the
killing probability. The constantue ∈ (0, 1) is the
quasi-extinction level, andu(t; ue) is the solution to
du/dt = λu(1 − u), with u(0) = ue. In order to
proceed, we note that (6) has the formτ = Kτ , where
K is the functional given by the right-hand side of the
equation, and hence the expected time to extinction is
the minimal, non-negative fixed point ofK.

We exploit the form of (6) by approximating the
integral by its lower and upper Riemann sums,
respectivelyK andK. Then, it is easy to show that,
becauseK h ≥ K g andKh ≥ Kg if h(u) ≥ g(u)
for all u (the functionals are monotone increasing), the
minimal non-negative fixed points ofK andK bound
τ from below and above, respectively (see Lemma
2.11.1 of Gihman and Skorohod, 1972). These fixed
points can be found using numerical linear algebra.
Then, by refining the mesh on which the Riemann
sums are calculated, the bounds onτ can be tightened,
and the use of interval analysis (see, e.g., Hansen and
Walster (2004)) can ensure that numerical errors in the
calculation of these bounds are also accounted for.
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